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Abstract

We explored the use of the eco-physiological crop model GECROS to identify markers for improved rice yield under 
well-watered (control) and water deficit conditions. Eight model parameters were measured from the control in one 
season for 267 indica genotypes. The model accounted for 58% of yield variation among genotypes under control and 
40% under water deficit conditions. Using 213 randomly selected genotypes as the training set, 90 single nucleotide 
polymorphism (SNP) loci were identified using a genome-wide association study (GWAS), explaining 42–77% of crop 
model parameter variation. SNP-based parameter values estimated from the additive loci effects were fed into the 
model. For the training set, the SNP-based model accounted for 37% (control) and 29% (water deficit) of yield varia-
tion, less than the 78% explained by a statistical genomic prediction (GP) model for the control treatment. Both mod-
els failed in predicting yields of the 54 testing genotypes. However, compared with the GP model, the SNP-based crop 
model was advantageous when simulating yields under either control or water stress conditions in an independent 
season. Crop model sensitivity analysis ranked the SNP loci for their relative importance in accounting for yield varia-
tion, and the rank differed greatly between control and water deficit environments. Crop models have the potential to 
use single-environment information for predicting phenotypes under different environments.

Keywords:   Crop modelling, genomic prediction, genotype–phenotype relationships, GWAS, marker design, Oryza sativa.

Introduction

Genomic information provides opportunities for detect-
ing genes and quantitative trait loci (QTLs) associated with 
various morphological, physiological, and agronomic traits. 
Rice breeding exploits these genes and QTLs to improve 

grain yield potential and yield stability of rice cultivars when 
exposed to different abiotic stresses (Singh et al., 2009; Zhang 
et  al., 2009; Vikram et  al., 2011; Ali et  al., 2013). The advent 
of high-throughput and cost-effective genome sequencing 
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technologies has made it possible to conduct in-depth genome 
analyses of thousands of individual genotypes. For example, 
complete genome sequencing was carried out on 3000 diverse 
genotypes of rice (Oryza sativa), and this allowed detection of 
many mutations (Li et al., 2014) and explaining the diversity at 
the genome level in the form of single nucleotide polymor-
phisms (SNPs). Despite advances in rice genetics, several scien-
tific and technical challenges need to be overcome to exploit 
this information to improve grain yield further. Grain yield 
is a complex trait with low heritability and strong response 
to environment [genotype×environment interaction (G×E)]. 
To improve grain yield further, a deeper understanding of the 
morphological and physiological traits contributing to grain 
yield, and the interaction between genes or QTLs regulating 
these traits with the environment is required.

Quantification of G×E for predicting traits usually involves 
the build-up of a model based on information generated by 
phenotyping many genotypes in several characterized environ-
ments. The model application can be illustrated in an approach 
using observed information to predict the phenotypic perfor-
mance of: (i) genotypes phenotyped in new environments; (ii) 
new genotypes in characterized environments; and (iii) new 
genotypes in new environments (Bustos-Korts et al., 2016). The 
latter aspects have evolved into the so-called ‘genomic predic-
tion’ (GP) to support marker-assisted breeding for quantitative 
traits (Zhang et al., 2016). While these approaches were pro-
posed largely from the viewpoint of statistical modelling, they 
can also be applied to eco-physiological modelling of G×E 
using dynamic process-based eco-physiological crop simula-
tion models (‘eco-physiological models’ hereafter).

Eco-physiological modelling has been widely used to 
resolve the complexity of grain yield under different environ-
ments (Soltani et al., 1999; Yin and Struik, 2010; Martre et al., 
2011), by dissecting grain yield into its component traits or 
parameters. Most parameters in the model may be controlled 
genetically; therefore, eco-physiological models are believed 
to be able to quantify genotype–phenotype relationships 
for complex traits (Hammer et  al., 2006; Bertin et  al., 2010; 
Génard et al., 2016), using dynamic simulation on a daily or 
even shorter time-step basis. Unlike statistical approaches that 
require a large number of experiments (although on a single 
trait) to create a prediction model (Bustos-Korts et al., 2016), 
eco-physiological modelling can, in principle, rely on one or a 
few experiments for model parameterization because the pre-
diction is made largely based on eco-physiological principles as 
captured by the models.

However, parameters of eco-physiological models are com-
monly measured or estimated from phenotyping experiments, 
and their genetic basis is largely unknown (Kromdijk et  al., 
2014). Several studies have therefore tried to link crop model-
ling with QTL analysis (see review by Yin et al., 2016). Using 
such an approach, grain yield was first predicted in barley 
(Yin et  al., 2000), later followed by studies for simpler traits 
(e.g. Reymond et  al., 2003; Nakagawa et  al., 2005) and rice 
grain yield under water deficit conditions (Gu et  al., 2014). 
Such QTL-based crop modelling also supports marker-assisted 
selection to accelerate traditional breeding (Gu et  al., 2014; 

Hammer et  al., 2016; Xu and Buck-Sorlin, 2016; Yin et  al., 
2016).

Most studies linking eco-physiological modelling with 
genetics were conducted on bi-parental mapping populations 
representing only a small part of the available genetic diversity 
(Yin et  al., 2000, 2005; Nakagawa et  al., 2005; Quilot et  al., 
2005; Laperche et al., 2006; Uptmoor et al., 2008). Genome-
wide association studies (GWAS) have become increasingly 
popular to dissect the genetic architecture of complex traits, 
using wider genetic diversity in crops (Remington et al., 2001). 
To the best of our knowledge only a few recent studies were 
conducted on linking GWAS with eco-physiological model-
ling (Rebolledo et al., 2015; Dingkuhn et al., 2017a, b; Mangin 
et al., 2017). Mangin et al. (2017) showed that crop models can 
be used to develop ‘stress indicators’ that explain yield variation 
across multiple environments, facilitating GWAS application 
to identify relevant QTLs for yield in response to environ-
mental stresses. Rebolledo et  al. (2015) and Dingkuhn et  al. 
(2017a, b) have shown that eco-physiological models can dis-
sect early vigour, phenology, and spikelet sterility, respectively, 
into their components, thereby strengthening the phenotyp-
ing and GWAS analysis of these traits. These studies demon-
strated how GWAS analysis can benefit from crop modelling. 
However, whether the genetic approach for GWAS can facili-
tate the application of crop modelling in predicting the G×E 
effect on crop yields has hardly been demonstrated.

The objective of the current study is to explore the poten-
tial of using GWAS to enhance the application of eco-physi-
ological modelling in supporting marker-assisted breeding. We 
applied the GECROS (Genotype-by-Environment interaction 
on CROp growth Simulator) model (Yin and Van Laar, 2005; 
Yin and Struik, 2017) to a rice association mapping panel as a 
case study. This eco-physiological approach was compared with 
a simplified statistical GP approach, to investigate any advan-
tage of eco-physiological models in using a single experiment 
to predict the performance of genotypes in a GWAS panel 
under different environmental conditions.

Materials and methods
We modified the methodology of Gu et al. (2014), who applied it to a 
bi-parental population (Supplementary Fig. S1 at JXB online). The model 
was first parameterized from one environment. Then GWAS was per-
formed on model input parameters to identify SNP markers, and the 
SNP-based eco-physiological model predictions were compared with 
the statistical genomic predictions of grain yields across different envi-
ronments. Eco-physiological model-based sensitivity analysis was further 
used to rank the identified SNP markers for their importance in deter-
mining grain yield. Each step is explained in the following sections.

Association mapping panel and field phenotyping
An association mapping panel of indica rice genotypes was developed 
and assembled at the International Rice Research Institute (IRRI), 
Philippines (http://ricephenonetwork.irri.org). This population has 
been extensively used to study the genetic architecture of many phe-
notypic traits (Al-Tamimi et  al., 2016; Rebolledo et  al., 2016; Kadam 
et al., 2017; Kikuchi et al., 2017). We phenotyped this population (296 
genotypes) for grain yield and its component traits under well-watered 
(control) conditions throughout the crop cycle and under water deficit 
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conditions during the reproductive stage (flowering stage) (Kadam et al., 
2018). Two field experiments were executed at the upland farm of IRRI  
(14°11´N, 121°15´E, 21 m asl) during the dry seasons (DS) of 2013 and 
2014. The experiments were laid out in a group block design with three 
replications (four rows per replicate) for each genotype in each treatment. 
A  systematic staggered sowing and transplanting scheme was followed 
to synchronize flowering, and thereby the phenological timing of the 
water deficit stress, for the entire panel. Due to poor germination or 
early flowering and/or maturity before stress, we collected data for 291 
genotypes in 2013 and 288 genotypes in 2014 (Kadam et al., 2018). Here, 
we used only 267 genotypes, which were common across the years and 
were uniformly exposed to stress at the reproductive stage. The GECROS 
model requires weather data on daily radiation, maximum and minimum 
temperature, vapour pressure, rainfall, and wind speed, and these were 
taken from an on-site weather station. Further details of the experimental 
set-up are given by Kadam et al. (2018).

The GECROS model and its modification
The GECROS model, first described by Yin and Van Laar (2005) and 
recently updated by Yin and Struik (2017), runs on a daily time step, but 
with subroutines for photosynthesis, transpiration, and phenology run-
ning on shorter time steps. The model simulates yield by considering 
physiological processes involving carbon–nitrogen interaction, functional 
balance between shoot and root activities, and the interplay between 
source supply and sink demand.

The number of spikelets m–2 in the model is assumed to be proportional 
to the amounts of either carbon or nitrogen (depending on which is more 
limiting) accumulated until flowering. Gu et al. (2014) showed that this 
approach overestimated yield of rice genotypes under drought, and this 
was confirmed in pre-simulations with our GWAS panel (Supplementary 
Fig. S2). It is now known that when stress occurs during the flowering 
phase, the percentage of filled spikelets, or grain set, depends more on the 
panicle temperature during the flowering time window in a day, ~08.00–
13.00 h (Jagadish et al., 2007; Julia and Dingkuhn, 2013). Therefore, we 
modified the GECROS model to account for the direct effect of pani-
cle temperature on sink size. The simulation of panicle temperature was 
done using the same algorithms in GECROS (Yin and Struik, 2017) for 
simulating leaf surface energy balance, based on a coupled conductance–
photosynthesis–transpiration routine, whereby panicles were treated as 
a photosynthesizing organ and its conductance was calculated using a 
semi-empirical leaf conductance model. Because the panicle temperature 
only within the flowering time window is most crucial in determining 
the spikelet sterility (Julia and Dingkuhn, 2013), upscaling instantane-
ous photosynthesis and transpiration to daily total was changed from the 
five-point Gaussian integration in GECROS to computation of 24 times 
from sunrise to sunset. A factor for reduction induced by any high panicle 
temperature at flowering hours under stress, relative to the control, was 
introduced to simulate the actual spikelet fertility under stress, based on 
the linear relationship between sterility and panicle temperature reported 
by Julia and Dingkuhn (2013) for rice. The grain set in control was herein 
called ‘the baseline grain set’.

Measurement of model input parameters, model calibration, 
and testing
The GECROS model was designed in such a way that most of its input 
parameters can be directly determined from measurements without re-
course to an optimization procedure (Yin and Van Laar, 2005). The latter 
procedure requires many experiments to be performed and may not 
be suitable for parameterization of sophisticated crop models such as 
GECROS that have different time steps for different subprocesses. The 
set of genotype-specific phenological, morphological, and physiological 
input parameters used in this study to simulate grain yield are listed in 
Table 1. Parameter values for each genotype of the GWAS rice panel 
were determined from the control treatment of the 2013 DS experi-
ment. The exception was the photoperiod sensitivity parameter δ that 
was estimated using pre-flowering phenology data collected from the 
2013 DS as well as an additional 2012 wet season phenology experiment 

(Kadam et al., 2018), because at least two photoperiods are required in 
order to estimate δ. Functions of the phenological response to tempera-
ture and photoperiod in the GECROS model were used to calculate 
the parameters mV and δ using the measured flowering times, and mR 
using the harvest time, based on daily photoperiod and hourly tempera-
ture generated from daily maximum and minimum temperatures (Yin 
et al., 2005). Values of Hmax, Sw, and gset were determined directly from 
the experimental measurements. The value of nso was measured using the 
micro-Kjeldahl method. Nmax is not an input parameter in the default 
GECROS model, and is used here as a genotype-specific parameter to 
avoid the confounding effect of the inherent inaccuracy in simulating ni-
trogen availability from soil. The value of Nmax was assessed based on dry 
weight and nitrogen concentration in the various plant organs, assuming 
that the straw nitrogen concentration was 0.463% (Singh et al., 1998) and 
nitrogen accumulation in the roots was 5% of Nmax (Yin and Van Laar, 
2005). Values of other parameters, which are possibly also genotype spe-
cific but were not assessed experimentally, were kept for the whole panel 
at model default values for rice as given by Yin and Van Laar (2005).

The GECROS model, calibrated as described above, was then used to 
simulate values of grain yield of the genotypes in the water deficit con-
dition of 2013, as well as in 2014 environments under both control and 
water deficit conditions. Relative root mean square error (rRMSE) was 
used to inspect the quality of model simulation (Brun et al., 2006), and 
the R2 coefficient of the linear regression of simulated versus observed 
values of grain yield was used to show the percentage of phenotypic yield 
variation accounted for by the model.

GWAS analysis of model input parameters and grain yield, and 
estimating SNP-based values of these traits
The rice population of 267 genotypes was randomly divided into a train-
ing (213 genotypes; 80% of the population) and a testing (54 genotypes; 
20% of the population) set. This random separation of the population 
had a minimal effect on the population structure as the testing data sets 
represented the structure of the training sets (Supplementary Fig. S3).

Using the training data set, the single-locus GWAS analysis was per-
formed on model input parameters and grain yield using a 46K SNP 
data set (8.75% missing imputation) by a compressed mixed linear model 
(CMLM) in the Genomic Association and Prediction Integrated Tool 
(GAPIT). The detailed protocol was explained by Kadam et  al. (2017, 
2018). Using this protocol, we selected the top 10 significant markers 
with the lowest P-values after excluding the redundant markers within 

Table 1.  Details of genotype-specific GECROS model input 
parameters classified into three categories

Parameters Description Unit

(A) Phenological 

mV Pre-flowering period Thermal day
mR Post-flowering period Thermal day

δ Photoperiod sensitivity h–1

(B) Morphological 
Hmax Maximum plant height m
Sw Single-grain weight g 
(C) Physiological 
gset Baseline grain set %
nso Grain nitrogen concentration g N g–1 DM
Nmax Total crop nitrogen uptake at maturity g N m–2 

‘Thermal day’ is calculated using the bell-shaped temperature response 
equation as used in GECROS, based on hourly temperatures generated 
from weather data on daily maximum and minimum temperatures; a 
thermal day is equivalent to an actual day only if temperature at each hour 
of the day equals the optimum temperature for phenological development. 
So, mV and mR in thermal days are lower than their values in actual days 
for expressing the growth duration. DM=dry matter; N=nitrogen.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz120#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz120#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz120#supplementary-data
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the linkage disequilibrium (LD) of ~55–65 kb reported for this popula-
tion (Kadam et al., 2017). Similarly, we conducted a multilocus GWAS 
analysis that in addition to correcting the confounding effect of popu-
lation structure and family relatedness, corrected for the confounding 
effect of background loci present due to LD in the genome. We ran the 
complete model with stepwise forward inclusion of the lowest P-value 
marker as a cofactor until the heritability reached a value close to zero, 
followed by backward elimination of the least significant markers from 
the model (Segura et  al., 2012). With this protocol, all significant SNP 
markers associated with the trait were incorporated as a cofactor in 
the model. As multilocus analysis also corrects the confounding effect 
of genome LD (Segura et al., 2012), significant SNP markers associated 
with traits identified through multilocus analysis were not within the LD 
region of ~55–65 kb reported for this population (Kadam et al., 2017).

All significant SNPs identified in the above step were fed into a multi-
ple linear regression (MLR) using the lm() function in R with Equation 1:

Yk = µ+
N∑
n=1

anMk,n� (1)

where Yk is a response variable (eco-physiological model parameter or 
yield) of the kth individual genotype, μ=intercept, an=additive effect of 
the n marker, and Mk,n=genetic score of the kth genotype at the position 
of the nth marker, taking the value either –1 (homozygous for the major 
allele) or 1 (homozygous for the minor allele). This analysis identified the 
non-significant markers due to collinearity of markers, and these markers 
were removed. We then performed one more round of MLR analysis to 
remove the markers with cut-off threshold P-value <0.01, and the R2 of 
Equation 1 at this final round MLR was taken as the phenotypic percent-
age explained by the identified markers. This analysis was performed for 
each model input parameter and for grain yield.

We also used Equation 1, with estimated additive effects of the individ-
ual markers and marker allelic data, to generate SNP marker-based model 
input parameter values for each genotype in the whole panel. These SNP 
marker-based model input parameter values were fed into the GECROS 
model, allowing eco-physiological model predictions of grain yield using 
the SNP information for training and testing sets grown under different 
environmental conditions.

Statistical genomic prediction model
We compared the accuracy of the eco-physiological modelling with a 
direct GP modelling of grain yield. For the latter approach, we used the 
partial least square (PLS) regression model (Abdi, 2003). A PLS regres-
sion is particularly adapted in the case of high-dimensional data to avoid 
the multicollinearity problems. This regression model is a dimension 
reduction method that seeks to find the latent components. These latent 
components maximize the variability of predictors that best explain the 
variance of the response variable (grain yield). The optimum number of 
latent components minimizing the RMSE of prediction were selected by 
a 10-fold cross-validation in the training data set. These optimum num-
bers of latent components identified in training data sets were then used 
to make the prediction. To compare with the eco-physiological model-
ling, rice genotypes and data for training or testing data sets were kept 
exactly the same as defined earlier, and the predictors used in the PLS 
regression were those 90 SNPs identified for eco-physiological model 
input parameters (see the Results). A PLS regression modelling analy-
sis was implemented in R studio using the package ‘PLS’ (Mevik and 
Wehrens, 2007) with 1000 iterations. The obtained training GP model 
was used to assess the prediction accuracy in both training and testing 
data sets across years and treaments.

Sensitivity analysis to rank the relative importance of individual 
SNP markers
Sensitivity analysis was performed using the GECROS model to test the 
effect of individual SNP markers on grain yield simulation. Simulated 
grain yields for 267 genotypes in the earlier step using genotype-specific 

allelic values of all identified SNPs were first taken to obtain the per-
centage of yield variation explained by the baseline simulation. Then, 
we fixed one marker to zero (i.e. excluding the effect of this marker in 
the analysis). This is equivalent to assuming that all individual genotypes 
of the GWAS panel carry an identical allele at that SNP locus. We then 
simulated grain yield using the model with input parameter values esti-
mated from fixing that SNP marker. We performed such an analysis on 
all significant SNP markers, one marker at a time, and assessed by what 
percentage the explained variation in grain yield decreased in compari-
son with the explained percentage of the baseline simulation. Using this 
protocol, we ranked the relative importance of the markers in determin-
ing grain yield variation.

Results

Genotypic variation in model input parameters and 
their relative contribution to yield

We used the control conditions of the 2013 experiment to 
parameterize GECROS. Obtained model input parameters 
(Table 1) showed a strong genotypic variation (Fig. 1). We con-
ducted regression analysis to test whether each of these param-
eters significantly correlated with grain yield. The total crop 
nitrogen uptake (Nmax) accounted for the highest percentage 
of the grain yield variation in the whole panel (72.43%) (Table 
2). Therefore, multiple linear regression analysis was performed 
with Nmax as a cofactor in the model. Grain yield was sig-
nificantly correlated with four other input parameters: post-
flowering period (mR), maximum plant height (Hmax), grain set 
(gset), and grain nitrogen concentration (nso). However, it was 
not correlated with pre-flowering period (mV), photoperiod 
sensitivity (δ), or single-grain weight (Sw) (Table 2).

Performance of the model simulation using original 
parameter values

The GECROS model input parameters were estimated from 
control conditions in the 2013 experiment. For this 2013 con-
trol treatment, the model accounted for 58% of the total varia-
tion in grain yield with an rRMSE value of 0.19 in the whole 
panel (Fig. 2A). Using the same input parameter values to sim-
ulate the situation under water deficit stress of 2013, the model 
accounted for 40% of the yield variation with an rRMSE value 
of 0.28 (Fig. 2A).

Model input parameter values from the 2013 control condi-
tion were also used to run GECROS to simulate grain yield 
in the 2014 experiment. The model only accounted for 20% 
and 13% of the variation in grain yield under control and 
water deficit conditions with rRMSE values of 0.31 and 0.40, 
respectively (Fig. 2B). The model tended to underestimate 
grain yield in control conditions for most genotypes. For water 
deficit conditions, the model overestimated yield at the lower 
tail, and underestimated yield at the upper tail, of the observed 
values.

Identifying SNP markers for model input parameters 
and for grain yield

Using a single-locus and a multilocus GWAS performed on 
the 213 genotypes of the training data set from 2013 control 
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conditions, we identified 104 SNP markers associated with 
model input parameters (Table 3), and the equivalent Manhattan 
plots are given in Supplementary Figs S4–S6. In the next step, 
we selected the final set of 90 out of 104 SNP markers for model 
input parameters with cut-off threshold P-values <0.01 using 
the MLR Equation 1 (Supplementary Table S1). The combined 
phenotypic variation explained by the final set of SNPs detected 
for individual model input parameters ranged from 42.2% (gset) 
to 77.0% (Hmax; Supplementary Table S1). In comparison, we 
also detected 12 SNP markers for grain yield, which together 
explained 44.4% of the total variation in grain yield (Table 3). 
No common SNP markers were found among model input 
parameters. Two markers on chromosomes 8 (2341829) and 5 
(658940) for Nmax, however, were also associated with grain yield.

Performance of SNP-based GECROS simulations

In the next step, an SNP-based GECROS model was created 
by using parameter values for each genotype calculated from 
the additive effect of the SNPs on model input parameters 
by the MLR analysis (Equation 1), and allelic data of each 
SNP for the whole panel. In training data sets, the SNP-
based model accounted for 37% and 29% of variation in 
grain yield under control and water deficit conditions with 
rRMSE values of 0.23 and 0.30, respectively, for the 2013 
experiment (Fig. 3). However, model simulation on testing 
data sets accounted only for 10% of yield variation under 
control conditions (rRMSE=0.26), and 15% of yield vari-
ation under water deficit conditions (rRMSE=0.33) in 2013 
(Fig. 3).

For the 2014 experiment, the SNP-based GECROS model 
accounted for only 23% and 17% of variation in grain yield 
of the training sets under control and water deficit conditions, 
respectively (Fig. 3). For the testing data sets, this percentage 
was only 1% and 9% for the two conditions, respectively 
(Fig. 3). Across both years and treatments, the model overes-
timated the lower end, and underestimated the upper end, of 
observed grain yields (Fig. 3).

We correlated the original parameter-based simulations 
with SNP-based simulations, for the whole panel. The SNP-
based simulations were well correlated with original parame-
ter-based simulations under control conditions (2013, r=0.72; 
and 2014, r=0.70) and water deficit conditions (2013, r=0.77; 
and 2014, r=0.74) (Fig. 4).

Fig. 1.  Phenotypic distribution of model input parameters and grain yield in 267 genotypes of a rice genome-wide association mapping panel under 
control conditions of the 2013 experiment.

Table 2.  Linear regression of grain yield (Y in g m–2) with total crop 
nitrogen uptake (Nmax in g N m–2), and other individual model input 
parameters (Table 1) of the whole panel in 2013 control conditions

Equation μ a1 a2 R2 (%)

Y=μ+a1Nmax –207.29 81.28*** 72.43

Y=μ+a1Nmax+a2mV –202.74 81.38*** –0.08NS 72.43

Y=μ+a1Nmax+a2mR –301.61 79.93*** 3.11** 73.39

Y=μ+a1Nmax+a2δ –211.24 82.28*** –102.65NS 72.79

Y=μ+a1Nmax+a2Hmax –9.60 83.23*** –156.79*** 85.05

Y=μ+a1Nmax+a2Sw –266.67 81.14*** 2688.87NS 72.85

Y=μ+a1Nmax+a2gset –355.65 66.87*** 349.30*** 77.92

Y=μ+a1Nmax+a2nso 134.63 76.88*** –22 861.21*** 82.00

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz120#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz120#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz120#supplementary-data
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Performance of statistical genomic prediction

The same 90 SNPs markers identified for GECROS param-
eters (Supplementary Table S1) were used to develop the GP 
model, using the grain yield data of the 2013 control condi-
tions for the same training population (n=213). In the 2013 
experiment, the GP model accounted for 78% (rRMSE=0.13) 
of yield variation of the training population under control; 
but its performance for water deficit stress was poorer with 
rRMSE=0.50, despite explaining 48% of yield variation 
(Fig. 5A). Similar to the eco-physiological modelling, the GP 
model was not effective in the 2013 testing data set, account-
ing for only 16% (rRMSE=0.27) of yield variation in control 
and 13% (rRMSE=0.55) of yield variation under water defi-
cit (Fig. 5). When also validated on the 2014 experiment, the 
GP model was extremely poor in prediction, accounting for 
≤1% grain yield variation in training and testing data sets across 
treatments (Fig. 5). In fact, the GP model overestimated the 
grain yield under water deficit for all cases (Fig. 5).

Sensitivity analysis to rank the relative importance of 
SNP markers in determining yield

To determine the relative importance of the 90 significant 
SNP markers, a sensitivity analysis was run with GECROS by 
fixing these markers one at a time. This involved a total of 180 
(90 in control and 90 in water deficit) simulations based on the 
2013 experiment.

For control conditions, the top four SNP markers on 
chromosome 6 (1360962; rank 1), 7 (23760855; rank 2), 12 

(6720935; rank 3), and 1 (1360962; rank 4) contributing to vari-
ation in grain yield were all detected for Nmax (Supplementary 
Table S2). For example, fixing the top ranked SNP on chromo-
some 6 (1360962), the phenotypic variation accounted for by 
GECROS decreased from 31.6% to 25.9% in control condi-
tions (Supplementary Table S2). These results are supported by 
the linear regression results showing that Nmax explained most 
of the variation in grain yield (Table 2).

For water deficit conditions, the top three SNP markers 
on chromosome 4 (19591930; rank 1), 1 (9243669; rank 2), 
and 2 (4390533; rank 3) contributing most to grain yield were 
for mV (Supplementary Table S2). The phenotypic variation 
accounted for by the model for yield in water deficit decreased 
from 26.1% to 14.9% if the top ranked SNP on chromosome 4 
(19591930) was fixed. Likewise, the fourth ranked SNP marker 
under water deficit was on chromosome 7 (58252) detected 
for Hmax.

These results demonstrate that pre-flowering phenology 
played a major role in influencing grain yield under stress, 
while Nmax predominantly influenced grain yield in control 
conditions. Nevertheless, the SNP marker on chromosome 6 
(1360962; rank 6) influencing Nmax and the marker on chro-
mosome 3 (16529108; rank 7) influencing nSO also had signifi-
cant effects on grain yield under water deficit (Supplementary 
Table  S2). In addition, we noticed that excluding the effect 
of some markers did not change the variation in grain yield 
explained by the model, while in another situation it increased 
the explained variation. For instance, excluding one of the 
SNPs on chromosome 9 for mR increased the explained varia-
tion in grain yield in control from 31.6% (baseline simulations) 
to 33.5% (Supplementary Table S2).

Table 3.  Total number of significant SNPs detected through 
multiple linear regression (MLR) for eight GECROS model input 
parameters and grain yield of the rice training population (n=213) 
under control conditions in the 2013 experiment

Parameters Significant SNPs R2 (%)

(A) Phenological

mV 16 (20) 74.2
mR 9 (9) 51.6

δ 9 (9) 65.1

(B) Morphological 
Hmax 13 (17) 77.0
Sw 8 (9) 47.3
(C) Physiological 
gset 6 (6) 42.2
nSO 16 (19) 70.0
Nmax 13 (15) 66.8
Total SNPs 90 (104)  
Grain yield 12 44.3

Percentage of phenotypic variations (R2) explained by significant SNPs 
of model parameters and yield are derived from MLR (Equation 1). The 
numbers in parentheses refer to the number of significant SNP markers 
originally detected through the genome-wide association mapping study 
before putting them into the MLR analysis (for more details, see the 
Materials and methods). Coefficients of Equation 1 and the additive effect 
of each significant SNP for model input parameters and grain yield are 
given in Supplementary Table S1.
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Fig. 4.  Correlations between grain yields predicted using phenotypic model input parameter values and those predicted using SNP-based model 
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Discussion

In this study, we incorporated SNP markers identified through 
GWAS into the eco-physiological model GECROS to simu-
late variation in grain yield among different rice genotypes in 
an association panel. Key findings are discussed below in detail.

Modelling genotypic differences of yield under 
stress conditions remains a challenge to 
eco-physiological models

Models are often adapted empirically to diverse data for an 
improved prediction. In contrast, GECROS minimizes the use 
of empirical algorithms and input parameters, and simulates 
crop yield by capturing the principles of physiological inter-
action and feedback (Yin and Van Laar, 2005; Yin and Struik, 
2010, 2017; Yin, 2013). This model was used to simulate grain 
yield and biomass differences in a bi-parental segregating 
population of rice (Gu et  al., 2014). For our study, we im-
plemented the simulation procedure in the strictest possible 
manner: the model was calibrated for only eight parameters 
(Table 1), which were estimated from measurements in a sin-
gle environment, namely under well-watered conditions of the 
2013 experiment. This model explained 58% of the observed 
differences in grain yield among the rice association panel in 
the 2013 experiment (Fig. 2A). The variation accounted for 
was lower than in a previous study with a bi-parental popula-
tion of introgression lines (Gu et al., 2014). This was probably 

because the GWAS panel used in our study contained more 
diverse genotypes (n=267), while individuals derived from a 
bi-parental cross in the case of Gu et  al. (2014) were fewer 
(n=96) and more related to each other. The model showed 
poor simulation accuracy of variation in grain yield in new 
environments, the 2013 water deficit condition (Fig. 2A), and 
both control and water deficit conditions in the 2014 experi-
ment (Fig. 2B). These results suggest that the eight GECROS 
model input parameters chosen in the present study (Table 1) 
are not sufficient in characterizing yield differences. We pre-
viously observed variations in many morpho-physiological 
traits in our GWAS panel (see Kadam et al., 2017). These traits 
are potentially important for yield determination, but most of 
them are not yet accounted for by the model.

Water deficit reduces transpiration cooling and increases tis-
sue and organ temperature leading to higher spikelet steril-
ity in rice (Jagadish et  al., 2007). Potential seed number was 
determined by carbon and nitrogen accumulation during the 
vegetative phase in an earlier version of GECROS. Hence, the 
model originally did not have the ability to account for the 
effect of organ temperature on spikelet sterility and, therefore, 
generally overestimated grain yields in the panel under stress 
conditions (Supplementary Fig. S2). In the present study, we 
introduced the GECROS leaf surface energy balance algo-
rithms to simulate panicle temperature under stress conditions. 
We need to further evaluate this approach because it is hypoth-
esized that panicles may not have functional stomata and hence 
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do not behave similarly to leaves (Lawas et al., 2018). Also, pre-
dicting organ temperature may require a detailed modelling of 
crop microclimate. Nevertheless, our simple approach allowed 
us to simulate 40% and 13% of the grain yield variation in the 
association panel under stress conditions during the 2013 and 
2014 experiments, respectively (Fig. 2). The decreased simu-
lated yield for the stress condition was due to an increased 
spikelet sterility because of simulated warmer panicle tempera-
ture by ~2 °C (results not shown). Such an extent of panicle 
warming was in line with measurements of canopy tempera-
ture in the same experiment (G. Melandri, personal commu-
niction). Individual genotypes may differ in: (i) their panicle 
temperature response to water deficit (Lawas et al., 2018); (ii) 
the time window of their flowering hours (Bheemanahallia 
et  al., 2017); and (iii) their sensitivity of spikelet fertility to 
panicle temperature. However, we did not have sufficient data 
on these possible differences; so uniform sensitivity parameter 
values were applied to all genotypes, based on the recent report 
of Julia and Dingkuhn (2013). In addition to the response via 
panicle temperature, there may be a direct response of spikelet 
sterility to panicle water deficit, which is extremely hard to 
model. All these may contribute to why only marginal benefit 
was obtained after introducing temperature effects on spikelet 
fertility under stress (Fig. 2A versus Supplementary Fig. S2). 
Modelling genotypic differences of spikelet fertility remains a 
major challenge in applying eco-physiological models to stress 
conditions.

SNP-based eco-physiological prediction was less 
accurate in training sets but advantageous in new 
environments, compared with statistical genomic 
prediction

The SNP-based eco-physiological model was created by 
replacing the orginal parameter values with those estimated 
from additive effects of loci identified by GWAS. To evaluate 
the predictive quality of the SNP-based model, special valida-
tion schemes were used, in which the genotypes were randomly 
subdivided into a training set and a testing set. The SNP-based 
model showed some potential to quantify the grain yield vari-
ation in the training set under 2013 control and new environ-
ments (Fig. 3A, B). However, the model had lower accuracy for 
grain yield, compared with the GP model in the training data 
set under the 2013 control environment (Fig. 5A). This could 
be due partly to the fact that SNPs for model input param-
eters explained only 42–77% of their phenotype variation 
(Table 3; Supplementary Table S1) and partly to the fact that 
GECROS does not yet use a full set of yield-determining traits 
as its input parameters (see discussion earlier). On the other 
hand, compared with the GECROS model (Fig. 3B), the GP 
model showed extremely poor predicition accuracy for yield 
in training data sets across treatments in the 2014 experiment 
(Fig. 5B). This indicates that the GP model developed in one 
environment cannot be extrapolated to other environments, 
particularly not to stress environments where the GP model 
overpredicted yields (Fig. 5A, B). To some extent, the eco-
physiological model had a better ability to be extrapolated to 
other environments based on physiological principles captured 

by the model. A GP model could include environmental fac-
tors as covariates in analysing multienvironment data; but this is 
not comparable with our eco-physiological modelling scheme, 
nor is it feasible within our available data sets.

In validation, both the SNP-based eco-physiological model 
(Fig. 3C, D) and the GP model (Fig. 5C, D) showed a poor 
prediction in testing data sets across years and treatments. 
The GWAS analysis explores the phenotypic variance that 
is determined by how the two allelic variants differ in their 
phenotypic effect and their allelic frequency in the popula-
tion sample. Hence, the lower simulation accuracy for the test-
ing set suggests that excluding the 54 testing genotypes in the 
GWAS analysis might change the balance of the allelic fre-
quency of a given SNP in the population. This change can 
influence the phenotypic variance and reduce the prediction 
accuracy (Isidro et al., 2015). Although the testing set did not 
represent a very different population structure compared with 
the training set (Supplementary Fig. 3), it may be important 
to optimize the population structure using marker and trait 
data while designing the training and testing sets to maximize 
the prediction accuracy (Rincent et al., 2012). Unfortunately, it 
was not possible to implement such a procedure in our analysis 
because we have different model input parameters and such 
an approach may result in different training and testing sets for 
different input parameters.

SNP-based modelling enhances the role of an eco-
physiological approach in improving the efficiency of 
marker-assisted selection

Eco-physiological models have been expected to be a useful 
tool in supporting plant breeding (Bertin et al., 2010; Hammer 
et al., 2016). However, the fact that the genetic basis of model 
input parameters is largely unknown has prevented eco-phys-
iological modelling from achieving its potential in assisting 
breeding (Kromdijk et al., 2014). Using QTL analysis to over-
come this problem has been done in several studies based on 
traditional linkage analysis with bi-parental populations (see 
review by Yin et al., 2016). In this study, we explored the use 
of the GWAS approach with a diverse rice panel, and incor-
porated the identified effects of multiple SNPs into an eco-
physiological model. We then used this SNP-based modelling 
approach to rank the relative importance of markers identified 
for various model input parameters. This enabled us to iden-
tify the most important markers that breeders can prioritize 
to improve the efficiency of marker-assisted selection for an 
improved yield in specific environments.

The relative performance of the detected markers differed 
totally for control and water deficit conditions: markers for 
Nmax were most important for yield only under control condi-
tions, whereas those for mV were important for stress condi-
tions (Supplementary Table S2). The importance of mV markers 
for yield is because flowering is not only an essential part of 
reproductive processes but also a critical stage sensitive to vari-
ous abiotic stresses (e.g. drought and heat) causing the highest 
grain yield losses (O’Toole, 1982; Barnabás et al., 2008). It is 
evident that altering the flowering time is a strategy adopted by 
crops to maximize the fitness under reproductive stage stresses 
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(Kazan and Lyons, 2016). However, the SNP markers for flow-
ering time did not have a strong effect on yield under control 
conditions (Supplementary Table S2). Hence, the marker-based 
modelling can help to understand how environmental vari-
ables affect the relative importance of phenotypic components 
and genotypic markers for complex traits. This type of analy-
sis with an improved model can greatly enhance the selection 
efficiency for future genetic manipulation of crops in the face 
of changing climatic conditions.

Eco-physiological modelling helps to elucidate the 
genetic control of grain yield by identifying SNPs for 
model input parameters

A deeper understanding of how individual processes contrib-
ute to grain yield is a prerequisite for designing the plant type 
for improved grain yields (Peng et al., 2008). Crop models have 
been used to dissect yield into its physiological components 
(Yin et al., 2004; Chenu et al., 2008; Hammer et al., 2010). This 
is the basis of using crop modelling to enhance phenotyping—
what Dingkuhn et al. (2017a, b) called ‘the heuristic phenotyp-
ing’ of complex traits.

In our study, the model dissected grain yield into eight 
model input parameters (Table 2). The number of QTLs iden-
tified for a single trait is always inadequate (Yin et al., 2002); 
however, model-based dissection allows detection of more 
markers than grain yield per se (Table 3; see also Gu et al., 2014; 
Amelong et al., 2015). Despite this advantage of model-based 
dissection over analysing grain yield per se, the latter approach 
cannot be replaced completely. Grain yield analysis identified 
SNP markers that were not detected by the model-based dis-
section, except two SNP markers for Nmax which co-localized 
with grain yield. This could be due to the fact that markers 
detected for grain yield might have less impact on component 
traits (Yin et al., 2002). Another possibility could be, as stated 
earlier, that some of the yield-determining mechanisms are not 
incorporated in the current GECROS model.

Further, we could not find any common SNP markers 
between model input parameters. This result is in line with 
that of Dingkuhn et al. (2017a, b) for a rice association panel, 
but in contrast to a previous report on a bi-parental popula-
tion of introgression lines (Gu et al., 2014). Such contrasting 
results could be due to the fact that in a bi-parental popula-
tion of introgression lines with one or two major segregat-
ing genes, QTLs might have a strong influence on multiple 
phenotypic traits (Yin et al., 2016). However, QTLs detected 
through GWAS analysis had smaller effects on the main traits. 
In addition, their effect on other traits might also be too small, 
and therefore not detectable by the current GWAS threshold 
P-value.

Challenges in linking the eco-physiological model with 
genomic approaches

Our study highlighted several problems when combining eco-
physiological modelling with GWAS. First, the model calibrated 
from single-environment data only moderately accounted 
for the genotypic variation in grain yield across treatments 

in tested environments, and poorly performed under a new 
environment. Eight genotype-specific model input parameters 
(Table 1), which could be estimated from the data available in 
the present study, were not enough to realize a reasonably good 
yield prediction in diverse rice genotypes under different envi-
ronmental conditions. Some of the eight traits did not even 
contribute much to yield (Table 2, as confirmed by the later 
marker-ranking analysis in Supplementary Table S2). Hence, 
the current GECROS model needs to be further upgraded in 
terms of both model structure and model input parameters, 
to capture more physiological mechanisms and genotype-
specific morphological processes. Earlier discussed responses of 
spikelet numbers to stress should be urgently attended to, and 
the design of model parameters should consider using high-
throughput phenotyping platforms for characterizing geno-
typic differences. Secondly, in contrast to a bi-parental QTL 
analysis (Onogi et al., 2016), identification and estimation of 
QTL effects in a GWAS analysis indeed need to account for 
the population structure and genetic relatedness. We have con-
sidered both population structure and genetic relatedness in the 
phase of identifying the QTLs using GWAS. Yet, later, when 
using Equation 1 to derive model parameter values from the 
identified QTLs, population structure and genetic relatedness 
were ignored. To what extent the estimates of additive effect of 
QTLs on model parameters using Equation 1 could affect the 
accuracy of the crop model would need further analysis.

Recently, the introduction of GP as a statistical tool has 
become increasingly popular over GWAS for predicting the 
quantitative traits, and this GP approach has been integrated 
with eco-physiological models for different applications (Heslot 
et al., 2014; Technow et al., 2015; Cooper et al., 2016; Onogi 
et al., 2016). Onogi et al. (2016) directly linked an eco-physi-
ological model for rice heading date with the GP model, and 
simultaneously inferred the eco-physiological model param-
eters and whole-genome marker effects on the parameters in a 
one-step framework. As such, genetic relatedness among indi-
vidual genotypes is taken into account in the optimization. 
They showed that, compared with the two-step method as in 
our study that applied GWAS or GP to pre-estimated eco-
physiological parameters, their one-step method had greater 
accuracy in prediction in all cross-validation schemes. It is a 
great challenge to apply this one-step method also to a full 
crop-yield model such as GECROS, which consists of many 
physiological subprocesses being simulated possibly with dif-
ferent time steps.

In our analysis, we assumed that the effects of multiple SNPs 
identified by GWAS are additive. However, as major dominant 
QTLs were rare (Supplementary Table S1), the individual ef-
fects of minor QTLs were probably indirect and thus might 
involve interactions with those of other, smaller QTLs, and 
their effects could in many cases neutralize each other. For this 
reason, a standard GP approach considers very large numbers 
of markers, where focus is not on individual QTL effects but 
on the entirety of a whole-genome pattern, thereby providing 
a fingerprint signature that can be highly predictive of pheno-
type. This raises the question of whether eco-physiological 
and genomic integration in modelling should take the se-
lective path of major QTLs (standing for a distinct mechanism 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz120#supplementary-data
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of control), or of whole-genome marker patterns, or of some-
thing in between (e.g. gene network statistics based on GWAS 
results and existing databases). Further analyses would be 
needed to identify the most appropriate path for phenotype 
prediction using the integrated eco-physiological and gen-
omic approach. Once the eco-physiological model is proven 
successful, our approach could target whole-genome-based 
selection, whereby the eco-physiological model would serve 
to improve predictability of phenotype beyond the training 
environment, with which standard GP models have problems.

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. The stepwise methodology to combine GWAS with 

an eco-physiological crop model.
Fig. S2. Relationship between observed and simulated values 

of grain yield for the water deficit stress treatment of the 2013 
experiment, using the GECROS model without introducing 
the direct effect of panicle temperature on spikelet fertility.

Fig. S3. Principal component analysis (PCA) with the first 
two principal components showing the population structure of 
training and testing set genotypes.

Figs S4–S6. The Manhattan plot showing the results of 
GWAS through the single-locus compressed mixed linear 
model (CMLM) for various model input parameters.

Table S1. Regression analysis of SNPs against model param-
eters and yield.

Table S2. Ranking of SNP markers by eco-physiological 
model simulation for their relative importance in determining 
grain yield under control and water deficit conditions.
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