
Journal of Experimental Botany, Vol. 70, No. 9 pp. 2479–2490, 2019
doi:10.1093/jxb/ery430  Advance Access Publication 25 February 2019
This paper is available online free of all access charges (see https://academic.oup.com/jxb/pages/openaccess for further details)

 

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial  
re-use, please contact journals.permissions@oup.com

RESEARCH PAPER

A three-dimensional canopy photosynthesis model in rice 
with a complete description of the canopy architecture, leaf 
physiology, and mechanical properties

Tian-Gen Chang1, Honglong Zhao1,3, Ning Wang2,3, Qing-Feng Song1, Yi Xiao1, Mingnan Qu1, Xin-Guang Zhu1,*
1  National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of 
Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
2  CAS MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
3  University of Chinese Academy of Sciences, Beijing 100049, China

* Correspondence: zhuxg@sippe.ac.cn

Received 14 May 2018; Editorial decision 3 December 2018; Accepted 8 January 2019

Editor: Pierre Martre, INRA, France

Abstract

In current rice breeding programs, morphological parameters such as plant height, leaf length and width, leaf angle, 
panicle architecture, and tiller number during the grain filling stage are used as major selection targets. However, 
so far, there is no robust approach to quantitatively define the optimal combinations of parameters that can lead to 
increased canopy radiation use efficiency (RUE). Here we report the development of a three-dimensional canopy pho-
tosynthesis model (3dCAP), which effectively combines three-dimensional canopy architecture, canopy vertical nitro-
gen distribution, a ray-tracing algorithm, and a leaf photosynthesis model. Concurrently, we developed an efficient 
workflow for the parameterization of 3dCAP. 3dCAP predicted daily canopy RUE for different nitrogen treatments of a 
given rice cultivar under different weather conditions. Using 3dCAP, we explored the influence of three canopy archi-
tectural parameters—tiller number, tiller angle and leaf angle—on canopy RUE. Under different weather conditions 
and different nitrogen treatments, canopy architecture optimized by manipulating these parameters can increase 
daily net canopy photosynthetic CO2 uptake by 10–52%. Generally, a smaller tiller angle was predicted for most elite 
rice canopy architectures, especially under scattered light conditions. Results further show that similar canopy RUE 
can be obtained by multiple different parameter combinations; these combinations share two common features of 
high light absorption by leaves in the canopy and a high level of coordination between the nitrogen concentration and 
the light absorbed by each leaf within the canopy. Overall, this new model has potential to be used in rice ideotype 
design for improved canopy RUE.

Keywords:   Canopy photosynthesis, 3D canopy, leaf nitrogen concentration, rice, ideotype, systems model.

Introduction

Identifying new options to increase crop yield to feed the 
world’s population is one of most urgent tasks for agricul-
ture in the 21st century. For cereal crops, more than 90% of 

the harvested dry matter is the product of photosynthesis. 
Improvement of canopy photosynthesis holds great potential 
to increase biomass and yield of cereals (Peng, 2000; Gu et al., 
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2014; Song et  al., 2016a). Plant architecture has been recog-
nized as the most important selection target for high canopy 
radiation use efficiency (RUE), and hence high yield potential 
(Peng, 2000), in crop breeding. Many ideotypes have been pro-
posed for different crops in the course of breeding programs 
conducted over the past years. For example, Yuan (1998, 2001) 
proposed an ideotype for rice grown under a subtropical cli-
mate, in which the three uppermost leaves should be long, erect, 
narrow, V-shaped (adaxially rolled), and thick. Breeders at the 
International Rice Research Institute have proposed another 
rice ideotype, called NPT (new plant type), which has fewer 
tillers with dark green and erect leaves (Peng et al., 1994). Chen 
et al. (2000) proposed an ideotype for japonica rice adapted to 
a temperate climate, which has erect panicles. These different 
ideotypes have played guiding roles in high-yield rice breeding 
in the past decades. However, the quantitative features of these 
ideotypes are empirically extracted from high-yielding lines in 
the breeding fields; this approach inevitably misses opportuni-
ties to identify superior combinations of features that either do 
not exist in current breeding populations, or exist but do not 
show superior performance owing to the influence of other 
features that have negative impacts on biomass and yield in the 
same line.

Crop models have been used to evaluate crop perfor-
mance and identify factors limiting crop growth since the 
first mathematical model of crop growth was developed by de 
Wit (1965). To date, many crop models have been developed 
for different crops (see reviews by Li et al., 2015; Chang and 
Zhu, 2017; Maiorano et al., 2017). As the source of photo-
synthates supporting crop growth and development, canopy 
photosynthesis is a critical component in all these models. 
Models of canopy photosynthesis with different levels of 
mechanistic detail have been developed, which range from 
treating the whole canopy as ‘a big leaf ’ (Amthor, 1994; Lloyd 
et al., 1995) or as ‘two leaves’, that is, sunlit and shaded leaves 
(De Pury and Farquhar, 1997), to the detailed description of 
canopy architecture and the leaf physiological parameters of 
a canopy (Song et al., 2013). Three-dimensional (3D) canopy 
photosynthesis models emerged with rapid advances in mod-
ern computing capacity; these models can directly simulate 
the complex 3D canopy architecture and the microclimate 
within the canopy. Such models have been developed for 
species including rice (Watanabe et  al., 2005; Zheng et  al., 
2008; Xu et  al., 2011; Song et  al., 2013), maize (Fournier 
and Andrieu, 1998, 1999), and sugarcane (Wang et al., 2017). 
Various ray-tracing algorithms, including a stochastic ray-
tracing algorithm based on the Monte Carlo method (Tucker 
and Garratt, 1977; Mech, 1997), a randomized quasi-Monte 
Carlo sampling algorithm (Cieslak et  al., 2008), a reverse 
ray-tracing algorithm (Xu et  al., 2011), and a forward ray-
tracing algorithm (Song et  al., 2013), have been developed 
to quantitatively predict the light environment inside a can-
opy. A dedicated framework, FPSM-P (functional-structural 
plant modelling prototype), in which the 3D canopy can 
be reconstructed and canopy photosynthesis can be directly 
calculated, has been developed recently (Henke et al., 2016). 
There is now a strong research demand to develop methods 

that effectively combine accurate reconstruction of plant 3D 
architecture, efficient model parameterization, and on-the-fly 
model simulation.

Here we describe the development, parameterization, vali-
dation, and application of a new 3D rice canopy photosyn-
thesis model (3dCAP). This model incorporates detailed and 
flexible 3D architecture of each organ in a rice canopy, includ-
ing leaves, sheaths, stems, and panicles; an accelerated version of 
the forward ray-tracing model fastTracer; a steady-state empiri-
cal C3 leaf photosynthesis model; and an integrated protocol 
of field measurement and model parameterization. Using this 
model, we studied the canopy characteristics of an elite japon-
ica cultivar and explored the ideal plant type for this cultivar 
under different weather conditions and for different nitrogen 
treatments.

Materials and methods

Plant material, field management, and growth conditions
The field experiments were conducted at the Songjiang breeding station 
of the Shanghai Institutes of Plant Physiology and Ecology, Shanghai, 
China (31° N, 121° E). The rice (Oryza sativa L.) used in this study is 
the elite japonica cultivar ‘Xiushui 134’ (XS134). Seeds were sown on 
seedbeds after germination on 1 June 2015. On 26 June, seedlings were 
transplanted to field at a planting density of 25.0 hills m−2 (0.20×0.20 
m per hill). Two nitrogen treatments were applied to the plants. For the 
high-nitrogen (HN) treatment, nitrogen fertilizer was applied at a rate 
of 120 kg ha−1 and 3:2:2 of the total nitrogen on 3 July, 21 July, and 20 
August, respectively. Phosphate (P2O5) and potassium (K2O) fertilizers 
were applied as basal fertilizers before transplantation, at 100 kg ha−1. For 
the low-nitrogen (LN) treatment, no nitrogen was applied during the 
whole growth season. Weeds, pests, and diseases were controlled conven-
tionally with periodic application of herbicides, insecticides, and fungi-
cides. Weather data, including photosynthetically active radiation (PAR), 
relative humidity, and air temperature, were recorded by a WatchDog 
2900ET Weather Station (Spectrum Technologies Inc., Aurora, IL, USA) 
every 10 minutes for the whole growth season. The rice plants started 
grain filling around 11 September and were harvested on 28 October. In 
total, 80 plots (8 lines×10 plots per line) of plants were grown for each 
treatment, with 49 (7×7) plants in each plot. We used a randomized block 
design and chose from among only the central 5×5 plants in each plot 
for the measurements.

Measurements of leaf and canopy level gas exchange
Leaf photosynthetic light response curves (A-Q curve) were measured 
weekly using a LI-6400 infrared analyzer (Li-Cor Inc., Lincoln, NE, 
USA) after 30 July 2015. To avoid effects of photosynthetic photon flux 
density (PPFD) fluctuation during the measurements, we designed an 
indoor facility (High-efficiency All-weather Photosynthetic measure-
ments System; HAPS) and measured leaf photosynthetic parameters of 
plants with HAPS. A detailed description of the use of HAPS and the 
protocol of the A-Q curve measurements and data fitting can be found in 
Chang et al. (2017). Using the method described in Chang et al. (2017), 
three parameters were extracted from the A-Q curves: the maximum 
apparent quantum yield of CO2 fixation (ΦCO2), the curvature parameter 
(θ), and the light-saturated photosynthetic rate (Asat).

Canopy-level gas exchange was measured with the Canopy 
Photosynthesis and Transpiration Measurement System (CAPTS), which 
comprises transparent chambers, sensors, and a control unit for data log-
ging and storage. A detailed description of the design and performance 
of CAPTS and the protocol used for data acquisition and analysis are 
provided in Song et al. (2016b).
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Measurements and extraction of parameters for 3D rice 
architecture reconstruction
To obtain the parameters used for 3D canopy reconstruction, we meas-
ured parameters in five plants from five randomly chosen plots. First, we 
took photographs of the standing plants with a digital camera (DSLR 
D7100, Nikon, Tokyo, Japan), and then the tiller number of each plant 
was counted. Second, the tillers of each plant were detached, and pho-
tographs of the biggest, the middle, and the smallest tillers of each plant 
were taken. Third, leaves on each of these tillers were detached and photo-
graphs were taken to determine the two-dimensional (2D) morphology 
of these leaves. At the same time, leaf sheaths were detached and photo-
graphs of the sheaths, stem, and panicle were taken. Fourth, to quantify 
the panicle branching pattern, the panicle was spread and scanned with an 
Epson Perfection V300 Photo scanner (Epson, Tokyo, Japan). Finally, the 
grains on each panicle were threshed from the panicle and photographed.

Five MATLAB (The MathWorks Inc., Natick, MA, USA) scripts were 
developed to automatically extract features from digital photographs of 
the tillers, leaves and sheaths, internodes, panicle, and grains. These fea-
tures were the tiller number, internode length and thickness, leaf sheath 
length, leaf basal angle to the stem, leaf curvature, leaf length, leaf width, 
panicle length, length and thickness of primary branches and their dis-
tribution pattern on the rachis, grain number, grain length, and grain 
width. The compiled scripts are available at https://rootchang.github.
io/3dCAP/.

Reconstruction of canopy architecture
Modelling the 3D structure of the different organs and assembly of these 
organs into a plant and canopy are described below. Plant organs in the 
canopy were triangulated and stored as small indexed facets.

Reconstruction of a leaf
Following Watanabe et  al. (2005), the patterns of leaf width change 
from leaf base to tip were classified into two groups, that is, the pat-
tern of leaf width change in the flag leaf and the pattern of leaf width 
change in other leaves. In each group, the changes in leaf width along the 
leaf length was modelled with a piecewise cubic Hermite polynomial 
(Fritsch and Carlson, 1980) based on the widths (normalized to 0–1) at 
seven points along the leaf length and the maximal width of the leaf (see 
Supplementary Fig. S1A, B at JXB online). The curvature of a leaf was 
modelled with an ever-increasing leaf angle along the horizontal direc-
tion as follows:

	 ∆α x
nk x= ⋅0 	 (1)

	 α α αx y

x
dy= + ∫0 0

∆ 	 (2)

where k0 is a fitted coefficient, x is a projected leaf length in the hori-
zontal direction, α0 is leaf basal angle to the vertical direction, and n is 
the polynomial order, which can be either 1 or 2 in the model. When α0 
and the coordinates of the leaf base (x0, y0) are given, k0 was iteratively 
solved by fitting the coordinates of the leaf tip (x1, y1) (Supplementary 
Fig. S1C, E). The adaxial rolling of a leaf was defined based on the start 
position of rolling (xr0) on the leaf and the rolling radius of the cross-
section (Rr; Supplementary Fig. S1D); the adaxial twisting of a leaf was 
modelled with three parameters, the start position twisting (xt0) on the 
leaf, the total twisting angle (αt), and the terminal position of twisting (xt1; 
Supplementary Fig. S1F).

Reconstruction of an internode and a sheath
Both the internode and sheath were simplified as cylinders. As a result, 
four parameters were needed for reconstruction of an internode or 
sheath: the position (x0, y0) and radius (R0) of the base circle and the posi-
tion (x1, y1) and radius (R1) of the tip circle of the cylinder.

Reconstruction of a panicle
The rice panicle has a complex branching structure. For simplification, 
only the primary branches were considered. First, the 2D structure was 
reconstructed based on the grain number and size, the thickness of the 
rachis, primary branches, and spikelet branches along their length, the 
total primary branch number, the positions and initial angles of branches 
attaching on the rachis, the length of the branches and rachis, the relative 
position of the first grain on a branch, and the average distance between 
grains on the branches. Specifically, the rachis and branches were mod-
elled as quadrangle prisms, and grains were modelled as two back-to-back 
quadrangle prisms (Fig. 1A).

The 3D architecture of a panicle was modelled with a mechanical 
model. First, the rachis was divided into small segments. The bending 
angle of each segment on the rachis was approximated by treating each 
primary branch as a free-hanging mass point on an elastic rod (Fig. 1B):
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where θi is the initial angle of the ith segment, Fj is the force of gravity 
generated by the jth branch, si is the length of the ith segment, ri is the 
radius of the ith segment, Lj is the equivalent length of the base of the 
jth branch to the ith segment, and Y is the Young’s modulus of the rachis 
and branches, which is estimated empirically. Initially, all the θi were set 
to θ0, which was the basal angle of the panicle. Then, each θi was sequen-
tially updated iteratively based on the above equation until all θi were 
stabilized. After the posture of the rachis was set, the curvature of each 
primary branch was determined similarly by treating each grain on the 
branch as a free-hanging mass point on an elastic rod.

The 3D panicle architecture was simulated based on the current total 
grain weight and grain weight distribution on each branch. For example, 
the dynamic 3D panicle architecture during the grain filling period of a 
typical indica rice cultivar was simulated (Fig. 1C), and the final architec-
ture at harvest was close to that observed (Fig. 1D).

Reconstruction of a tiller, a plant, and a canopy
An intact tiller can be reconstructed by assembling the reconstructed 
individual organs described above. As a simplification, the average value 
of each feature used in the reconstruction of organs was used to construct 
tillers in a plant, with each value multiplied by a Gaussian random dis-
turbance N(1,σ) where the standard error σ determines the uniformity 
of tillers. The bases of tillers in a plant were modelled to be located on 
concentric circles. The tiller number on each circle was assumed to form 
a triangular number sequence (i.e. 1, 3, 6, 10, etc.). The tiller angle of till-
ers on the ith circle was modelled as:

	 α α
i =

⋅0

2
i 	 (4)

where α0 is the estimated tiller angle constant. The tillers on each circle 
are randomly orientated. Finally, a canopy with 3×3 plants can be gener-
ated by the reconstruction of 9 plants independently.

Simulation of canopy light distribution
After reconstruction of a canopy, a previously developed forward ray-
tracing algorithm, fastTracer, was applied to simulate light distribution 
within the canopy (Song et al., 2013). Leaf optical properties were mod-
elled based on chlorophyll content by fitting the PROSPECT-5 model 
(Feret et al., 2008):

	 Kr = ⋅ −0 3605 0 502. [chl]( . )
	 (5)

	 K 0.082 log( ) 0.3761t = − +⋅ [chl] 	 (6)

https://rootchang.github.io/3dCAP/
https://rootchang.github.io/3dCAP/
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery430#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery430#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery430#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery430#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery430#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery430#supplementary-data
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where Kr and Kt are the reflected and transmitted proportion of total 
incident light on the leaf, respectively, and [chl] is the leaf chlorophyll 
content (μg cm−2). We converted leaf nitrogen concentration to leaf 
chlorophyll content by numerically integrating empirical equations de-
veloped by Peng et al. (1993) and Markwell et al. (1995):

	 SLN SLW LNC/100= ⋅ 	 (7)

	 [chl] 7.252 SLN 18.191 SLN 1.50122= + +⋅ ⋅ 	 (8)

where SLN is the specific leaf nitrogen content (g N m−2), SLW is the 
specific leaf weight (g m−2) and LNC is the leaf nitrogen concentration 
(% or g g−1). Kt of grains and sheaths were set to 0.

To speed up the computation, direct and scattered light were simu-
lated separately using fastTracer. The light distribution inside a canopy was 
predicted for four time points of a day: 06.00, 08.00, 10.00, and 12.00 h. 
Canopy light distribution patterns at 14.00, 16.00, and 18.00  h were 

assumed to be the same as those at 10.00, 08.00 and 06.00 h, respectively. 
The scattered light distribution pattern in the canopy was simulated only 
once for one day. Then, the total light absorbed by the different organs 
in a canopy was calculated based on the direct/scattered light distribu-
tion patterns and the direct/scattered incident PPFD above the canopy 
at that time.

Calculation of canopy photosynthesis
The net photosynthetic rate of a facet j on leaf i at time t (An_ij,t) was 
calculated using the non-rectangular hyperbola model:
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where I is the incident light intensity, ΦCO2 is the apparent quantum yield, 
θ is the empirical curvature coefficient, Asat is the light saturated gross 

Fig. 1.  Reconstruction of the 2D and 3D architecture of a rice panicle. (A) The simulated 2D architecture of a rice panicle. (B) An illustration of the 
mechanical model used to simulate the bending of the rachis or one of the primary branches. θi, Initial angle of the ith segment; Δθi, bending angle of the 
ith segment; Fj, force of gravity generated by the jth branch; si, length of the ith segment; ri, radius of the ith segment; Lj, equivalent length of the base of 
the jth branch to the ith segment; Y, Young’s modulus of the rachis and branches. (C) Simulated changes of the 3D architecture of a panicle for an indica 
rice cultivar during the grain filling period. (D) Photograph of a real panicle at harvest. 
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photosynthetic rate, and Rd is the dark respiration rate (assumed to be 
0.5 μmol m−2 s−1). The photosynthetic parameters were fitted based on 
the LNC of the ith leaf (LNCi):

	 ΦCO2 i iLNC LNC(i) = ⋅ + ⋅ +a a a0
2

1 2 	 (10)

	 A b b bsat i iLNC LNC(i) = ⋅ + ⋅ +0
2

1 2 	 (11)

	 θ(i) = ⋅ + ⋅ +c c c0
2

1 2LNC LNCi i 	 (12)

where a0, a1, a2, b0, b1, b2, c0, c1, c2 are the fitting coefficients.
The average net photosynthetic rate of the ith leaf of a tiller at time t 

(An_i,t) can be calculated as:

	 A
m

At t
m

n_i,
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i=
1
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where mi is the total number of facets on leaf i.
The net canopy photosynthetic rate at time t (Ac,t) was calculated by 

adding the net photosynthesis of all the leaves in a canopy:

	 A TN LA Ac t t
m

, ,= ⋅ ⋅∑ i n_ii=1 	 (14)

where TN is the total tiller number per land area, LAi is area of the ith leaf 
on a tiller, and m is the total number of leaves on a tiller.

The daily net canopy photosynthetic accumulation (ACP) was calcu-
lated by integrating Ac,t:

	 ACP =
=∫ A dtc tt ,6

18
	 (15)

Results

Construction and parameterization of a 3D canopy 
photosynthesis model

The new integrated model, 3dCAP, comprises three sub-mod-
els: the canopy architecture model, the ray-tracing model, and 
the leaf photosynthesis and respiration model. The workflow 
of 3dCAP is illustrated in Supplementary Fig. S2. First, the 2D 
and 3D structure of individual organs (i.e. the leaf, sheath, stem, 
and panicle) were reconstructed. These organs were assembled 
into a rice tiller. Then, different tillers were arranged to form 
a rice plant. A canopy was then generated by arranging plants 
with a certain distance between them in both the row and col-
umn directions. A  forward ray-tracing algorithm was applied 
to simulate canopy light distribution with a given canopy ver-
tical nitrogen distribution, incident light, and canopy archi-
tecture. Finally, the canopy gas exchange rate was calculated 
by summing gas exchange rates for individual leaves, which 
were calculated by a semi-empirical C3 photosynthesis light 
response model.

Fig. 2 illustrates the workflow for extraction of parameters 
from photographs. First, photographs of standing rice plants 
were taken. Then, the tillers were detached from the plants 
and photographed. Five parameters were extracted for each 
leaf on the tiller: the leaf base height (P1), leaf length (P2), leaf 
base angle (P3), leaf vertical length (P4), and leaf horizontal 
length (P5). Leaves were then detached to extract additional 

2D features: the leaf width at seven different positions along 
the length of the leaf (P6–P12), the maximal leaf width (P14), 
and the leaf length (P13). Next, leaf sheaths were detached 
and the length of each one (P15) was extracted. The length 
of the panicle (P16) and the length (P17) and diameter (P18) 
of each internode were then extracted. After this, the pani-
cle was scanned digitally to extract detailed 2D features: the 
diameter of the rachis (P19) and the base height (P20), length 
(P21), and diameter (P22) of each primary branch. Finally, the 
grains were threshed off the panicle and photographed, and 
the grain number (P23), grain length (P24), and grain width 
(P25) were quantified from the photographs. The average val-
ues and variations of these parameters are listed in Table 1.

Leaf photosynthetic properties were calculated based on a 
derived relationship between LNC and leaf photosynthetic 
parameters (equations 13–15). As a result, Asat and ΦCO2 had a 
quadratic relationship with LNC for both HN- and LN-treated 
plants, whereas θ was unrelated to LNC (Fig. 3), which in this 
study was set to the average of measured values, that is, 0.512 
for HN-treated and 0.587 for LN-treated plants.

Reconstruction of the 3D plant architecture and 
prediction of canopy-level gas exchange under 
different weather conditions and nitrogen treatments

After extracting plant architectural parameters from the digital 
photographs, the 3D plant architecture can be reconstructed 
(Supplementary Fig. S3). A visual comparison showed that the 
reconstructed plants mimicked the real plants in both the HN 
and LN treatments (Fig. 4A, B, E, F). We further compared 
the horizontal and vertical distribution of the number of ‘plant 
pixels’, that is, pixels representing plant tissue in the images. 
Results showed consistency between the reconstructed and 
real plants (Fig. 4C, D, G, H), although there were larger differ-
ences for the distribution of vertical ‘plant pixels’ at the bottom 
of plants owing to the presence of some senescent leaves and 
sheaths in the images of real plants, which were not considered 
during the 3D reconstruction (Fig. 4D, H). 

We compared the modelled and measured canopy photo-
synthetic rates. First, modelled and measured values for net 
canopy photosynthesis during the daytime were compared. 
Simulations for three typical weather conditions—a sunny, a 
cloudy, and an overcast day— were used for the comparison 
(Fig. 5A–C). Results showed that 3dCAP accurately predicted 
the daily dynamic canopy photosynthesis on the overcast and 
cloudy days (Fig. 5D, E, G, H), but underestimated canopy 
photosynthesis slightly on the sunny day in the morning and 
under high light at noon (Fig. 5F, I). This result might be due 
to a higher leaf photosynthetic rate in the morning than at 
noon and in the afternoon on a sunny day (Ishihara and Saitoh, 
1987). In addition, some other photosynthetically active organs, 
such as panicles and leaf sheaths, might contribute to canopy 
photosynthesis under high light, and this possibility is not con-
sidered in the current model.

We further collected all the measured canopy photosyn-
thesis data from 11 to 18 September. We categorized these data 
into three groups based on the time of day: early morning 
and late afternoon (06.00 to 08.00 h and 16.00 to 18.00 h; 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery430#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery430#supplementary-data
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Supplementary Fig. S4A, D), mid-morning and mid-afternoon 
(08.00 to 10.00 h and 14.00 to 16.00 h; Supplementary Fig. 
S4C, F), and noontime (10.00 to 12.00 h and 12.00 to 14.00 h; 
Supplementary Fig. S4B, E). We simulated canopy photosyn-
thetic CO2 uptake rate in these three periods, assuming all in-
cident light was either direct light or scattered light. Simulated 
results were in line with the measured data (Supplementary 
Fig. S4). The simulation also showed that canopy photosyn-
thesis under direct light was lower than that under scattered 
light in the morning and the late afternoon, especially under 
high light levels (Supplementary Fig. S4A) and also under the 
HN treatment, for which the canopy had a higher leaf area 
index (Supplementary Fig. S4D). However, at noontime, the 
canopy photosynthetic rate was predicted to be higher under 
direct light than scattered light (Supplementary Fig. S4C, F), 
especially when the leaf area index was high (Supplementary 
Fig. S4F).

Optimizing canopy photosynthetic CO2 uptake rate 
under different weather conditions

We further explored canopy architectures that can lead to 
higher ACP for plants grown in both LN and HN conditions. 
We enumerated all possible canopy architectures with tiller 

number, tiller angle, and leaf angle ranging from 5 to 20-fold 
(step size=1), 0.2 to 2-fold (of default values, step size=0.2), 
and 0.2 to 2.6-fold (of default values, step size=0.2), respec-
tively. In total, we predicted ACP for 2080 plant architectures 
for each nitrogen treatment. The ACP for each of these archi-
tectures under four different light environments—strong direct 
light (Fig. 6A), strong scattered light (Fig. 6F), weak direct light 
(Fig. 6K), and weak scattered light (Fig. 6P)—were simulated 
and ranked. We found that the ACP of the top 50 architectures 
was 16–20% and 10–52% higher than that of the default can-
opy under the LN and HN treatments, respectively (Fig. 6B, G, 
L, Q). However, the canopy architectural parameters (i.e. tiller 
number, tiller angle, and leaf angle) in the top 50 architectures 
all varied greatly between different light conditions and differ-
ent nitrogen treatments (Fig. 6C–E, H–J, M–O, R–T). Even 
under the same light and nitrogen conditions, these param-
eters, in particular tiller angle, showed great variation among 
the top 50 architectures (e.g. Fig. 6C–E). To further illustrate 
this point, for each light environment and nitrogen treatment, 
we identified two dramatically different plant architectures 
taken from the top 50 plant architectures that had similarly 
high ACP (Supplementary Fig. S5). These results indicate that 
the maximal ACP is the result of a coordination between can-
opy architectural features. In other words, the optimal value for 

Fig. 2.  Illustration of the workflow for canopy architecture measurement using rice directly taken from the field. The architectural parameters used in the 
3D model construction are labelled P1 to P25.
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a particular architectural parameter depends on the values of 
other architectural parameters.

Discussion

3dCAP is an integrated platform to support rice 
canopy photosynthesis research

The new canopy photosynthesis model 3dCAP has several 
new features. First, the whole architecture model includes 
independent models representing major rice plant organs, 
including leaf, panicle, stem, and sheath (Fig. 1; Supplementary 
Fig. S1), with each model being easily replaceable or extend-
able by models with even greater mechanistic detail or for 
other plant species. In 3dCAP, 3D architectures for all organs 
were modeled simultaneously, representing a major step from 
earlier efforts in which highly detailed 3D models of some but 
not all organs were developed (Ding et al., 2010; Zhang et al., 
2017). Second, in 3dCAP, the architecture model was com-
bined with a forward ray-tracing algorithm (Song et al., 2013), 
a mechanical model of weight distribution, and a classical leaf 
photosynthetic model (Farquhar et al., 1980), which together 
form an integrated 3D canopy photosynthesis modeling plat-
form. The ray-tracing algorithm, the mechanical model of 
weight distribution, and the photosynthesis model were devel-
oped following a modular design principle, that is, they can be 
extended or replaced by other algorithms or models if neces-
sary or available. Third, a workflow for the effective param-
eterization of 3dCAP was developed, which enables a user to 
easily parameterize a 3D rice canopy photosynthesis model, 
even if no access to complex 3D reconstruction platforms is 
available to the user (Fig. 2). Here we show that 3dCAP, devel-
oped and parameterized with this workflow, realistically pre-
dicted the canopy architecture and diurnal changes in canopy 
photosynthetic CO2 uptake rates (Figs 4, 5; Supplementary 
Fig. S4). With such complete coverage of all organs follow-
ing a modular design principle, full integration of the canopy 
architecture with internal microclimate, leaf physiology and 
mechanical properties, and a robust parameterization work-
flow, 3dCAP can be used not only independently as a tool 
to study canopy photosynthesis, but also as a basic module to 
support 3D canopy photosynthesis calculations in the current 
efforts of creating the ‘Plants in silico’ platform to support the 
global plant research community (Zhu et al., 2016).

3dCAP as a tool for ideotype design

In current crop breeding programs, morphological param-
eters including plant height, leaf length and width, base an-
gles and curvature of leaves at different canopy depths, panicle 
size, posture, and position within a canopy, tiller number, and 
tiller angle during the grain filling stages are used as major 
selection targets (Yuan, 1998; Qian et  al., 2016). Although a 
number of ideotypes have been proposed (Peng et  al., 1994; 
Yuan 1998; 2001; Chen et al., 2000), many parameters in these 
ideotypes are defined qualitatively rather than quantitatively. 
This is mainly due to the lack of a robust approach to quan-
titatively define the optimal combinations of parameters for Ta
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higher canopy photosynthesis. The 3dCAP tool fills this gap 
by realistically representing critical features of major organs 
of rice, and hence enables quantitative evaluation. Here, we 
used the newly gained capacity provided by 3dCAP to ex-
plore potential options to improve canopy architecture for 
higher canopy photosynthesis in XS134, an elite rice cultivar, 

in the region surrounding Shanghai and Jiangsu, China. First, 
we found that by changing the tiller number, tiller angle, and 
leaf angle individually, canopy photosynthesis can potentially 
increase by 10–52% (Fig. 6), suggesting that there is still con-
siderable scope to modify canopy architecture for improved 
canopy RUE in XS134. Second, we found a large variation 

Fig. 3.  Relationship between leaf nitrogen concentration (LNC) and leaf photosynthetic parameters. The correlation study was performed for high-
nitrogen (HN) treatment (n=17) and low-nitrogen (LN) treatment (n=21). The leaf photosynthetic parameters used include light-saturated photosynthetic 
rate Asat (A), maximum apparent quantum yield for CO2 (ΦCO2) (B), and curvature factor (θ) of the response of photosynthetic CO2 uptake to incident 
photosynthetic photon flux density (A-PPFD) (C). LNC was calculated as LNC=(leaf nitrogen dry weight)/(leaf dry weight)×100%.

Fig. 4.  Comparison of reconstructed and photographed plant architectures of rice cultivar XS134. The front view of reconstructed and photographed 
rice plants under low-nitrogen treatment (A, B) and high-nitrogen treatment (E, F) are shown. Counts of the number of ‘plant pixels’ that represent plant 
tissues in the images of reconstructed and photographed plants were made for plants under low-nitrogen (C, D) and high-nitrogen (G, H) treatment. The 
bars represent data for photographed plants (mean ±SD, n=5) and the dashed lines represent data for reconstructed plants. (This figure is available in 
colour at JXB online.)
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between optimal canopy architectural parameters for plants in 
different nitrogen treatments and under different light levels 
(Fig. 6). Remarkably, even for the same nitrogen treatment and 
light conditions, predicted elite canopy architectures can differ 
greatly (Supplementary Fig. S5). This, on the one hand, ex-
plains the huge variation in ideotypes proposed by different 
breeders (Peng et al., 1994; Setter et al., 1995; Yuan, 1997; Chen 
et al., 2000). On the other hand, it indicates that the coordina-
tion of potential influencing factors, rather than one or a few 
parameters, determines canopy photosynthetic CO2 uptake. 
Therefore, a full consideration of all features is required dur-
ing the evaluation and engineering of canopy RUE in future 
crop breeding research, because the effect of modifying one 
particular parameter on canopy photosynthesis may depend 
heavily on the current values of other parameters.

3dCAP helps reveal features required for high 
canopy RUE

One of the major uses of 3dCAP is to identify features that 
are associated with higher canopy RUE. In this study, we used 
2080 in silico plant architectures and evaluated their ACP under 
a HN condition. Specifically, we studied relationships between 
ACP and the three canopy architecture parameters leaf area 
index (calculated on the basis of leaf size and tiller number), 
mean leaf angle for all leaf positions, and tiller angle. We found 

that ACP had a non-linear relationship with leaf area index and 
mean leaf angle under both direct light and scattered light (Fig. 
7A, B, D, E), which was consistent with experimental observa-
tions (Duncan et al., 1971; Chen et al., 1991). Notably, optimal 
canopy architecture cannot be simply determined from the 
empirical relationship derived from the average ACP and the 
average values of individual features. For example, under direct 
light, the optimal mean leaf angle indicated from the empir-
ical relationship is 32°, but it was ~22.5° when ACP reached 
its maximum (Fig. 7B). Interestingly, ACP was not correlated 
with tiller angle under direct light (Fig. 7C), while high ACP 
can be achieved only with a small tiller angle under scattered 
light (Figs 6I, S, 7F).

As mentioned above, ACP can be potentially increased by 
10–52% my manipulation of only a single parameter in the rice 
cultivar XS134 (Fig. 6; Supplementary Fig. S5). Interestingly, 
these manipulations potentially resulted in similar ACP with 
different combinations of parameter sets (Fig. 6), as shown in 
Supplementary Fig. S5, where two dramatically different archi-
tectures can achieve similar ACP under each combination of 
light condition (i.e., direct or scattered) and nitrogen treatment 
(i.e., HN or LN). What are the common features between these 
different plant architectures, especially those that can result in 
high ACP? We compared daily total canopy leaf-accumulated ab-
sorbed light (TLAL) and photosynthetic features of leaves at dif-
ferent canopy positions: that is, daily accumulated absorbed light, 

Fig. 5.  Predicted and measured diurnal net canopy photosynthesis rate (Ac) on three different days. The measured hourly average photosynthetic 
photon flux density (PPFD) (A–C; n=6), Ac under low-nitrogen treatment (D–E; n=3) and high-nitrogen treatment (G–I; n=3) for rice cultivar XS134 during 
the daytime are shown. The simulation of diurnal Ac assumed all the incident light to be direct light only (DL) or scattered light only (SL). Diurnal light 
environments from three days with different weather conditions, an overcast day (12 September; A), a cloudy day (18 September; B), and a sunny day 
(13 September; C), were used in the simulations.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery430#supplementary-data
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daily photosynthetic CO2 uptake and LNC. First, we found that 
elite canopy architectures (the ‘Top 50’ in Fig. 8A, D) had more 
TLAL than the default canopy (‘CK’ in Fig. 8A, D), especially 
under the scattered light condition (Fig. 8D). Second, the increase 

in ACP for elite canopy architectures compared with the default 
canopy was derived mainly from the lower leaves in the canopy 
(Fig. 8C, F) rather than the flag leaves. For the default canopy, 
daily average light absorption for the lower leaves was low (Fig. 
8B, E), especially under the scattered light condition (Fig. 8E). 
Notably, canopy architectures with high TLAL may not neces-
sarily achieve high canopy RUE. An extreme example is given in 
Fig. 9, in which a canopy with very high TLAL had lower ACP as 
a result of much lower light partitioning to the flag leaves, which 
have a high nitrogen concentration, and higher light partitioning 
to the lower leaves, which have lower leaf nitrogen concentra-
tion—that is, in this canopy there is a lack of coordination be-
tween light distribution and nitrogen distribution. These results 
suggested that both daily total canopy leaf light interception and 
coordination between nitrogen concentration and light intercep-
tion for each leaf (Fig. 8C, F) are critical to canopy RUE. These 
two key features might underlie the mechanism of high canopy 
RUE by optimizing plant architecture. 

In addition, on average, panicles were predicted to absorb 
30% of canopy total absorbed light under direct light and 41% 
under scattered light, which represents a substantial propor-
tion of incident light energy. This is significant because there 
are large variations of panicle position among current elite 
rice lines. For example, while the XS134 used in this study is 
a typical japonica rice cultivar, most of the current indica rice 
cultivars have drooping panicles at the middle of a canopy 
(Setter et al., 1995; Yuan, 2017). Therefore, the new model can 

Fig. 6.  Optimization of canopy architectural parameters to increase canopy photosynthesis. Optimal plant architectures for high canopy photosynthesis 
were identified under strong direct light (DL) only (A), strong scattered light (SL) only (F), weak DL only (K), and weak SL only (P). The parameters used 
to identify the optimal plant architectures are tiller number (TN) (C, H, M, R), tiller angle (TA) (D, I, N, S), and leaf angle (LA) (E, J, O, T). The top 50 plant 
architectures showing higher daily net canopy photosynthesis (Ac) were used in calculations of relative changes for daily net canopy photosynthetic 
accumulation (ACP), TN, TA, and LA. The numbers above the bars in panels B, G, L, and Q represent relative change from the respective values for 
default plants.

Fig. 7.  Relationships between simulated daily net canopy photosynthetic 
accumulation (ACP) and plant architectural parameters under two light 
conditions, strong direct light only (A–C; see Fig. 6A) and strong scattered 
light only (D–F; see Fig. 6F), simulated for rice cultivar XS134 under high-
nitrogen treatment. The black dots with error bars show the predicted 
variations of ACP for 2280 plant architectures with different combinations 
of tiller number, tiller angle, and leaf angle. The red squares denote optimal 
ACP values. The mean leaf angle is the average value for all leaves on a 
plant. (This figure is available in colour at JXB online.)
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be used as a tool to study the impacts of panicle position and 
shape on canopy photosynthesis.

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Reconstruction of the 2D and 3D architecture of a 

rice leaf.
Fig. S2. The workflow of 3dCAP reconstruction and canopy 

photosynthesis calculation.
Fig. S3. Different views of reconstructed rice plants. 

Fig S4. Predicted and measured net canopy photosynthesis 
rates under different incident light intensities at different times 
of day.

Fig. S5. Difference among predicted optimal plant architec-
tures for optimal daily total canopy photosynthetic CO2 uptake. 
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