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Abstract

Linking our understanding of biological processes at different scales is a major conceptual challenge in biology and 
aggravated by differences in research methods. Modelling can be a useful approach to consolidating our under-
standing across traditional research domains. The laboratory model species Arabidopsis is very widely used to study 
plant growth processes and has also been tested more recently in ecophysiology and population genetics. However, 
approaches from crop modelling that might link these domains are rarely applied to Arabidopsis. Here, we combine 
plant growth models with phenology models from ecophysiology, using the agent-based modelling language Chromar. 
We introduce a simpler Framework Model of vegetative growth for Arabidopsis, FM-lite. By extending this model to 
include inflorescence and fruit growth and seed dormancy, we present a whole-life-cycle, multi-model FM-life, which 
allows us to simulate at the population level in various genotype × environment scenarios. Environmental effects on 
plant growth distinguish between the simulated life history strategies that were compatible with previously described 
Arabidopsis phenology. Our results simulate reproductive success that is founded on the broad range of physiological 
processes familiar from crop models and suggest an approach to simulating evolution directly in future.

Keywords:  Agent-based modelling, Arabidopsis, computational modelling, ecophysiology, growth model, life history, population 
ecology, systems biology.

Introduction

Understanding the links between biological processes at mul-
tiple scales, from molecular regulation to populations and 
evolution, is a major challenge in understanding life. As sys-
tems become more complex we need models to describe our 
understanding and help our thinking when trying to explain 
and make predictions across scales. This approach has also 
been proposed in attempts to engineer crop traits starting 
from genetics or from genomes (Welch et  al., 2005; Yin and 
Struik, 2008, 2010; Parent and Tardieu, 2014; Wu et al., 2016; 
Chenu et al., 2018), where simpler models have demonstrated 
both the potential of crop modelling in general and the sig-
nificant demands of detailed models for empirical data that 

vary in availability (Hammer et al., 2006; Asseng et al., 2013). 
For micro-organisms, comprehensive models link the meta-
bolic and molecular level with the cellular (Karr et al., 2012) 
and population scales (Weiße et al., 2015), whereas contempo-
rary work in more complex organisms has necessarily focused 
more narrowly (Buckley and Mott, 2013; Lynch, 2013; Zhu 
et  al., 2013; Klose et  al., 2015; Le Novère, 2015; Hepworth 
et al., 2018).

The concentration of plant science research on the labora-
tory model species Arabidopsis offers an opportunity for broad 
understanding that includes mechanistic models (Chew et al., 
2014a; Voss et  al., 2014, Millar et  al., 2019). The Framework 
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Model (FMv1; Chew et  al., 2014b) represented vegetative 
growth of Arabidopsis in lab conditions, starting from four 
independent models that represent photosynthesis and carbon 
storage (Rasse and Tocquin, 2006), plant structure and carbon 
partitioning among organs (Christophe et al., 2008), flowering 
phenology (Chew et al., 2012), and the circadian clock gene 
circuit and its output to photoperiodic flowering (Salazar et al., 
2009). Later updates focused on plant phenotypes controlled 
by the clock, such as tissue elongation and starch metabo-
lism (FMv2; Chew et al., 2017, Preprint), or temperature and 
organ-specific inputs to flowering (Kinmonth-Schultz et  al., 
2018, Preprint). The Framework Models align with commu-
nity efforts to link understanding of crop plant processes at 
multiple scales, for benefits in agriculture (Wu et al., 2016; Zhu 
et al., 2016). Among the limitations of the Framework Models, 
growth was limited to the vegetative stage, ending upon flower 
induction. Without reproduction, the models had no seed 
yield or link to evolutionary fitness. Without seed dormancy, 
they lacked a major determinant of Arabidopsis life history in 
the field. Their representation of the circadian clock was also 
unnecessarily detailed for many studies outside chronobiology.

Other models have considered reproductive success through 
growth, including for Arabidopsis. One simplified approach 
relates growth and fitness only to the duration of the develop-
mental period and not to its timing in the year, ignoring envi-
ronmental influences (Prusinkiewicz et al., 2007). On the other 
hand, ecological phenology models of the Arabidopsis life cycle 
consider natural environmental conditions but ignore physical 
growth and development (Chuine and Beaubien, 2001; Chuine, 
2010; Burghardt et al., 2015). We apply a declarative agent-based 
modelling approach (Honorato-Zimmer et al., 2018) that facili-
tates model composition, to develop FM-life, an extension of the 
Framework Model to the whole Arabidopsis life cycle. FM-life 
includes a simpler model of vegetative growth, FM-lite, with-
out the clock circuit, and a new model of inflorescence growth 
including reproduction. We introduce a clustering approxima-
tion, in order to simulate FM-life tractably at the population 
scale over decades. Testing the FM-life model with contrasting 
environmental and genetic inputs shows that ecological ques-
tions can increasingly be informed by mechanistic understand-
ing of growth processes (Millar, 2016; Doebeli et al., 2017).

Materials and methods

Chromar
FMv1 and FMv2 are both available as MATLAB programs. Here we use a 
declarative, agent-based language, Chromar, which represents the models 
very concisely and supports simulations (Honorato-Zimmer et al., 2017). 
Chromar models are designed to be human-readable. As no agent-based 
approach is broadly familiar in biological modelling, we introduce simple 
examples below. Briefly, agents in Chromar conform to a small number of 
types. Each type defines the attributes of the agent. A type defined as Leaf 
(mass:real) represents leaves with a mass attribute that is a real number, for 
example Leaf (mass=5). Agents operate stochastically, according to rules 
that specify:

 (i) Agent level dynamics, where agents are created or destroyed. For 
example, organogenesis of a leaf with mass m0 at rate k corresponds 
to the following rule: ∅ k→ Leaf(mass = m0).

 (ii) Attribute level dynamics, which alter the attributes of an agent. 
For example, growing a leaf by mass g at rate kg corresponds to: 

Leaf (mass = m)
kg

→ Leaf (mass = m+ g).

Two further features of Chromar are particularly useful here, fluents for 
describing time-dependent, deterministically changing values such as en-
vironmental inputs, and observables used for capturing system-wide state 
easily. Observables are used to manage multiple descriptions of the same 
process at different levels of abstraction, such as the individual leaves of a 
plant and the total number of leaves in a rosette. Fluents and observables 
can be used directly in expressions and be combined with the normal set 
of mathematical expressions, so we could have a function, f(n,temp), that 
takes as arguments and applies some mathematical operation to an observ-
able for the number of leaves, n, and a fluent, temp, for the temperature.

Here we made use of a particular implementation of Chromar as an 
embedded domain-specific language inside the general purpose pro-
gramming language Haskell (Honorato-Zimmer et al., 2018). This means 
that we can leverage the power of a general-purpose programming lan-
guage inside the rules, for example for describing attribute dynamics or 
rule rates.

Phenology models in Chromar
In many phenology models, the simulated plant accumulates a conceptual 
development indicator in every time unit as a function of the contrib-
uting environmental factors, until a threshold is reached for transition to 
the next developmental stage. For example, in a seed type Seed(dev:real), 
the dev attribute measures development towards germination. A phen-
ology rule for germination affected by temperature and moisture, starting 
from dev value d, could be:

 Seed (dev = d)
1.0→ Seed(dev = d + f (temp,moist)) 

On average once every time unit the dev attribute of a particular seed 
will be increased from the present value, d, by a function of the contrib-
uting factors temp and moist. Further parameters might represent how 
sensitive the seed is to the environmental factors. At the threshold Dt, the 
seed germinates to a plant and resets the development measure to 0:

 Seed (dev = d)
1.0→ Plant (dev = 0) [d > Dt] 

where the expression inside the square brackets is used to indicate con-
ditional activity of the rule. The rule is active only when the expression 
evaluates to true.

The component models
The models presented here represent the full life cycle in three stages: 
seed dormancy (A in Fig. 1A), vegetative growth up to flowering (B in 
Fig. 1A), and the reproductive stage up to seed dispersal (C in Fig. 1A). 
Each model (A, B, C) includes a phenology component that represents 
only timing. The vegetative and reproductive stage models also represent 
biomass growth at the organ level, based on the carbon budget of the 
plant. We varied genetic parameters that affect only the timing compo-
nents of A (seed dormancy, ψi) and B (floral repression during vegetative 
growth, fi), for comparison to Burghardt et  al. (2015). Each parameter 
value for an individual plant, i, can be fixed or selected probabilistically 
from a distribution as described (Burghardt et al., 2015). The three models 
were integrated in a whole life-cycle model of one plant (FM-life), and 
then extended to a population of such plants.

Seed dormancy model (A)
The seed dormancy model is the Chromar version of the model of 
(Burghardt et  al., 2015), which is based in turn on (Alvarado and 
Bradford, 2002). It represents the development of a newly dispersed seed 
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from dev=0 to a threshold value, Dg, where the seed germinates. Above 
baseline levels of temperature Tb and of moisture (see below), increasing 
moisture and temperature speed the progress towards germination. The 
additional developmental units added (hydrothermal units, htu) at every 
time unit are described by:

 

htu (t) =





(Ψ (t)−Ψb (t))× (T (t)− Tb)

(Ψ (t)−Ψb (t)) · (To − Tb)

0

if Tb < T (t) ≤ To and Ψb (t) < Ψ(t)
if T (t) > To and Ψb (t) < Ψ(t)

otherwise

 
where Ψ(t) and T(t) give the moisture and temperature levels at time 
t, respectively. The definition distinguishes between operating in sub-
optimal and supraoptimal temperatures (below or above the optimum, 
To, respectively). The baseline moisture is used to represent the dor-
mancy level of the seed. If Ψb is high, the seed accumulates htu slowly 
for a given set of environment conditions, whereas if Ψb is low, devel-
opment is faster in the same conditions. From an initial dormancy level, 
ψi, seeds lose dormancy (Ψb becomes smaller) over time at a rate r that is 
also a function of the environmental conditions, moisture and tempera-
ture, and represents the observed process of after-ripening. ψi is also used 
to represent the genetic effect on dormancy, where high ψi represents 
stronger dormancy.

In Chromar, the Seed type captures information about the seed de-
velopment process: Seed(gntp:(real,real),dev:real,r:real). The gntp attrib-
ute stores the genotype of the organism, ψi (seed dormancy level) and 
fi (floral repression level), which is passed on to the agents representing 
the later stages of development and transmitted unchanged to the next 
generation. dev stores the cumulative development indicator (sum of htu 
up to the current time point), and r stores the after-ripening up to the 
current time point. The development rule is the following:

 

Seed (gntp = a, dev = d, r = r)
1.0→

Seed (dev = d + htu (temp,moist, f (r, temp,moist), a,ψi), r = f (r, temp,moist)) 

where temp and moist are fluents describing temperature and moisture. 
We use the ‘dot’ (.) operator in the expression above for accessing the two 
genetic parameters of the gntp attribute. The following rule represents 
germination, starting the vegetative stage:

 

Seed (gntp = a, dev = d, r = r)
1.0→

Plant (gntp = a), Root (. . .), Leaf (. . .), Leaf (. . .) [d > Dg] 

The abstract Plant agent represents the plant at the vegetative stage, along 
with agents for the root and the two cotyledon leaves. The initial con-
figuration of the organs at germination is as introduced by Chew et al. 
(2014b). Note that the genotype attribute is passed from seed to emerged 
plant unchanged.

We can easily change the time step of the model by changing the rate 
and development update size. For example, in our population simulations 
later for efficiency reasons we use a daily time step instead of the hourly 
one of the original model:

 

Seed (gntp = a, dev = d, r = r)
1.0/24.0−→

Seed (dev = d + 24× htu (temp, moist, f (r, temp, moist), a.ψi), r = f (r, temp, moist)) 

This means that we make one bigger update every day instead of smaller 
ones every hour. The expected update to the developmental sum is the 
same (htu(…)) but the variability is increased.

In order to illustrate the functioning of the model we show simulations of 
the htu accumulation over a year for real climate data in Valencia, Spain for 
different values of the initial dormancy level, ψi. There are two periods dur-
ing the year that are favourable for development towards germination, spring 
and early autumn (Fig. 2B). Lowly dormant (ψi=0) and medium dormant 
seeds (ψi=1.25) sown in the spring manage to accumulate enough develop-
ment to both germinate in autumn. Highly dormant seeds, on the other 
hand, progress slower and miss the autumn window of favourable weather 
and therefore have to wait until spring in the following year. This shows a 
case where differences in genetics (continuous parameters) leads to quali-
tatively different timings that affect the current and subsequent lifecycles.

Vegetative growth model (FM-lite) (B)
For the vegetative stage we introduce a simplified version of FMv1 
(Chew et  al., 2014b) for use in studies that do not focus on circadian 
timing. FM-lite has three constituent models represented in Chromar 
with modifications to environmental responses (see below), and without 
the fourth, circadian clock model of FMv1.

Timing
The timing component is the simpler flowering phenology model 
of (Wilczek et  al., 2009) rather than the augmented version in FMv1 
(combination of Chew et al. (2012) with Salazar et al. (2009) models). 
Vegetative development extends from dev=0 to a threshold value, Df, 
where the plant flowers. The main contributing environmental factors are 
photoperiod, ambient temperature, and vernalization, giving the modi-
fied photothermal units, mptu, at a time t as:

Fig. 1. Overview of the FM-life and population models used in this study. (A) Overview of the models used for the growth and timing components for the 
three developmental stages: seed dormancy (a), vegetative period (b), and reproductive period (c). (B) Diagram of the population level model. Inputs to 
the model are the distribution of values of the two genetic parameters (fi, ψi) and weather data from some location for a number of years. The output is 
some population measure of interest; an example might be the total number of plants after k years.
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 mptu(t) = photoperiod(t) · thermal(t) · vernalisation(t) 

The vernalization term both accounts for the observed requirement 
for a specific duration of exposure to cold and is also used to repre-
sent the genetic effect on the progress towards flowering, modelled as 
vernalization(t)= f(wc , f i) , where wc is the exposure to cold accumulated 
up to t and fi is the genetic parameter for the initial floral repression, as in 
Wilczek et al. (2009).

In Chromar, the plant type: Plant(gntp:(real,real),dev:real,wc:real) in-
cludes the genotype attributes as noted above, the development so far 
(dev), and finally the accumulated winter chilling (wc). The development 
rule is then:

 

Plant (gntp = a, dev = d, wc = w)
1.0→

Plant (dev = d + mptu (temp, dl, afi, w), wc = f (w)) 

where temp and dl are fluents for temperature and day length respect-
ively, and w is the present value of wc. The transition to a flowering plant, 
FPlant, follows:

 
Plant (gntp = a, dev = d, wc = w)

1.0→ FPlant (gntp = a)
[
d > Df

]
 

Similar time step changes are possible by changing the rate and update 
size as discussed above for the seed dormancy timing model.

Growth
As in FMv1 (Chew et  al., 2014b), the growth component includes a 
carbon budget for the plant from Rasse and Tocquin (2006), which in 
turn includes photosynthesis rate equations based on the Farquhar et al. 
(1980) model. Growth at the organ level (rosette leaves and root) is rep-
resented based on the Greenlab model (Christophe et al., 2008). We will 
consider a sucrose carbon pool (c), a starch carbon pool (s), and one pool 
for the biomass of the root and each of the rosette leaves (Fig. 2A). In 
Chromar we have the following agents to store the state (amount of 
carbon, or total biomass) of these pools:

 (i) Cell(c,s:real). An agent that stores the amount of carbon in the su-
crose (c attribute) and starch pools (s attribute). The amounts are 
carbon totals at the whole plant level.

 (ii) Leaf(m:real,i:int). An agent that represents a rosette leaf. It has attri-
butes for its mass (m) and its index of appearance (i).

 (ii) Root(m:real). An agent that represents the root with an attribute for 
its mass (m).

For each organ we have a growth flow from the sucrose carbon pool 
to the mass of the organ (growth rule, Fig. 3). The growth amount de-
pends on the demand function of the organ (d(i,t) rule rate function) 
and its ‘sink strength’ (g(m)), which varies among organs. The value of 
the demand function varies over time between 1 (maximum demand) 
and 0 (no demand) at the end of the expansion period of the organ 
and it is used to time growth. The sink strength function g(m), which 
is fixed throughout the life of an organ, gives the magnitude of growth 
of each organ type relative to other organ types. The amount of carbon 
requested by an organ at every time unit is g(m)×d(i,t). Depending on 
the metabolic status of the whole plant (level of c pool) and the re-
quests from other organs, an organ will receive either the full expected 
amount or a portion of it. This view of growth is a simplification that 
works well for the range of lab conditions that the models were devel-
oped in but may not work as well for the full range of natural condi-
tions we consider later. For example, while we consider sink strengths 
to be constant here, drought, considered in models of crop species, 
might change the relative sink strengths to allocate more assimilate to 
the root, which will change the carbon balance and affect whole plant 
growth (Kage et al., 2004).

A flow in the opposite direction (mobl rule, Fig. 3) represents carbon 
mobilization from the organs if the central sucrose pool (Cell(c)) is 
reduced to a critical level. Thus, each organ can be either a net sink 
or source of carbon. For each organ, we also have a flow leaving the 
system from the c pool for the cost of the maintenance respiration 
and other processes of the organ (maint rule, Fig. 3). Photosynthetic 
carbon fixation is represented by the assimilation process (assim rule, 
Fig. 3). The amount of assimilate at every time unit is the product of 
the photosynthesis rate, which is a function of environmental condi-
tions at that time step, and the projected area of the rosette. Here we 
use an observable, aros, for the effective rosette area, which is a function 
of the global state of the rosette at the current time (derived from the 
masses of all the current leaves) and takes into account the effect of 
shading, as in Chew et  al. (2014b). The carbon partitioning function 
includes a baseline partitioning to starch, then support of a target su-
crose level, with excess sucrose supporting growth and a final overflow 
to additional starch production, as in Chew et  al. (2014b). At night, 
no photosynthesis occurs and carbon from the starch pools flows to 
the sucrose pool (sdegr rule, Fig. 3). Finally, we have the creation of 
new leaves, which impacts the above processes indirectly by creating 
more demand for growth and adding maintenance costs (leaf cr rule, 
Fig. 3). Leaves are created by the main apical meristem (Vaxis agent) 
along with an LAxis agent that can give rise to lateral branches after 
flowering (see next section).

It is interesting to note that in FMv1, carbon partitioning between 
processes and organs is done explicitly whereas in our Chromar repre-
sentation, partitioning is an emergent, stochastic effect of competition for 

Fig. 2. Differences in germination behaviour of seeds sown on 10 April in Valencia (Spain) (A) Each line represents the progress towards germination 
(hydrothermal units) of seeds with different genetic backgrounds (different values of initial dormancy, ψi) where each line is the average of 10 runs. Small 
differences due to the initial dormancy value can lead to qualitatively different behaviour. The low (L, blue line) and medium (M, purple line) dormant seeds 
both germinate in early autumn while the highly (H, green line) dormant seeds miss the favourable autumn season and germinate in the spring in the 
following year (see also (B)) (B) Temperature and moisture (determinants of germination) during the same period in Valencia. Wet hours is the number of 
hours per month with at least some moisture in the soil. This is for illustration only and for the simulations in (A) the hourly values of soil moisture were 
used instead. The black line is the monthly average temperature as used in the simulation of development in (A).
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the finite amount of sucrose carbon in the main reservoir. For example, 
partitioning of carbon among organs for growth is done explicitly in 
FMv1 by dividing the demand of each organ by the sum of the demands 
of all other organs:

 
g (m)× d(i, t)∑

d(i, t)
.

 

In the Chromar representation we do not have this explicit division 
by the global demand, which means that the amount of carbon that an 
organ gets is higher at each growth event but growth events are rarer 
because not all growth request are successful (competition). The compe-
tition therefore recovers the explicit partitioning.

Modifications for natural conditions
FMv1 was developed for lab conditions. As an initial approach to reflect 
plant responses to the broader range of relevant conditions in nature, we 
made the following changes:

 (i) The rate of photosynthesis is set to 0 below 0 °C.
 (ii) The maintenance cost for an organ is also 0 below 0 °C.
 (iii) The rate of photosynthesis is affected by soil moisture through 

stomatal closure. The photosynthesis rate is affected by a stomata 
term fstom(moist), which is a simple phenomenological function that 
relates soil moisture and stomatal closure (France and Thornley, 
1984).

These conservative changes give a lower bound on the effects of natural 
weather conditions.

Comparison of FM-lite with FMv1
In addition to the weather responses, Wilczek flowering model, and 
emergent carbon partitioning among organs, our model representation 
uses the stochastic rule-based Chromar as opposed to the deterministic 
MATLAB program of FMv1. In order to compare the model represen-
tations, we simulated growth in the two models for a fixed number of 
hours in lab conditions, where the modifications to weather responses 
have no effect. The two models were simulated in lab conditions 
(22  °C, 12/12 light/dark cycles) for 800 growth hours and showed 

Fig. 3. An overview of the dynamics on FM-lite (growth component of vegetative stage). The dynamics take the form of flows between different reservoirs 
of carbon, here shown in a graphical way (left) along with the corresponding Chromar rules (right).
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comparable results (Fig. 4). FMv1 was simulated in MATLAB while 
FM-lite was simulated in the Haskell implementation of Chromar and 
the results were averaged over five runs. The rosette mass results are the 
closest since they represent the development of multiple Leaf agents, 
masking the stochastic effects on each Leaf. The difference between 
the final rosette mass of the FMv1 and FM-lite (averaged over five 
runs) simulations is within 10% of the final rosette mass in FMv1. The 
stochasticity is more apparent for the root where the growth curves 
are further apart. The difference between final root mass in FMv1 and 
FM-lite (averaged over five runs) is ~20% of the final root mass in 
FMv1. Sucrose carbon levels are also more variable in FM-lite, since 
the growth rule (removing sucrose carbon from the central pool) pro-
vides organs with a larger amount but less frequently than the small 
fixed amount at every time step in FMv1 (see previous section).

Reproductive stage model (C)
Timing
The timing component is a thermal time model from Burghardt et al. 
(2015), representing the development of the inflorescence and seed from 
dev=0 at flowering, to a threshold value, Ds, where the plant disperses its 
seeds. Here there is no genetic input and the thermal units that accumu-
late at time t are simply the value of the temperature at t above a base 
temperature Tb:

 tu(t) =

®
T(t)− Tb if T(t) > Tb
0 otherwise

 

Writing into Chromar we have an FPlant(dev:real) type for a flowered 
plant and the following rule for its development that follows from the tu 
definition above:

 FPlant (dev = d) → FPlant(dev = d + tu(temp)) 

Finally, the transition to seed happens when the accumulated develop-
ment reaches Ds:

 
FPlant (attr = a, dev = d) → Seed (attr = a, dev = 0, r = 0) [d > Ds]

 
Note that the genotype attribute of the parent plant is transferred to the 
seeds unchanged. Like the seed dormancy and flowering timing models 
we can again change the time step by modifying the rate and update size.

Growth
The growth component of the reproductive stage model is loosely related 
to the Greenlab model (Christophe et al., 2008). The metabolic processes 
affecting the carbon budget of the plant are the same as in vegetative 
growth but with additional organ types to represent the Arabidopsis in-
florescences. Organs appear in units (metamers) with a metamer identi-
fier. Each growth unit on the main axis consists of an internode (stem 
between leaves), a leaf, and a lateral meristem that can give rise to a lateral 
axis. We consider only the primary axis and secondary, lateral branches, 
thus metamers on the lateral axis lack a further lateral meristem. All fruits 
on an axis are represented on its last metamer, replacing the leaf; this 
metamer also lacks a meristem. Two indices represent metamer position: 

Fig. 4. A comparison of the original FM implementation (FMv1) with the adaptation used in this work (FM-lite) for 800 h of growth. FM-lite simulations 
were performed in the Haskell implementation of Chromar and results were averaged over five runs. FMv1 simulations were carried out in the MATLAB 
environment. (A) Comparison of simulated rosette mass trajectories between FMv1 and FM-lite. (B) Comparison of simulated root mass trajectories 
between FMv1 and FM-lite. (C) Comparison of simulated sucrose carbon between FMv1 and FM-lite. (D) Comparison of simulated starch carbon 
between FMv1 and FM-lite.
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the index of the metamer along its axis and the index of the parent 
metamer along the primary axis (left part of Fig. 5). We define the fol-
lowing new agent types to represent this structure:

 (i) INode(i,pi:int,m:real) to represent the internode (stem between 
successive leaves). Attribute i is the temporal index of appearance 
in its axis (primary or lateral) and attribute pi is the parent primary 
metamer. The cotyledons have indices 1 and 2 on the primary axis, 
for example.

 (ii) LLeaf(i,pi:int,m:real) to represent a leaf on the lateral axes.
 (iii) Fruit(i,pi:int,m:real) to represent a fruit on the axis.

The maximum number of inflorescence metamers on the main axis is 
taken to be 20% of the number of rosette leaves at flowering time (nf) and 
given by vmax(nf) (Pouteau and Albertini, 2009). The maximum number 
of growth units on each lateral axis is given by lmax(i), a decreasing func-
tion of the index of the lateral axis starting from a maximum of 6 at the 
axis after the cotyledons (index 3) and going to a minimum of 1 at the 
topmost lateral branch (Mündermann et al., 2005). The topmost lateral 
axis can only appear with a delay after the apical fruit has appeared on 
the primary axis. Each successive lateral branch going down can only start 
developing with a delay after the fruit of the axis above it has appeared. 
The delay associated with lateral axis growth, given in the rules by tdel, is 
a function of the metabolic state of the plant, as described (Christophe 
et al., 2008).

The new organ types have associated sink strengths and demand func-
tions. The cauline leaves on the main axis contribute to the photosynthet-
ically active area and can shade the rosette leaves underneath them. The 
lateral leaves contribute to photosynthesis without shading. Internodes 
and fruits do not contribute to photosynthesis. Seeds are not directly rep-
resented, so a birth function b(m) is required to calculate the number of 

seeds for a given fruit mass m at seed dispersal time, as described below. 
The root demand function has been modified relative to FMv1 so that 
it has two parts, one in the vegetative stage that coincides with rosette 
growth and one in the reproductive stage that coincides with inflores-
cence and fruit growth.

Whole life cycle model, FM-life
The Chromar framework allows us simply to concatenate the rules of 
timing and growth components of the three models above, to repre-
sent the whole life cycle. Then given an initial state with the genetic 
attributes of the plant (gntp attribute of agents) and the environmental 
conditions for a particular location, e(t), we can simulate an entire life 
cycle from seed to seed. The timing components of the model give us the 
timing within the year of the growth period (vegetative + reproductive 
stages) and therefore the environmental conditions that the plant is ex-
posed to during growth. The growth components predict growth at the 
individual organ level with these environmental conditions and therefore 
give us the environmentally determined seed number given by the b(m) 
function. The model files are available at: https://github.com/azardilis/
ChromarFM/releases/tag/fm-life_v1.0.

Population level model and plotting conventions
Since FM-life estimates the number of seeds at the end of the life cycle, 
these can initiate multiple independent copies of the model in the next 
generation. We then have a classical evolutionary birth process, sometimes 
called a branching process since it unfolds in a tree-like way. The poten-
tial number of individuals in generation i, ni, is equal to the sum of the 
number of seeds produced by the individuals in the previous generation 

Fig. 5. Overview of the structural part of the growth component of the reproductive stage model. The numbering scheme used to keep track of the 
positions of the organs in the inflorescence architecture is shown on the left. On the right the Chromar rules used to grow a structure like the one on the 
left panel (see main text for details).

https://github.com/azardilis/ChromarFM/releases/tag/fm-life_v1.0
https://github.com/azardilis/ChromarFM/releases/tag/fm-life_v1.0
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(see Discussion). Dormant seed never die in the model and may ger-
minate after several years (Burghardt et al., 2015).

Since we are using an individual-based model, ni becomes computa-
tionally prohibitive to simulate over decades of population growth. In 
order to overcome this limitation, we simulated the timing (phenology) 
and growth components sequentially and used conservative birth func-
tions b(m). Figure 6 introduces the plotting conventions for these results. 
The timing components were first simulated with b(m)=1, such that each 
plant makes one seed, as in Burghardt et al. (2015) but with a daily time 
step (see discussion in model description) as opposed to an hourly one. 
The phenological simulation results in an unbranched sequence of devel-
opmental stage timings for each lineage (Fig. 6C). The simulation results 
for several decades typically revealed a small number of life cycle growth 
strategies, from clusters of individual life cycles. The clusters were gener-
ated using k-means clustering, where k is chosen by visual inspection of 
the life cycle plots (Fig. 6A). Alternative clustering approaches might be 
an area for future work. Figure 6A shows the distribution over a year of all 
individual life cycles that conformed to two contrasting life cycle strate-
gies under environmental conditions for Valencia (see Results). Cluster 
membership depends on the dates and durations of multiple develop-
mental stages. This is hard to visualize, because the timing of any single 
developmental stage partially overlaps among different strategies. Figure 
6B therefore summarizes the median dates of all three developmental 
transitions in each strategy, here illustrated by (i) a summer growth strat-
egy and (ii) a winter growth strategy. In the next stage, the growth mod-
els were simulated once per cluster, with the environmental conditions 
associated with the typical timing of that cluster (median vegetative and 
reproductive stages). This returns the typical biomass of organs over time, 
including the fruit mass at seed dispersal (m1 for cluster 1, m2 for cluster 
2; Fig. 6D). Finally, each life cycle is assigned the fruit mass m associated 
with its cluster, and thereby a growth-based, reproductive success b(m) 
that evaluates to 0 in some cases. Thus, the second stage recovers a ver-
sion of the branching lineage tree, where some lineages die out (Fig. 6E).

Our output population measure is the total population of plants over 
all lineages over all generations. For example, consider a lineage with 
three generations starting with a plant with final fruit mass m11. For the 
next generation we have b(m11) and then b(m11)× b(m21). The popu-
lation measure for that lineage is 1+ b(m11) + b(m11)× b(m21). The 
population measure for multiple lineages starting from multiple plants 
in the initial population is the sum of the population measures of all the 
lineages. This requires a birth function, which we use in a very simple 
form, as follows:

 b (m) =

®
1 if m > m0

0 otherwise
 

A plant produces one seed or none, the latter in life cycles with fruit mass 
at seed dispersal m less than a threshold m0. Below, we make some con-
servative choices for the value of the reproductive threshold value, m0, to 
explore the effect on the output population measure.

Finally, we distinguish three sources of variability in the population 
model: (i) weather varies between years, (ii) genetic parameters can vary 
among the initial population if their values are chosen probabilistic-
ally, and (iii) simulation results vary due to stochasticity in the model 
representation.

Weather data
For the phenology model simulation we used the weather data that ac-
companied the Burghardt et al. (2015) model, available from a Dryad re-
pository (Burghardt et al. 2014). In this dataset weather inputs over 60 years 
were generated stochastically for four locations in Europe: Halle, Valencia, 
Norwich, and Oulu. The weather inputs include values for temperature 
(in °C), moisture (water potential in MPa), and day length (in hours).

Fig. 6. The two-stage simulation of the population level model. (A) The distributions of developmental events (germination, flowering) from the phenology-
only simulation of the population model (C) with the identification of two clusters representing two distinct strategies (blue, red). (B) The 25th, 50th, and 
75th percentiles of the distributions of developmental events of the two clusters from (A) (cluster labels on y-axis). Germination time distributions are 
in brown, flowering time distributions are in green and seed dispersal distributions in red. (C) Illustration of the phenology only simulation with growth 
independent birth function b(m)=1 (each plant makes a single seed). The choice of, ψi (seed dormancy level) and fi (initial floral repression) is done 
probabilistically through a normal distribution. (D) Results of simulations of the growth models for the median dates of developmental events (B) for 
the clusters identified in (A). m1, m2 are the final fruit masses for a plant with median developmental event timings for clusters 1 and 2, respectively (as 
identified and shown in A, B). (E) Illustration of the assignment of fruit masses to the lifecycles of the phenology-only simulation (C) according to their 
clusters. m1, m2 refer to final fruit masses for a median plant in clusters 1 and 2 (from growth simulations in (D) and same two clusters in (A, B)). This 
recovers the full branching population process where the horizontal bars indicate a lineage dying out (b(m)=0 at that generation, no reproduction) and the 
potential rest of the lineages is shaded. The breadth of the ellipses indicates the reproductive success when there is reproduction (b(m)>0).
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For the growth simulations we used weather data from the ECMWF 
ERA-Interim dataset over the years 2010–2011 (Dee et al., 2011). A pro-
gram provided by Mathew Williams and Luke Smallman (School of 
GeoSciences, University of Edinburgh) that uses methods from Williams 
et al. (2001) was used to generate hourly inputs given daily averages from 
the dataset for temperature and radiation. For the soil moisture input 
used in the photosynthesis rate calculation, we used a daily average of 
soil moisture values from the dataset and assumed that to be constant 
throughout the day (swvl parameters in the ERA dataset). The soil mois-
ture parameter here is a number in arbitrary units from 0 to 1 that repre-
sents the ‘wetness’ of the soil while the soil moisture used above measures 
water potential and is given in MPa.

Results

The population of FM-life models (see Methods) allows us 
to test how growth processes that alter reproductive success 
affect the life history strategies of Arabidopsis growing in dif-
ferent environmental conditions (location) and with different 
genetic parameters in the initial population. We can therefore 
explore the genotype × environment interaction, using a pop-
ulation measure. To illustrate this potential, we compare sim-
ulation results for two previously studied locations, Valencia 
(Spain) and Oulu (Finland), and two opposing combinations 
of genetic parameters, high seed dormancy/high floral repres-
sion (HH) and low seed dormancy/low floral repression (LL). 
Within an initial population of 100 seeds, the seed dormancy 
levels, ψi, were assigned probabilistically, sampling from a nor-
mal distribution with mean 0.0 and standard deviation 1, or 
the low dormancy level (L) and mean 2.5 with the same stand-
ard deviation for the high dormancy case (H). Floral repres-
sion was fixed at either 0.598 for the low level (L) and 0.737 
for the high level (H), values that were chosen to reflect the 
behaviour of natural populations of Arabidopsis in Wilczek 
et al. (2009). Both parameter choices follow Burghardt et al. 
(2015). The simulation time period was 60  years and, as in 
Burghardt et al (2015), we discarded the first 15 years of the 
simulation to focus on stable life history strategies. A key dif-
ference from the earlier work is that even our conservative 
choice of birth function (see Methods) allows some lineages 
to die out.

Valencia

Figure 7 shows the results of the two-stage simulation for a 
population of the LL genotype in Valencia (Fig. 7A). We iden-
tify four possible life history strategies based on the timing 
(phenology) components of the FM-life model:

 (i) Strategy 1, summer-only strategy where the entire growth is 
in the summer. The growth period is quite short and the 
conditions unfavourably hot and dry. In the growth sim-
ulation, the rosette leaves senesce before the reproductive 
stage (purple curve). The drought effect on photosynthesis 
severely limits the carbon available for fruit mass (orange 
curve).

 (ii) Strategy 2, spring strategy where the entire growth period 
is in the spring. The growth period is only slightly longer 
than the summer-only strategy but it falls in more favourable 
weather conditions. The rosette lifetime extends beyond 

flowering to support fruit growth, which combined with 
favourable weather gives high fruit mass.

 (iii) Strategy 3, winter-repr strategy spans the winter/early spring 
period. A short vegetative period in the end of summer/
early autumn ends with flowering and a long reproductive 
stage over the winter/early spring. The rosette is senescing 
when favourable conditions return in early spring, seri-
ously limiting fruit development.

 (iv) Strategy 4, winter-veg strategy again spans the winter/
early spring period. The life cycle duration is similar to 
strategy (iii) but slightly later germination delays flow-
ering until spring. The rosette grows all winter, overlap-
ping with a short reproductive stage and supporting high 
fruit mass.

Plants with life cycle strategies 2 and 4 predicted orders of 
magnitude more fruit mass than plants with life cycle strat-
egy 3 and or the least successful strategy 1 (Fig. 7C). This 
result clearly ranked the strategies available to plants of the LL 
genotype, although the absolute values of the predicted bio-
mass are less certain (see Discussion). The 100 plants amassed 
4905 potential lifecycles over 45 years of phenological simula-
tion (Fig. 7A). Without a minimum mass threshold (m0) for 
reproduction, 66% of potential life cycles followed the more 
successful spring and winter-veg strategies (2 and 4; Fig. 7C). 
Figure 7D shows the sequential transitions between strategies. 
For example, 60% of potential plants following the successful 
spring strategy (2) disperse their seeds early enough for the 
next generation to adopt the winter-veg strategy (4), achiev-
ing two generations per year. These transitions underlie the 
bimodal distribution of life cycle times reported by Burghardt 
et al. (2015) for this simulation.

Simulation of the HH genotype (Fig. 7F, J) identified similar 
strategies. Since the seed have longer dormancy, the population 
amassed fewer potential life cycles (2954 as opposed to 4905 
in the LL case; Fig. 7F). The growth and final fruit masses are 
different because of slight variation in timing of the growth 
period but strategies 2 and 4 are again more successful than 
strategies 1 and 3 (Fig. 7H). A higher fraction of potential life 
cycles followed the successful strategies (78% as opposed to 
66% in the LL case; Fig. 7G). Higher seed dormancy reduced 
the germination in the summer and early autumn that led to 
the less successful strategies 1 and 3, so any strategy was likely 
to be followed by either strategy 2 or 4 in the next generation 
(Fig. 7).

In order to calculate the population success, we make two 
choices for the reproduction mass threshold, m0, which elim-
inate one or both of the least successful strategies. Choosing 
a value m0=2×10−5 g (the mass of a single seed) eliminated 
the summer-only strategy from both genotypes, which gives 
a population of 1210 plants over 45  years in the LL case 
(Fig.  7C). The HH genotype allows a larger percentage of 
viable life cycles but we predict fewer plants (1020) since the 
number of potential life cycles was lower (Fig. 7H). Choosing 
a value m0=6×10−3 g left only two viable strategies, 2 and 4, 
for both genotypes. Reciprocal transitions between the strat-
egies were still possible but winter-veg was strongly favoured 
(Fig. 7E, J). The LL genotype predicted 240 plants in total 
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Fig. 7. Population experiments in Valencia in two different genetic backgrounds (LL, low dormancy, low floral repression; and HH, high dormancy, high 
floral repression). (A) Results of the phenology-only simulation results for the LL genotype. The 25th, 50th, and 75th percentiles of the distribution of 
developmental events are shown for each identified cluster. (B) Growth stages over a year for each cluster from (A) according to the median time of the 
distribution of developmental events for each cluster. (C) Growth simulations over the growth period shown in (B) for each cluster. (D) Probabilities of 
successive strategies. (E) Probabilities of successive strategies after eliminating life cycles with strategies 1 and 3 using a reproductive threshold. (F–J) As 
for (A–E) but for the HH genotype in the same location.



Ecological performance of an Arabidopsis life cycle model | 2473

over 45 years, compared with 360 plants for the HH geno-
type: G×E interaction favoured the HH genotype despite its 
smaller number of potential life cycles. Thus, modelling the 
growth processes not only distinguished among the potential 
life cycle strategies within a genotype but also between the 
genotypes.

Oulu

The equivalent simulations were performed for conditions in 
Oulu, Finland in the same LL and HH genetic backgrounds 
(Fig. 8). The results indicated three potential life cycle strategies 
(Fig. 8A, B, E, F):

 (i) Strategy 1, summer-only strategy where the entire life cycle occurs 
in the summer. The vegetative period is short, the rosette is 
very small and supports negligible fruit growth (Fig. 7C).

 (ii) Strategy 2, winter-repr strategy where a life cycle of almost 
a year has a very short vegetative stage, followed by a long 
reproductive stage over the winter. Again, the very small 
rosette supports little fruit growth in the following spring.

 (iii) Strategy 3, winter-veg strategy where the plant overwin-
ters in the vegetative stage. Unlike in Valencia, the ro-
sette grows little over the winter. Rapid rosette growth in 
the following spring supports a substantial inflorescence 
and fruit development, though the predicted fruit mass is 
smaller than in Valencia.

Fig. 8. Population experiments in Oulu in two different genetic backgrounds (LL, low dormancy, low floral repression; and HH, high dormancy, high 
floral repression). (A) Results of the phenology-only simulation results for the LL genotype. The 25th, 50th, and 75th percentiles of the distribution of 
developmental events are shown for each identified cluster. (B) Illustration of growth stages over a year for each cluster according to the median time of 
the distribution of developmental events for each cluster. (C) Growth simulations over the growth period shown in (B) for each cluster. (D) Probabilities of 
successive strategies. (E–J) As for (A–E) but for HH genotype in the same location.
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The severe winter conditions limited the number of potential 
life cycles to 2361 for the LL genotype or 363 for HH. A higher 
proportion of HH life cycles followed the successful winter-veg 
strategy (3; 32% against 24% in LL; Fig. 8B, G). Surprisingly, a 
majority of life cycles for both genotypes followed the winter-repr 
strategy 2. Applying the reproductive threshold mass, m0, elimin-
ated one or both of strategies 1 and 2 (Fig. 8C, G), suggesting a 
strong selective pressure for greater floral repression to reduce the 
number of winter-repr life cycles. With m0=2×10−3 g, the LL geno-
type yielded 159 plants over 45 years compared with 53 plants for 
HH. All G×E combinations had actively growing plants at the end 
of the simulation. Interestingly, plants of the HH genotype had 
higher average reproductive success per plant in Oulu yet the LL 
plants were more successful by our population measure. The faster 
development of LL plants allowed more, short lifecycles within the 
simulated interval (consistent with the phenology model alone).

Discussion

We present a whole-life-cycle multi-model for growth and 
reproduction of Arabidopsis, FM-life, combining phenology 

models that time the developmental stages and growth models 
to predict organ biomass. The simple, FM-lite model of vege-
tative growth and its extension to the reproductive stage in 
FM-life simulate broader, mechanistically founded compo-
nents of fitness at the individual plant level compared with the 
phenology models alone. Most insights from the component 
models naturally remain (Rasse and Tocquin, 2006; Christophe 
et al., 2008; Wilczek et al., 2009; Burghardt et al., 2015). Multi-
models are helpful in emphasizing interactions. The cauline 
leaves in our inflorescence model, for example, extend the 
duration of photosynthetic competence. As cauline leaves can 
be produced 6  months later than early rosette leaves in the 
winter-veg strategy (Fig. 8), they remain active photosynthetic 
sources (Earley et al., 2009; Leonardos et al., 2014) when the 
rosette leaves are senescing. The growth models provided the 
fruit mass that we used as an indicator of reproductive success, 
such that metabolic and developmental processes of growth 
informed a more mechanistic understanding of ecological, 
population dynamics over multiple generations.

The growth model allowed us to discriminate among alterna-
tive life cycle strategies in each G×E combination, by selecting 

Fig. 9. Simulation results for a combined variant in Oulu (LH, low dormancy, high floral repression). (A) Results of the phenology-only simulation results. 
The 25th, 50th, and 75th percentile of the distribution of developmental events are shown for each identified cluster. (B) Illustration of growth stages over 
a year for each cluster according to the median time of the distribution of developmental events for each cluster. (C) Growth simulations over the growth 
period shown in (B) for each cluster. (D) Probabilities of successive strategies.
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against strategies that were compatible with the phenology 
models alone but had qualitatively worse growth. In previous 
work, strategies with high seed dormancy in southern Valencia 
and low dormancy in northern Oulu were noted to align with 
the behaviour of the cognate wild populations (Atwell et  al., 
2010; Chiang et al., 2011; Méndez-Vigo et al., 2011; Burghardt 
et  al., 2015). In each G×E combination, individual plants in 
our simulations might adopt alternative life cycle strategies. The 
less-successful strategies were lethal in our model, eliminat-
ing >95% of potential lifecycles (simulated by the phenology 
model alone) for the LL genotype in Valencia, for example (Fig. 
7A, C). Thus, our results supported the observed genotypic dis-
tinction between Valencia and Oulu, because the requirement 
for a minimum fruit mass eliminated more lineages of the less-
successful genotype in each case (Figs 7C, H, 8C, G).

Our approach might appear conservative, as the binary birth 
function (one seed/no seed) ignored variation in seed mass 
among life cycle strategies, which might otherwise reinforce the 
advantage of successful strategies. The successful genotype LL in 
Oulu, however, had lower reproductive success per plant than 
HH, suggesting a more subtle balance of advantage. Genotypes 
with low dormancy and high floral repression (LH) are observed 
in far northern locations (Atwell et al., 2010). We therefore simu-
lated the LH genotype (Fig. 9). LH plants delayed flowering time 
enough to reduce the frequency of potential summer-only life 
cycles to 9% compared with 15% in LL (Fig. 9B) and increased 
the fruit mass of the successful winter-veg life cycle close to the 
HH genotype (Fig. 9C). The LH model predicted slightly higher 

reproductive success overall, returning 171 life cycles (Fig. 9C) 
compared with 159 for the LL variant (Fig. 8C), consistent with 
the observation of LH genotypes at this location.

A limitation of our work arises from the fact that the phen-
ology component models of FM-life have been validated against 
field data (Wilczek et al., 2009; Burghardt et al., 2015) whereas 
the growth component models have not (Rasse and Tocquin, 
2006; Christophe et al., 2008). This will clearly affect our results, 
illustrated by the fact that selecting a single year’s weather data 
for Valencia and fixing genetic parameter values eliminated the 
summer strategy (Fig. 10A, B), despite the remaining variability 
due to the model’s stochastic representation. Biomass simulations 
are inevitably sensitive to the timing of the growth period, be-
cause a longer interval of exponential growth in good conditions 
rapidly changes absolute biomass, as illustrated in Fig. 10C, D. 
We therefore modified the growth models to account for severe 
winter conditions and to limit photosynthesis in dry conditions. 
These changes are conservative as severe weather conditions also 
affect growth in other ways. We already mentioned the effect of 
drought on partitioning, for example, but other metabolic pro-
cesses like maintenance respiration are also known to be affected. 
These effects have been studied in crop species (McDowell, 
2011), but little is known on the responses of Arabidopsis. Despite 
the changes, the FM-life model predicted unreasonably high fruit 
mass in some cases. The binary birth function ensured that this 
had no effect on our population measure.

On the other hand, in the least successful strategies it is pos-
sible that the model underestimates the predicted fruit mass, for 

Fig. 10. Robustness of timing and growth simulation results. (A) Sources of variability for the timing results. (B) Timing results for variable weather (60 years) 
and variable genetic parameters chosen from a distribution and timing results for simulations with constant weather (same 1-year weather over 60 years) and 
constant parameters. The timings of the strategies are very similar but strategy 1 life cycles have moved to strategy 3. This could be because of the particular 
year of weather data we used for the simulations. (C) Sources of variability for growth results. (D) Growth simulation results starting from three different 
germination dates (corresponding to 25th, 50th, and 75th percentiles of the distribution of germination times) of strategy 4 in Valencia LL (Fig. 8).
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example because we ignore the contribution of stem photo-
synthesis in the assimilation rule. We chose the threshold fruit 
mass m0 conservatively, so the lowest threshold is the mass of a 
single seed. A wide range of reasonable thresholds would elim-
inate the same one or two strategies in each G×E scenario, as 
the strategies give such large predicted differences in biomass. 
As the ranking of strategies is so clear, minor alterations of the 
biomass simulations will not affect our qualitative comparison 
across genotypes and locations.

Among possible gaps in understanding of the environmen-
tal effects on growth in natural settings or in our represen-
tation, we repeat our previous caution (Chew et  al., 2014b, 
2017, Preprint) that models of nutrient balance for Arabidopsis 
will be helpful. Rosette biomass in the Framework Model is 
understandably sensitive to photosynthetic parameters (Chew 
et al., 2014b), yet these have not been validated in Arabidopsis 
across the wide range of photoperiods and temperatures simu-
lated here (Walker et al., 2013). FM-life predicts a discretized 
fruit mass per cluster and hence reproductive success for a typi-
cal representative of each life cycle strategy, approximating an 
underlying, continuous distribution of fruit mass among plants. 
The accuracy of this approximation will depend on the varia-
tion of plants within clusters. The benefit lies in computational 
tractability, allowing us to simulate differential reproductive 
success that is informed by understanding of growth processes.

Much like FMv1, our version here (FM-life) also takes the 
same breadth-first strategy in modelling where the main goal is 
to show that links across scales are possible. The modular nature 
of the models means that domain experts can add detailed al-
ternatives for particular processes in future. The aim of the 
Framework Model is to provide the context for such studies, 
in this case reaching to ecological outcomes, or in the FMv2, 
testing more detailed effects of circadian regulation upon me-
tabolism and hence biomass (Chew et al., 2017, Preprint).

Our approach builds upon previous models that predict fit-
ness and population processes in Arabidopsis, which have fo-
cused on developmental components of fitness or on phenology 
(Prusinkiewicz et  al., 2007; Satake et  al., 2013; Springthorpe 
and Penfield, 2015). Linking these components sharpens eco-
logical insight, by understanding the performance of genetic 
variants in the environment that underlies differences in fitness 
(see discussions in Donohue et al., 2015; Doebeli et al., 2017) 
and can thus inform evolutionary hypotheses. Adding genetic 
variation between generations will in future model Arabidopsis 
evolution explicitly, perhaps after competing genetic variants 

in silico using adaptive dynamics approaches (Brännström et al., 
2013; Weiße et al., 2015). Our approach giving a mechanistic-
ally founded reproductive success can also inform crop models 
where the main focus is yield. With a more detailed nutrient 
balance model yield (e.g. total seed mass) can be assessed in dif-
ferent G×E scenarios or under different management interven-
tions. Thus, the FM-life model offers a further tool to bridge 
among disciplines in plant biology, ecology, and evolution.
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