Skip to main content
. 2018 Oct 23;70(9):2505–2521. doi: 10.1093/jxb/ery367

Table 1.

List of parameters in the berry growth module and carbon allocation module

Parameters Definitions Values Unit Sourcesa
Cabernet Sauvignon Sangiovese
Berry growth module
Berry surface area
γ Empirical coefficient 4.152 4.463 cm2 g−1 Experiment
η Empirical coefficient 0.707 0.604 Dimensionless Experiment
Berry surface transpiration
ρmin Minimum berry surface conductance to water vapour 55.4 25.8 cm h−1 Experiment
ρ0 Scaling factor 503 682 Dimensionless Experiment
k ρ Exponential decay rate –4.97 –1.67 cm g−1 h−1 Experiment
H f Relative humidity of air space in fruit 0.996 Dimensionless Fishman and Genard (1998)
Phloem hydraulic conductance
L p,min Minimal phloem hydraulic conductance 3.5e-2 g cm−2 MPa−1 h−1 Exploration
L p,max Maximal phloem hydraulic conductance 0.15 0.7 g cm−2 MPa−1 h−1 Calibration
FM*Lp Fresh mass at the inflection point 0.95 1.33 g Calibration
k Lp Proportional to the slope at inflection point of Lp 9 7.4 g−1 Calibration
Composite membrane area
αx Coefficient for converting fruit surface area to membrane area 3.5e-3 Dimensionless Calibration
Berry volume growth
ϕ Cell wall extensibility coefficient in Lockhart’s equation 0.1 MPa−1 h−1 Fishman and Génard (1998)
Y Turgor pressure threshold for growth 0.05 MPa Matthews et al. (2009); Castellarin et al. (2016)
Sugar uptake—mass flow
σp Reflection coefficient for sugar for entering the composite membrane 0.9 Dimensionless Fishman and Génard (1998)
Sugar uptake—active uptake
V max,berry Maximal rate of active sugar uptake per unit of dry mass 8e-3 2.8e-3 gSucrose (gDW)−1 h−1 Calibration
K M,berry Michaelis constant for active transport 0.08 gSucrose gH2O−1 Milner et al. (1995); Fishman and Génard (1998)
C*f Sugar concentration at the inflection point 0.13 0.15 gHexose gH2O−1 Calibration
K Cf Proportional to slope at the inflection point of Ua 35 gH2O ghexose−1 Calibration
Sugar partition
k ss Fraction of increase in dry matter allocated into soluble sugar at each time step 0.9 1.0 Dimensionless Experiment
q m berry Maintenance respiration coefficient for berry 5.9e-5 gC gC−1 h−1 Dai et al. (2010)
Q g berry Growth respiration coefficient for berry 0.02 gC gC−1 Dai et al. (2010)
Constants
V w Molal volume of water 18 cm3 mol−1
D w Water density 1 g cm−3
R Gas constant 8.3 cm3 MPa mol−1 K−1
Carbon allocation module
Carbon loading by leaf
V max,leaf Maximal rate of carbon loading per square meter of leaf per hour 1.0 gC m−2 h−1 Baldazzi et al. (2013)
K M,leaf Michaelis constant for carbon loading by leaf 0.05 gNSC gFM−1 Exploration; Zufferey (2000);
Quereix et al. (2001)
Carbon loading by internode, cordon, and trunk
V max,stem Maximal rate of carbon loading per gram of stem per hour 1.0e-4 gC gFM−1 h−1 Exploration; Grechi et al. (2007)
K M,stem Michaelis constant for carbon loading by stem 0.05 gNSC gFM−1 Baldazzi et al. (2013)
Carbon unloading by internode, cordon, and trunk
k leakage Rate of carbon unloading per gram of stem per hour 3.5e-3 gC gFM−1 h−1 Exploration;
Baldazzi et al. (2013); Rossouw et al. (2017)
Carbon unloading by root
V max,root Maximal rate of carbon unloading per gram of roots per hour 5e-4 gC gFM−1 h−1 Exploration; Barillot et al. (2016); Rossouw et al., (2017)
K M,root Michaelis constant for carbon unloading by roots 0.084 gNSC gH2O−1 Barillot et al. (2016)
Maintenance coefficient
Maintenance respiration coefficient 4e-5 gC gC−1 h−1 Cieslak et al. (2011)
Maintenance respiration coefficient 2e-5 gC gC−1 h−1 Vivin et al. (2002)
Maintenance respiration coefficient 2e-4 gC gC−1 h−1 Cieslak et al. (2011)
Root turnover coefficient 2e-5 gC gC−1 h−1 Buwalda (1993)
Q10 Temperature ratio of maintenance respiration 2.03 Dimensionless Thornley and Cannell (2000)
Growth coefficient
Growth respiration coefficient 0.2 gC gC−1 Vivin et al. (2003)
Carbon loading and unloading cost
q p Cost for either carbon loading to phloem or unloading from phloem 0.03 gC gC−1 Thornley and Cannell (2000)

a Parameters were estimated in four complementary methods: (i) directly estimated from experimental data described above (experiment); (ii) directly taken from the literature; (iii) taken from the literature first but then adapted for grapevine based on the trends published in the literature or in our data collection (exploration); and (iv) taken from the literature first but then calibrated for our data through numerical optimization (calibration). The data sets of Dai et al. (2009) and Bobeica et al. (2015) were used for calibration.