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Abstract

Whole genome sequencing of bacterial isolates has become a daily task in many lab-

oratories, generating incredible amounts of data. However, data acquisition is not an

end in itself; the goal is to acquire high‐quality data useful for understanding genetic

relationships. Having a method that could rapidly determine which of the many

available run metrics are the most important indicators of overall run quality and

having a way to monitor these during a given sequencing run would be extremely

helpful to this effect. Therefore, we compared various run metrics across 486 MiSeq

runs, from five different machines. By performing a statistical analysis using principal

components analysis and a K‐means clustering algorithm of the metrics, we were

able to validate metric comparisons among instruments, allowing for the develop-

ment of a predictive algorithm, which permits one to observe whether a given

MiSeq run has performed adequately. This algorithm is available in an Excel spread-

sheet: that is, MiSeq Instrument & Run (In‐Run) Forecast. Our tool can help verify

that the quantity/quality of the generated sequencing data consistently meets or

exceeds recommended manufacturer expectations. Patterns of deviation from those

expectations can be used to assess potential run problems and plan preventative

maintenance, which can save valuable time and funding resources.
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1 | INTRODUCTION

Current genome sequencing platforms have improved the ease and

speed of whole genome sequencing (WGS) for bacterial isolates

(Shendure & Ji, 2008), allowing laboratory scientists to complete the

sequencing of 24 Salmonella or Listeria genomes in approximately

39 hr on a MiSeq sequencer (Illumina®, San Diego, CA) (Illumina®,

2013). Parallel to improvements in speed, the amount of obtained

data is also steadily increasing. The data from a single sequencing run

could be sufficient to require days of analysis. However, the time and
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funding necessary to perform these analyses should be spent wisely.

It is important to ensure that the sequences being obtained consis-

tently meet or exceed quality expectations, to reduce the risk of

expending effort on inadequate runs. Since it is possible to discern

the similarities and differences among individual sequencing instru-

ments, we evaluated which of the many run metrics collected during

MiSeq runs could be used to better predict the level of data quality

needed for successful downstream analyses. Additionally, in large core

laboratories, where sequencers are running large numbers of isolates

on a regular basis, it would be beneficial to have tools for routine

monitoring of run performance, based on predetermined metrics and

how those compare to past trends. Routine monitoring allows abnor-

mal or out‐of‐spec sequencer performance to be flagged in a timely

fashion and acted on promptly. Such a tool should offer an interpreta-

tion of run metrics as a whole instead of observing them individually.

Here, we describe the development of such a tool.

Our laboratory is part of the GenomeTrakr network, a distributed

group of laboratories working with the US Food and Drug Adminis-

tration (FDA) for food pathogen trace‐back and outbreak detection

(Allard et al., 2016); we will therefore focus on the Illumina® MiSeq

systems and processes we use most often (Allard et al., 2016).

Briefly, the Illumina® Nextera XT‐based DNA library preparation pro-

cess works by using transposons to fragment and tag each sample

DNA with a unique combination of two adapter index sequences (i5

and i7) (Caruccio, 2011). Multiple libraries can be pooled together

and loaded onto the MiSeq to start a sequencing run. During the

cluster generation stage of the run, a single DNA strand is seeded

onto the flow cell to serve as a template and is then clonally ampli-

fied (Illumina®, 2016a, 2016b). Thus, millions of these clusters will be

generated in parallel, each containing approximately one thousand

copies of the template DNA. During the sequencing stage of the run,

four sequencing reads will be generated for each individual cluster:

the forward read (Read 1—R1), the i7 and i5 index read (Index Reads

1 and 2—IR1 and IR2, respectively) and the reverse read (Read 2—
R2) (Illumina®, 2016a, 2016b). After the run, all reads sharing the

same i7/i5 adapter index combination will represent the total number

of reads for that particular sample.

Several important metrics are generated during each sequencing run,

including Cluster Density (CD), %≥Q30, Clusters Passing Filter (Clusters

PF), Total Number of Reads, Total Number of Reads Passing Filter (Reads

PF), Total Yield, Q30 Yield, Phasing, and Prephasing (Illumina®, 2015a,

2015b). Cluster Density indicates the quantity of clusters that are gener-

ated per flow cell surface area during the cluster generation stage. Phas-

ing and Prephasing indicate the rate at which singular molecules in a

cluster fall behind (“Phasing”) or move ahead (“Prephasing”) of the current

cycle during the sequencing stage of a MiSeq run. Together, these two

metrics are important in describing the loss of synchrony during

sequencing (Kircher, Heyn, & Kelso, 2011). The Phred quality score (“Q

Score”) is used to determine the accuracy of sequencing by measuring

the base‐calling accuracy during a run (Ewing & Green, 1998). Clusters

PF and Reads PF represent the percentage of generated clusters and

number of reads, respectively, that pass an internal quality filtering pro-

cedure used by Illumina® (Illumina®, 2015a, 2015b).

Although having all these automatically generated run metrics is

useful, these may provide a daunting amount of information for

researchers who only want to know whether a given run has per-

formed adequately. To address this need, we carried out this compre-

hensive comparative study, based on 486 MiSeq runs, performed over

the course of five years, to explore differences in run metrics across

sequencers. Further, we performed statistical analyses of these run

metrics to help identify patterns useful for predicting either the qual-

ity of a given run or the performance of a specific MiSeq instrument.

2 | MATERIALS AND METHODS

2.1 | Bacterial strains

Our MiSeq runs comprised 16 different species of bacteria, from ten dif-

ferent genera: Campylobacter (coli and jejuni), Citrobacter braakii, Cronobac-

ter sp., Erwinia amylovora, Escherichia coli, Listeria monocytogenes,

Salmonella (bongori and enterica), Shigella (boydii, dysenteriae, flexneri and

sonnei), Staphylococcus aureus and Vibrio (cholerae and parahaemolyticus).

All bacteria, except for Campylobacter sp., Cronobacter sp. and E. amylo-

vora, were grown in pure cultures overnight in tryptic soy broth (TSB) (BD

Biosciences, San Jose, CA, USA) at 37°C under aerobic conditions.

Cronobacter sp. and E. amylovora were grown overnight in TSB at 30°C

and at 23°C under aerobic conditions, respectively. Campylobacter sp. was

first grown on blood tryptic soy agar (TSA with 5% sheep blood medium)

plates (BD Biosciences, San Jose, CA, USA) at 42°C under microaerophilic

conditions. After roughly 48 hr of growth, cultures of Campylobacter sp.

were then resuspended in TSB before DNA extraction.

2.2 | Library preparation

All bacterial isolates were extracted using the Gram‐negative and

Gram‐positive DNA extraction protocols described in the DNeasy

Blood & Tissue Kit User Manual (Qiagen, Germantown, MD, USA).

The resulting DNA samples were then constructed into DNA

libraries using either the Nextera (2012–2013) or Nextera XT (2013–
2017) DNA Library Preparation Kit (Illumina®, San Diego, CA, USA),

using an initial DNA input of 0.2 ng/μl, and performed according to

the manufacturer's protocol.

2.3 | Sequencing

All sequencing described in this study was performed on Illumina®

MiSeq desktop sequencers using the 500‐cycle MiSeq Reagent V2

Kits (Illumina®, San Diego, CA, USA).

2.4 | Data set

We analysed 486 MiSeq runs, from five MiSeq machines (A, B, C, D

and E), operated by at least eight different users, between December

2012 and May 2017. These runs consisted of multiple library pool

numbers, resulting in a total DNA library number of 8,518 samples.

For each sequencing run, we collected 15 MiSeq run metrics
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(Table 1) using the on‐board Sequencing Analysis Viewer software

(SAV) (Illumina®, San Diego, CA, USA).

2.5 | Statistical analysis

First, we compared the data from the 15 metrics on an individual

instrument basis, with data expressed as means ± standard error

(SE). Statistical differences between categorical variables were anal-

ysed using the Student's t test in Microsoft Excel 2010 (Microsoft,

Redmond, WA, USA); values equal to or smaller than p < 0.05 were

considered to be statistically significant.

Next, we compared the 15 run metrics across all 486 MiSeq runs

and used these to create a scree plot and a Pearson correlation

matrix. We assessed the magnitude of these correlations following a

scale similar to the one described by Evans et al. (Evans, 1996), cate-

gorizing the absolute value of each Pearson's correlation coefficient

(r) as weak (0.00–0.49), moderate (0.50–0.79) or strong (0.80–1.00).
From this matrix, a principal components analysis (PCA) using Origin

Pro software (OriginLab Corporation, Northhampton, MA, USA) was

performed. PCA can be defined as an orthogonal linear transforma-

tion that aims to maintain the same variance of the raw data by

reducing the number of variables into a new coordinate system of

principal components (PCs) through factor scores (Zhang & Castelló,

2017). PCA allows us to observe what factors are at play, and the

extent to which they correlate with each other. To observe if our

data set was appropriate for a PCA, we looked at two measures of

sampling adequacy. First, we applied Bartlett's sphericity test to the

data set. The obtained p value was < 0.0001, which allowed us to

reject the null hypothesis, meaning that it is appropriate to expect a

correlation to be found. Second, we evaluated the data set using the

Kaiser–Meyer–Olkin (KMO) index, resulting in an overall score of

0.698, which provided further confidence supporting the use of our

data. A PCA was used to reduce our correlated variables to a smaller

set of important independent variables. We used each run metric as a

variable (Table 1), and each MiSeq run was treated as an observation.

To explore other possible points of comparison across runs and

find similar groups (clusters) in our data, we applied a K‐means cluster-

ing algorithm (Tan, Steinbach, & Kumar, 2005). The clustering algorithm

begins by randomly initializing K number of clusters, then assigning

each MiSeq run into one of these clusters. The centroid of each cluster

is updated by calculating a new mean, which, in turn, is used to relo-

cate the position of each cluster centroid. This process is then repeated

until all the centroids stop moving, thus allowing the algorithm to con-

verge to a local optimum (Nidheesh, Abdul Nazeer, & Ameer, 2017).

We ran this analysis several times using two to five clusters, and with

both Euclidean (Kaya, Pehlivanli, Sekizkardes, & Ibrikci, 2017) and

Mahalanobis distances (Wang, Hu, Huang, & Xu, 2008).

3 | RESULTS AND DISCUSSION

3.1 | MiSeq metric comparison by instrument

According to the MiSeq manufacturer specifications, the percentage

of clusters passing the chastity filter is typically higher than 80.0%

(Illumina®, 2016a, 2016b). In our study, all five MiSeqs exceeded this

criterion. Nonetheless, it must be noted that the generated data can

be used, even at lower than recommended Clusters PF. In fact, a

lower percentage of Clusters PF will impact the total yield of the

run and result in overall less output. This is due to the fact that clus-

ters that do not pass this quality check step do not get counted in

the final per cent. Among the five MiSeqs examined in terms of

Clusters PF, we found that there was only an 8.1% range of differ-

ence, with the lowest value observed in MiSeq B (82.1% ± 1.6%)

(Table 2). According to the manufacturer's recommendations, the

optimal CD range is between 1,000 and 1,200 K/mm2 (Illumina®,

2016a, 2016b). Based on this range, the optimal CD values will be

the median value (i.e., 1,100 K/mm2). In our data set, the sequencer

most closely approaching this value is MiSeq D (1,048.3 ± 43.5 K/

mm2) and the one farthest from the recommended value is MiSeq E

(828.5 ± 32.5 K/mm2) (Table 2).

TABLE 1 Summary of MiSeq run metrics. The following table depicts the run metrics to be compared and analysed in this study.
Manufacturer recommended metrics are shown when available as well as a brief description of each run metric

Run metric
Manufacturer recommended
range/value Brief description

Q30 yield N/A The number of gigabases (Gb) that passed the chastity filter

Reads PF 24–30 million reads The number of reads that passed the chastity filter

Total yield 7.5–8.5 Gb The total number of Gb expected to be generated during the sequencing run

%≥Q30 (Overall) ≥75.0% The percentage of bases having a quality score of 30 or higher

%≥Q30 (R1, R2, IR1, IR2) N/A The %≥Q30 score broken down into its component parts

Phasing (R2), Prephasing (R2) N/A The amount of asynchrony during the reverse sequencing read

Phasing (R1), Prephasing (R1) <0.1% The amount of asynchrony during the forward sequencing read

Cluster density (CD) 1,000–1,200 K/mm2 The quantity of clusters that are generated per flow cell surface area during

the cluster generation stage of a sequencing run

Total reads N/A The total number of reads generated during a sequencing run

Clusters PF ≥80.0% The percentage of generated clusters that pass the chastity filter
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The %≥Q30 (Overall), as a measure of base call accuracy, is com-

prised of its component %≥Q30 scores; that is, the four reads—R1,

IR1, IR2 and R2, respectively. According to the manufacturer's speci-

fications, the %≥Q30 (Overall) should be at least >75% (Illumina®,

2015a, 2015b). Four out of our five MiSeqs passed this criterion:

The lowest value was from MiSeq B (73.8% ± 1.1%), and the highest

value was observed from MiSeq A (81.6% ± 0.6%) (Table 2).

The amount of data generated by a given sequencing run could

be evaluated using both the Total Yield and the Total Reads metrics,

as these two metrics directly correlate with each other. Among the

MiSeqs tested, MiSeq C showed the highest average Total Yield

(9.0 ± 0.3 Gb) and Total Reads (2.0 × 107 ± 6.9 × 105 reads), and

MiSeq E showed the lowest Total Yield (6.6 ± 0.2 Gb) and Total

Reads (1.5 × 107 ± 5.9 × 105 reads), respectively (Table 2). However,

Total Yield is not as important as the amount of data that passes the

filter. MiSeq C showed the highest Q30 Yield value: 7.2 ± 0.3 Gb

(corresponding to 1.8 × 107 ± 6.2 × 105 Reads PF). The lowest val-

ues came from MiSeqs B and E: Each gave a Q30 Yield of

5.2 ± 0.2 Gb and Reads PF at 1.3 × 107 reads (with different SEs)

(Table 2).

Phasing and Prephasing distortions will increase, as the sequenc-

ing read becomes longer (Tan et al., 2005). Prephasing and Phasing

can be caused by several factors. Prephasing might be due to a fluo-

rophore‐labelled nucleotide (FLN) that has a defective terminator,

which allows two FLNs to adhere to a single molecule, thus promot-

ing the sequencing system to jump ahead during the run. Phasing

can occur when the expected terminator cleavage fails to occur dur-

ing a given cycle and instead happens in the subsequent cycle,

causing the sequencing to lag behind the actual genome sequence

(Tan et al., 2005). As the instrument continues cycling, the clusters

that were initially formed on the flow cell will start to lose their

coherence (Ding & He, 2004). Therefore, the Prephasing detected

during R1 should be less than what is typically found during R2,

which is confirmed by our data as the amount of Prephasing exhib-

ited a 2.7–2.9 fold change (as observed in MiSeqs B, C, D and E) or

a 3.6 fold change (as seen in MiSeq A) (Table 3). In all five MiSeqs,

the average Phasing change between R1 and R2 exhibited between

a 2.4 (MiSeq D) – 2.7 (MiSeq B) fold change (Table 3). Four out of

our five instruments (MiSeqs B, C, D and E) demonstrated similar

average changes of Prephasing and all five presented similar average

changes in Phasing, even though the other run metrics across the

five machines were vastly divergent. Therefore, this implies that

although cycle synchronicity plays a key role in obtaining a high‐
quality run, it cannot be the sole factor to rely on when deciding

whether a run has been successful or not.

3.2 | Pearson's correlation and scree plot

In our analysis, the Pearson correlation matrix allowed us to distin-

guish two main groups (Table 4). The first group contains both mod-

erate and strong positive correlations among six metrics: Clusters PF,

%≥Q30 (Overall) and the %≥Q30 for R1, R2, IR1 and IR2. The sec-

ond group consisted of five metrics: Total Reads, Reads PF, Total

Yield, Q30 Yield and CD. In this second group, all metrics exhibited

strong positive correlations with one another, whereas CD exhibited

strong positive correlations with Total Reads, Reads PF and Total

TABLE 2 Comparison of 15 MiSeq run metrics according to the 5 MiSeq instruments

MiSeq instrument (n=)

A (n = 136) B (n = 125) C (n = 67) D (n = 51) E (n = 107)

Cluster density 929.1 ± 31.7 886.8 ± 35.8 1,032.1 ± 37.1a 1,048.3 ± 43.5a 828.5 ± 32.5a

Clusters PF 86.9% ± 0.8% 82.1% ± 1.6%a 90.2% ± 1.2%a 84.4% ± 1.3%c 86.5% ± 0.8%b

%≥Q30 (Overall) 81.6% ± 0.6% 73.8% ± 1.1%a 78.9% ± 1.4%b 76.4% ± 1.7%a 78.5% ± 0.7%a

%≥Q30 (R1) 88.1% ± 0.4% 82.7% ± 1.0%a 85.2% ± 1.4%a 82.0% ± 1.8%a 85.6% ± 0.6%a

%≥Q30 (IR1) 93.8% ± 0.6% 88.2% ± 1.7%a 94.7% ± 1.2%b 93.5% ± 1.2%b 90.1% ± 1.0%a

%≥Q30 (IR2) 90.5% ± 0.8% 82.5% ± 1.8%a 92.1% ± 1.1%b 89.1% ± 1.5%b 82.9% ± 1.2%a

%≥Q30 (R2) 75.7% ± 0.6% 64.1% ± 1.4%a 72.1% ± 1.5%a 70.4% ± 1.7%a 71.4% ± 0.9%a

Total yield 7.5 ± 0.2 Gb 7.0 ± 0.3 Gb 9.0 ± 0.3 Gba 8.3 ± 0.3 Gba 6.6 ± 0.2 Gba

q30 yield 6.1 ± 0.2 Gb 5.2 ± 0.2 Gba 7.2 ± 0.3 Gba 6.4 ± 0.3 Gbb 5.2 ± 0.2 Gba

Total reads 1.7 × 107 ± 5.4 × 105 1.6 × 107 ± 6.4 × 105 2.0 × 107 ± 6.9 × 10b 1.9 × 107 ± 7.9 × 10b 1.5 × 107 ± 5.9 × 10c

Reads PF 1.5 × 107 ± 4.2 × 105 1.3 × 107 ± 5.5 × 105 1.8 × 107 ± 6.2 × 10b 1.6 × 107 ± 6.5 × 10b 1.3 × 107 ± 4.6 × 10c

Prephasing (R1) 0.055% ± 0.002% 0.111% ± 0.008%a 0.113% ± 0.031% 0.119% ± 0.037% 0.074% ± 0.004%a

Prephasing (R2) 0.116% ± 0.006% 0.171% ± 0.016%a 0.169% ± 0.028% 0.179% ± 0.037% 0.131% ± 0.007%b

Phasing (R1) 0.074% ± 0.005% 0.096% ± 0.008%a 0.092% ± 0.017% 0.072% ± 0.003%b 0.087% ± 0.005%d

Phasing (R2) 0.150% ± 0.007% 0.174% ± 0.012% 0.172% ± 0.008%a 0.162% ± 0.007% 0.172% ± 0.008%a

Notes. “n” is equal to the number of MiSeq runs performed per sequencer. Values represent the means ± SE. Values that are deemed statistically signifi-

cant are indicated by the corresponding symbol according to the figure legend below. The best and worst values based on manufacturer recommenda-

tions for each variable are indicated with underline and bold, respectively
aSignificant compared to MiSeq A. bSignificant compared to MiSeq B. cSignificant compared to MiSeq C. dSignificant compared to MiSeq D.
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Yield and only a moderate positive correlation with the Q30 yield. In

contrast, the Pearson matrix also showed that Phasing (R1) had weak

negative correlations with other run metrics in our analyses.

Prephasing (R1) exhibited moderate negative correlations with the

%≥Q30 (Overall) and the %≥Q30 (R1) metrics and Phasing (R2) and

Prephasing (R2) were found to have a moderate positive correlation

with each other (Table 4).

3.3 | Classification of MiSeq runs using PCA and
k‐means clustering

The correlations generated from the Pearson matrix can indicate a

predictive relationship that can be exploited in reducing the variables

(run metrics). Using the scree plot (Figure S1), we see that we can

use five PCs to generate the analysis. However, we will use the top

3 PCs, since five PCs cannot be visualized efficiently. The first three

PCs (termed PC1, PC2 and PC3) can be used to linearly separate

72.86% of the total variance of the data generated by our 486

MiSeq runs (Table S1). Figure 1 illustrates the PCA loading plot for

these three PCs. We can observe that the 15 variables can be sorted

into three groups that are highly correlated (Figure 1). The first

group contains eight metrics and accounts for over a third (34.43%)

of the total variance, the second group contains three metrics and

accounts for 28.29% of the variance, and the third group contains of

four metrics, which constituted 10.13% of the total variance. In

Table S2, we show the coefficient of each metric and its contribu-

tion to each principal component.

Finally, we generated a three‐dimensional plot using the sets of

PC1, PC2 and PC3 from each of our MiSeq runs and colour‐coded
each observation (MiSeq run) to represent each of the five MiSeq

machines tested: A, B, C, D and E (Figure 2). All our MiSeqs tended

to cluster together across the three axes. However, their differences

were highly informative. Several MiSeqs had a higher percentage of

their runs that gravitated towards the PC1 and PC3 axes, primarily

MiSeqs B, C and D. In contrast, the runs from MiSeqs A and E

tended to aggregate into really tight groupings (Figure 2). Further-

more, MiSeq B contained several runs that did not fall within the

tight run cluster predicted by our PCA. This signals that MiSeq B is

not performing adequately compared to the other MiSeqs tested,

further confirming the conclusions we could draw from our compar-

ison of instruments (Table 3).

3.4 | K‐means cluster analysis

The main drawbacks of using K‐means clustering alone is associated

with two well‐established problems such as (a) defining a priori the

number of clusters to use and (b) visualizing the obtained clusters in

several dimensions. Thus, a typical solution is to preprocess the data

using PCA by mapping the data into a new feature space (Laas, Bal-

lester, Cortez, Graesslin, & Daraї, 2017). Afterwards, the k‐means

algorithm is applied to the data in the feature space. The final result

is able to identify observations that are similar to each other.

After running the K‐cluster analysis, the data points formed three

unique clusters (Figure 3a), regardless of MiSeq instrument used.

These three unique clusters were colour‐coded green, red and blue

(Figure 3a). We used green to label the cluster composed of the ade-

quate runs, and, reassuringly, 93.6% of our MiSeq runs fell into this

category (n = 455). The runs in the blue cluster (n = 24) presented

very low %≥Q30 values: either %≥Q30 (Overall), %≥Q30 (R1, R2,

IR1 and IR2) or a combination of these metrics. The red cluster pri-

marily contained MiSeq runs (n = 7) that exhibited an exorbitant

amount of Phasing or Prephasing, well over the acceptable 0.1%

threshold.

These colour‐coded K‐clusters also help us see which metrics

gave the most information about performance deficits (Tan et al.,

2005). We can observe that most of MiSeq B's problematic runs

(Figure 2) were the result of subpar %≥Q30 numbers, as all of the

runs falling into this category showed %≥Q30 (Overall) values lower

than 70% (below Illumina's recommended values of 75%). Likewise,

most of the problematic runs on MiSeq D were due to excessive

TABLE 3 Heatmap comparison of changes in runmetrics between the start and end of aMiSeq sequencing run for eachMiSeq instrument. “n” is equal
to the number ofMiSeq runs performed per sequencer. Values represent the arithmetic means ± SE. The color palette in the note indicates the range of the
most favorable average % loss/fold changes (green) to least favorable average % loss/fold changes (red), comparatively for the 5MiSeq instruments [Colour
table can be viewed at wileyonlinelibrary.com]
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Phasing and Prephasing. Interestingly, in all MiSeq runs identified as

inadequate due to Phasing and Prephasing issues, the Phasing (R1)

values were below the 0.1% threshold, whereas one or more of the

other three Phasing (R2) and Prephasing (R1 and R2) metrics dis-

played exceedingly high values, usually at or above 1.0%.

In addition to looking at the runs in relation to the K‐means clus-

tering based on the Euclidean distance (Kaya et al., 2017), we also

tested the same data set using the Mahalanobis distance (Wang

et al., 2008) and found that it does not fit our data set well as it

excludes runs deemed adequate using the Euclidean distance (Fig-

ure 3b). K‐means clustering using the Euclidean distance grouped

455 runs out of 486 as adequate (93.6%) while K‐means using the

Mahalanobis distance classed 394 runs out of 486 as adequate

(81.1%). A MiSeq machine performance check is meant to be used

F IGURE 1 PCA loading plot of the 15
observed MiSeq run metrics across 486
MiSeq runs. Three groups can be
distinguished from the plot and are
indicated in different colours [Colour figure
can be viewed at wileyonlinelibrary.com]

F IGURE 2 A three‐dimensional PCA
plot of each MiSeq instrument. Each colour
represents a particular MiSeq desktop
sequencer (MiSeq A–E), and each point on
the plot represents a single observation
(2 × 250 500 cycle V2 MiSeq sequencing
run) [Colour figure can be viewed at
wileyonlinelibrary.com]
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as a first checkpoint, and adequate MiSeq runs will have to eventu-

ally pass through downstream Quality Assurance (QA) checks. There-

fore, we find the Mahalanobis distance to be too stringent,

potentially excluding MiSeq runs that presented viable data for anal-

ysis (Figure 3b). Just as well, the Mahalanobis distance also presents

a variation to the established clusters and we found that runs were

now more difficult to group according to a specific run metric (Fig-

ure 3b).

3.5 | Development of a quality assessment tool: the
“MiSeq Instrument & Run Forecast” (MiSeq In‐Run
Forecast)

There is a direct relationship between the Total Yield (in Gb) and the

total number of reads passing the filter (Figure S2), also confirmed

from the Pearson plot (Table 4). Using the underlying equation of

Figure S2:

F IGURE 3 (a) A three‐dimensional k‐
means cluster analysis plot of the PCA
(Euclidean). The analysis was run several
times with a priori number of clusters from
2 to 5. In this plot, higher quality MiSeq
runs, which exhibited metrics that met
performance criteria, are represented by
the green cluster, MiSeq runs that failed
primarily due to %≥Q30 issues are
represented in blue, and MiSeq runs that
failed due to Phasing or Prephasing are
depicted in red. (b) A three‐dimensional k‐
means cluster analysis plot of the PCA
(Mahalanobis). The analysis was run several
times with a priori number of clusters from
2 to 5. In this plot, higher quality MiSeq
runs, which exhibited metrics that met
performance criteria, are represented by
the green cluster, MiSeq runs that failed
due to %≥Q30 issues and other metrics
are represented in blue, and MiSeq runs
that failed due to Phasing or Prephasing
and other metrics are depicted in red
[Colour figure can be viewed at
wileyonlinelibrary.com]
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Total Yield Gbð Þ = 5.1 � 10-7
� �

� Reads PF

The Total Yield (in Gb) will be determined by the number of

Reads PF multiplied by the appropriate multiplication factor

(5.1 × 10−7). As expected, the values predicted with this equa-

tion were within 1% of the actual observed numbers produced by

SAV in most cases. In such cases, the discrepancy was due to data

incorrectly populating into SAV. While this equation correctly classi-

fied 97.8% of the adequate runs from our MiSeqs, it only detected

19.4% of the inadequate runs. Thus, this equation alone is not

enough to ensure that a run is an adequate one.

Therefore, coupling the Total Yield equation above with the K‐
clustering observations mentioned earlier, we developed the “MiSeq

In‐Run Forecast” tool, an Excel spreadsheet (Microsoft, Redmond,

WA) which can be populated with the SAV run metrics from any

MiSeq, provided it used a 500‐cycle MiSeq Reagent V2 kit with pre-

pared Nextera XT libraries. Our spreadsheet calculations encompass

both the aforementioned Total Yield equation and an algorithm that

uses the values of all fifteen MiSeq run metrics during/after a run to

accurately predict whether a given MiSeq run has performed ade-

quately and how it compares to previous runs. The “MiSeq In‐Run
Forecast” spreadsheet is available at: https://figshare.com/s/ef

7554978305a7089403 (https://doi.org/10.6084/m9.figshare.

5803170). Note that the “MiSeq In‐Run Forecast” tool uses SAV

fields of R1, R2, R3 and R4, where R1 and R2 are the forward and

reverse sequencing reads (R1 and R4 in SAV), and IR1 and IR2 are

the index reads (R2 and R3 in SAV), respectively.

The “MiSeq In‐Run Forecast” tool can start to be populated while

the run is sequencing in real time with as few as two to four SAV run

metrics. CD and Total Reads are available between the 5th and 12th

cycle, while Total Yield and Reads PF are available to users between

the 25th and 32nd cycle (approximately 3 to 4 hr into a 39‐hr run).

Inserting these run metrics into the tool can provide for a quick pre-

liminary assessment of run quality and performance based off the

Total Yield equation. A large change in the “Yield Percent Error” col-

umn of the spreadsheet will alert a user whether a run is performing

adequately or not in terms of yield. Once the run has finished and all

metrics become available in SAV, the “MiSeq In‐Run Forecast” can be

fully compiled, to ensure that the whole run is deemed adequate.

Our algorithm is a mathematical representation of the K‐means

analysis (Figure 3a) and depicted in Figure 4. The “MiSeq In‐Run
Forecast” will designate the run of interest in the chart using the

Euclidean distance measurements of each K‐cluster and their cen-

troids, afterwards comparing the smallest distance of the three K‐
clusters. If the run maps into the green category, then we can pre-

dict that it was an adequate MiSeq run (Figure 3a). If the data from

a run trend towards either the red (high Phasing/Prephasing values)

or blue cluster (low %≥Q30 values), then we can predict that this

run did not perform up to its expected capabilities and was deemed

inadequate by the tool (Figure 3a).

One of the important insights into this work is demonstrating

that CD, one of the first run metrics the SAV reports during a

sequencing run and often thought to be a primary determining factor

for most other run metrics, may not necessarily be so (Illumina®,

2016a, 2016b). As presented above, 455 runs were initially deemed

to be adequate runs while 31 runs were considered inadequate (ei-

ther by %≥Q30 or Phasing/Prephasing). Of the MiSeq runs, we

found skewing into the red and blue K‐clusters (n = 31), 93.5%

(n = 29) had CD values outside the recommended range (1,000–
1,200 K/mm2). Additionally, we observed that an astonishing 81.5%

(n = 371) of the adequate runs was outside the recommended CD

range (Figure S3). Therefore, this implies that CD cannot be used

on its own to predict how a run will perform (See Figure S3). We

have seen that other metrics, especially those related to %≥Q30

and Phasing/Prephasing, can critically affect the performance of a

MiSeq sequencing run. These metrics are more crucial to consider

during a MiSeq run in order to understand if that run is performing

up to par.

The algorithm developed herein is reliably able to correctly

assess the quality of a run, except in the rare cases where the cen-

troid distances of two different clusters are equidistant. In these

circumstances, the run patterns will exhibit traits of both affected

clusters. Thus, our “MiSeq In‐Run Forecast” tool will be most effec-

tively used as a quality control measure in the laboratory to assess

MiSeq instrument performance. Another advantage of having this

tool is that it does not require FASTQ files or any type of post‐
data generation processing/transferring. It is a preassembly assess-

ment based solely on the raw sequencing metrics per MiSeq run.

Further research is needed to effectively connect these run metrics

to actual downstream effects such as sample coverage, assembly

quality.

4 | CONCLUSION

Using our wealth of MiSeq run data, we have developed an easy to

use wet‐lab based QA tool (i.e., the “MiSeq In‐Run Forecast”) that

can be run in Excel to provide a rapid instrument‐ and run‐based
quality control check. If our algorithm classifies a given MiSeq run as

less than adequate, users can then use the tool to assess which fac-

tor was the most likely underlying cause (%≥Q30 or Phasing/

Prephasing) and thus troubleshoot the instrument. Careful considera-

tion should also be given as to whether the sequence data acquired

during such runs should be submitted for downstream assembly and

analysis. Our tool can help laboratories achieve a consistent mini-

mum standard quality for data collection and could also potentially

save researchers time and money.

Another important use of this QA tool is to support the work of

distributed sequencing networks or large core centres. A quality

baseline can be established for each laboratory, allowing any devia-

tion from the usual run performance to be rapidly spotted. This tool

could detect potential issues with new reagent lots, personnel, pro-

tocol changes or indicate that a particular MiSeq instrument is begin-

ning to go out of spec, even before other on‐board QA features

detect a problem.

It must be noted that the tool uses the run metrics in order to

evaluate the MiSeq sequencing run as a whole, and thus, it cannot
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currently be used for individual isolate/sample assessment. It is

meant to be used as a monitoring tool in order to designate if a

MiSeq run performed as expected. Therefore, future projects could

use the run metrics from a larger pool of sequencers to observe

how machine and run differences could potentially translate into

downstream sample differences as well as to zero in on how to

effectively troubleshoot the particular run metric(s) at fault.
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