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Abstract

The prevalence rate of obesity continues to rise in the U.S., but effective treatment options remain 

elusive resulting in increased emphasis on prevention. One such area of prevention research 

capitalizes on the relatively novel behavioral construct of food addiction, which has been 

implicated in obesity. Food addiction reflects an individual’s propensity for compulsive eating 

despite negative consequences, and shares not only symptoms with both eating and substance use 

disorders but also genetic and neural correlates within neural reward-circuitry modulated by 

dopamine. Here, we examined associations between food addiction scores, body mass index 

(BMI), reward-related ventral striatum activity, and a polygenic score approximating dopamine 

signaling in 115 non-Hispanic Caucasian young adult university students. As predicted, polygenic 

dopamine scores were related to ventral striatum activity, which in turn was associated with higher 

food addiction scores. In addition, food addiction was related to BMI. An exploratory post-hoc 

path analysis further indicated that polygenic scores were indirectly related to both food addiction 

and BMI, in part, through ventral striatum activity. Collectively, our results provide evidence 

supporting the utility of food addiction in weight gain prevention research by establishing links 

with known risk-related neural and genetic biomarkers.
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As energy-dense foods have become widely available in the past decade, the prevalence of 

obesity has reached approximately 35% in U.S. adults (Flegal et al., 2012; Pi-Sunyer, 2003). 

Obesity is, in turn, increasingly recognized as a leading cause of major health complications, 

including type 2 diabetes, coronary heart disease, respiratory complications, osteoarthritis, 

and even certain forms of cancer (Kopelman, 2000). Often overlooked are the psychological 

processes associated with obesity, such as low self-esteem, chronic stress, anxiety, depressed 

affect, and diminished quality of life (Abilés et al., 2010; Faith, Matz, & Jorge, 2002; 

Kolotkin, Meter, & Williams, 2001). In fact, the prevalence of psychiatric illness, including 

eating disorders, attention deficit/hyperactivity disorder, and mood disorders, is significantly 

higher in overweight individuals (Agranat-Meged et al., 2005; McElroy et al., 2004; 

Yanovski, Nelson, Dubbert, & Spitzer, 1993). Despite growing evidence of the 

psychological and medical burden associated with obesity, few interventions using dietary 

restrictions and medications for weight loss have shown long-term effectiveness, partly due 

to weight regain and re-consumption of hyper-palatable foods following a period of highly 

restricted diet (Ayyad & Anderson, 2000; Mokdad, Marks, Stroup, & Gerberding, 2004). 

Given the current limitations of dietary interventions, prevention approaches that aim to 

identify individuals at risk of overeating prior to the onset of significant weight gain may 

hold more promise (Swinburn & Kumanyika, 2005).

Recent research suggests that food addiction, measured using a self-report questionnaire 

(Yale Food Addiction Scale; Gearhardt, Corbin, & Brownell, 2009), reflects a behavioral 

tendency to eat compulsively despite adverse consequences. Individuals with food addiction 

have higher body mass index (BMI) and body fat, greater number of unsuccessful attempts 

to control food intake, and increased emotional eating (Meule & Gearhardt, 2014; Pursey, 

Stanwell, Gearhardt, Collins, & Burrows, 2014). As a consequence of frequent hedonically-

driven eating (Lutter & Nestler, 2009), food addiction is associated with a greater likelihood 

of obesity and diet-related disease (Flint et al., 2014). This is especially problematic because 

the very foods that promote obesity (e.g., high in fat and refined carbohydrates) have greater 

hedonic value, and therefore higher addictive potential (Cocores & Gold, 2009; Schulte, 

Avena, & Gearhardt, 2015; Nantha, 2014). It is important to note, however, that the concept 

of food addiction has been controversial, given the absence of validated diagnostic 

thresholds and biochemical evidence that foods have addictive properties (Finlayson, 2017). 

Additionally, food addiction has not been established as a clinically distinct or validated 

syndrome, although it is strongly correlated with binge eating disorder (BED; Davis et al., 

2011) and other psychological traits underlying eating pathology, such as disinhibition and 

emotional eating (Mason et al., 2017; Price, Higgs, & Lee, 2015). What distinguishes food 

addiction from BED or other eating disorders are addiction-like symptoms that are directly 

derived from the DSM-IV (APA, 1994) criteria for substance dependence: the experience of 

withdrawal and tolerance as well as social and occupational impairment caused by distress 

related to food consumption or time spent acquiring, using, or recovering from excess food 

consumption (Corwin & Grigson, 2009; Ifland et al., 2009; Gearhardt et al., 2009).
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Perhaps one of the most compelling findings supporting food addiction is that both drugs of 

abuse and hyper-palatable foods elicit overlapping responses in neural circuits supporting 

goal-directed behaviors (Blumenthal & Gold, 2010; Hone-Blanchet & Fecteau, 2014). For 

example, research using functional magnetic resonance imaging (fMRI) finds that substance 

dependence is associated with greater activation of the ventral striatum (VS), a brain region 

critical for goal-directed behaviors, motivation and action, when both anticipating (Beck et 

al., 2009; Becker, Kirsch, Gerchen, Kiefer, & Kirsch, 2017; David et al., 2005; Kühn & 

Gallinat, 2011; Li et al., 2012) and receiving a monetary reward (Breiter et al., 1997). 

Alternatively, other studies have shown that more heavily addicted individuals demonstrate 

blunted VS activity to drug-related cues (e.g., Bühler et al., 2010; Luijten et al. 2017; 

Vollstädt-Klein et al., 2011). Interestingly, obese individuals exhibit similarly increased VS 

activity when viewing pictures of foods, particularly those high in calories (Stoeckel et al., 

2008). Furthermore, when individuals with higher food addiction scores view cues that 

predict consuming hyper-palatable food (i.e., chocolate milkshake), they exhibit relatively 

greater activation of the caudate, another reward processing region of the striatum 

(Gearhardt et al., 2011). Although the direction of dysfunction remains inconclusive, these 

fMRI findings suggest that aberrant VS activity may represent a shared mechanism through 

which drug and food addiction may emerge.

As a potential explanation to these patterns, Volkow et al. (2008) proposed that chronic drug 

users respond differently to non-drug and drug stimuli. One interpretation of this differential 

response is that individuals with drug addiction are less sensitive to natural rewards, and in 

order to compensate for this reduced sensitivity, turn to more powerful reinforcers, such as 

psychoactive drugs. For instance, when given monetary rewards, tobacco smokers exhibit 

reduced dopaminergic response in the VS than non-smokers (Martin-Sölch et al., 2001). 

While this finding was present in already addicted individuals, relatively diminished VS 

activity predicts future drug use in adolescents free of substance use (Büchel et al., 2017). 

Although neuroimaging studies of food addiction using general rewards are limited, Balodis 

et al. (2013) found that compared to lean healthy volunteers, those with BED show 

decreased activation of the VS and caudate when receiving non-food rewards, such as 

money.

One potential explanation for the above convergent patterns is that both food and drugs are 

primary reinforcers that engage mesolimbic dopaminergic signaling, which increases learned 

associations between these reinforcers and cues (Berridge & Robinson, 1998; Volkow, 

Wang, Fowler, & Telang, 2008). Although results are inconclusive (Karlsson et al., 2015), 

some positron emission tomography (PET) studies of addiction and obesity identify 

overlapping abnormalities characterized by reduced activity of dopamine D2 receptors in 

reward processing brain regions, including the VS, which are correlated with severity of 

substance dependence and BMI in addicted and morbidly obese participants, respectively 

(Volkow, Wang, Fowler, Tomasi, & Telang, 2011).

In the absence of direct measures of the dopaminergic system with PET, common functional 

polymorphisms in genes encoding components of dopamine signaling may be useful for 

modeling possible dopaminergic modulating of reward-related brain function in both drug 

and food addicted individuals. We have previously developed an additive polygenic score 
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representing dopamine signaling, which predicts reward-related VS activity (Nikolova et al., 

2011). Adapted versions of our original polygenic score have successfully predicted nicotine 

dependence and addiction-prone personality traits (e.g., impulsivity, neuroticism, and 

extraversion), as well as food addiction and cravings (David et al., 2013; Davis et al., 2013; 

Davis & Loxton, 2013). Additionally, individual functional variants used to create our 

polygenic scores, including the DRD2 −141C Ins/Del (rs1799732), DRD2/ANKK1 Taq1A 

(rs1800497), and the COMT Val158Met (rs4680), have been independently implicated in 

drug abuse (Doehring, Kirchhof, & Lotsch, 2009), obesity, and eating pathology (Nisoli et 

al., 2007; Stice, Spoor, Bohon, & Small, 2008; Stice, Yokum, Bohon, Marti, & Smolen, 

2010, Yilmaz, Kaplan, Zai, Levitan, & Kennedy, 2011). However, evidence for shared 

genetic influences on substance and food addiction is inconclusive (Cornelis et al., 2016), 

which underscores the need to investigate the genetic underpinnings of shared neural 

processes (i.e., reward-related VS activity), rather than the shared genetics of these two 

forms of addiction directly.

In the current study, we attempt to bring these typically parallel lines of inquiry together by 

examining associations between food addiction scores, body mass, reward-related VS 

activity, and dopamine signaling polygenic scores using data from a sample of 115 young 

adult university students who successfully completed the Duke Neurogenetics Study. Based 

on the research summarized above, we hypothesized that (1) higher food addiction scores 

would be associated with higher BMI; (2) higher food addiction scores would be associated 

with lower VS activity to monetary rewards; (3) higher dopamine signaling polygenic scores 

would be associated with higher VS activity; (4) higher dopamine signaling polygenic scores 

would be associated with higher food addiction scores and BMI; and thus (5) dopamine 

signaling polygenic scores would be indirectly related to food addiction scores and BMI.

Method

Participants

Data were derived from an initial sample of 178 non-Hispanic Caucasian participants (91 

women; mean age 19.95 ± 1.22 years) with overlapping behavioral measures and functional 

magnetic resonance imaging (fMRI) data collected through successful completion of the 

Duke Neurogenetics Study, which assessed a range of behavioral and biological traits among 

young adult, university students. Of these 178 participants, high quality fMRI data were 

available for 165 (see BOLD fMRI data pre-processing procedures below) and genotyping 

data for 115 (see imputation section below). The Duke Neurogenetics Study was approved 

by the Duke University School of Medicine Institutional Review Board, and all participants 

provided written informed consent prior to participation. All participants were in good 

general health and free of the following exclusion criteria: (1) medical diagnoses of cancer, 

stroke, diabetes requiring insulin treatment, chronic kidney or liver disease, or lifetime 

history of psychotic symptoms; (2) use of psychotropic, glucocorticoid, or hypolipidemic 

medication; and (3) conditions affecting cerebral blood flow and metabolism (e.g., 

hypertension).

As the Duke Neurogenetics Study seeks to examine the broad distribution of dimensional 

behavioral and biological variables, any past or current DSM-IV Axis I disorder or select 
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Axis II disorders (antisocial personality disorder and borderline personality disorder) was 

not an exclusion to participation. However, no individuals, regardless of diagnosis, were 

taking any psychoactive medication during or at least 14 days prior to their participation. 

Categorical diagnosis was assessed with the electronic Mini International Neuropsychiatric 

Interview (Lecrubier et al., 1997) and Structured Clinical Interview for the DSM-IV subtests 

(First et al., 1995). Of the 165 participants included in our analyses, 40 individuals had at 

least one DSM-IV diagnosis, including 19 with alcohol use disorders, 8 with non-alcohol 

substance use disorders, 9 with major depressive disorders, 3 with bipolar disorders, 9 with 

panic disorder (no agoraphobia), 4 with panic disorder including agoraphobia, 2 with social 

anxiety disorder, 1 with generalized anxiety disorder, 1 with obsessive compulsive disorder, 

1 with eating disorders, and 0 with posttraumatic stress disorder.

Self-reported Food Addiction

The Modified Yale Food Addiction Scale (mYFAS; Flint et al., 2014) is a 9-item, shortened 

version of the YFAS, which assesses food addiction based on the diagnostic criteria for 

substance dependence by assessing the frequency of food-seeking behaviors and the 

associated social and occupational impairments (Gearhardt et al., 2009). According to Flint 

et al. (2014), the prevalence rates and validity indices of mYFAS scores were comparable to 

those found using the full version (Gearhardt et al., 2009). Inasmuch as the majority of our 

sample did not meet the clinical criteria for food addiction, we adapted a new algorithm to 

score food addiction dimensionally to maximize variability in the measure and reduce 

skewness and kurtosis; that is, instead of assigning a score of 1 for each item for which the 

frequency of the FA symptom was “4 or more times per week” we assigned 0 = “never,” 1 = 

“once a month,” 2 = “2–4 times per month,” 3 = “2–3 times per week,” 4 = “4 or more.” For 

items regarding emotional distress caused by eating (e.g., “I kept consuming the same types 

or amounts of food despite significant emotional and/or physical problems related to my 

eating”) and tolerance (e.g., “Eating the same amount of food does not reduce negative 

emotions or increase pleasurable feelings the way it used to”), an additional point was 

assigned if the participant responded “yes,” which is consistent with the traditional scoring 

method. The sum of all scores from each question was employed, with a possible range from 

0 to 22 (α = 0.82). This new scoring algorithm resulted in improved skewness of 0.460 (SE 

= 0.189) and kurtosis of −0.398 (SE = 0.376) compared to a symptom count scoring 

procedure (skewness = 2.402, SE = 0.189; kurtosis = 5.908, SE = 0.376; see Supplemental 

Figure 1 for histograms of these two scoring algorithms). The mYFAS scores resulting from 

this new scoring algorithm were strongly correlated with the total food addiction symptom 

count (r = .683) and were more strongly related to BMI (r = .257) than the total symptom 

count (r = .186).

Ventral Striatum Activity Paradigm

As described previously (Forbes et al. 2009), our blocked-design number-guessing paradigm 

consists of a pseudorandom presentation of three blocks of predominantly positive feedback 

(80% correct guess), three blocks of predominantly negative feedback (20% correct guess) 

and three control blocks. There are five trials, each with 3 seconds to guess, via button press, 

whether the value of a visually presented card is lower or higher than 5 (index and middle 

finger, respectively). The numerical value of the card is then presented for 500 milliseconds 
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and followed by appropriate feedback (green upward-facing arrow for positive feedback; red 

downward-facing arrow for negative feedback) for an additional 500 milliseconds. A 

crosshair is then presented for 3 seconds, for a total trial length of 7 seconds. Each block 

comprises five trials, with three blocks each of predominantly positive feedback (80% 

correct) and three of predominantly negative feedback (20% correct) interleaved with three 

control blocks. During control blocks, participants are instructed to simply make button 

presses during the presentation of an “x” (3 seconds), which is followed by an asterisk (500 

milliseconds) and a yellow circle (500 milliseconds). Each block is preceded by an 

instruction of “Guess Number” (positive or negative feedback blocks) or “Press Button” 

(control blocks) for 2 seconds resulting in a total block length of 38 seconds and a total task 

length of 342 seconds. Participants were unaware of the fixed outcome probabilities 

associated with each block and were led to believe that their performance would determine a 

net monetary gain at the end of the scanning session. Instead, all participants received $10. 

We included one incongruent trial within each task block (e.g., one of five trials during 

positive feedback blocks was incorrect resulting in negative feedback) to prevent participants 

from anticipating the feedback for each trial and to maintain participants’ engagement and 

motivation to perform well.

BOLD fMRI Data Acquisition

Each participant was scanned using one of two identical research-dedicated GE MR750 3T 

scanners equipped with high-power high-duty-cycle 50-mT/m gradients at 200 T/m/s slew 

rate, and an eight-channel head coil for parallel imaging at high bandwidth up to 1MHz at 

the Duke-UNC Brain Imaging and Analysis Center. A semi-automated high-order shimming 

program was used to ensure global field homogeneity. A series of 34 interleaved axial 

functional slices aligned with the anterior commissure-posterior commissure plane were 

acquired for full-brain coverage using an inverse-spiral pulse sequence to reduce 

susceptibility artifacts (TR/TE/flip angle = 2000 ms/30 ms/60°; FOV = 240mm; 

3.75×3.75×4mm voxels; interslice skip = 0). Four initial radiofrequency excitations were 

performed (and discarded) to achieve steady-state equilibrium. To allow for spatial 

registration of each participant’s data to a standard coordinate system, high-resolution three-

dimensional structural images were acquired in 34 axial slices coplanar with the functional 

scans (TR/TE/flip angle = 7.7 s/3.0 ms/12°; voxel size = 0.9×0.9×4mm; FOV = 240mm, 

interslice skip = 0).

BOLD fMRI Data Pre-processing

Preprocessing was conducted using SPM8 (www.fil.ion.ucl.ac.uk/spm). Images for each 

participant were realigned to the first volume in the time series to correct for head motion, 

spatially normalized into a standard stereotactic space (Montreal Neurological Institute 

template) using a 12-parameter affine model (final resolution of functional images = 2mm 

isotropic voxels), and smoothed to minimize noise and residual difference in gyral anatomy 

with a Gaussian filter, set at 6-mm full-width at half-maximum. Voxel-wise signal intensities 

were ratio normalized to the whole-brain global mean. The Artifact Recognition Toolbox 

(https://www.nitrc.org/projects/artifact_detect) was used to determine variability in single-

subject whole-brain functional volumes. Individual whole-brain BOLD fMRI volumes 

meeting at least one of two criteria were included as nuisance regressors in determination of 
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task-specific effects: (1) significant mean-volume signal intensity variation (i.e. within 

volume mean signal greater or less than 4 SD of mean signal of all volumes in time series) 

and (2) individual volumes where scan-to-scan movement exceeded 2mm translation or 2° 

rotation in any direction.

fMRI Quality Assurance Criteria

Quality control criteria for inclusion of a participant’s imaging data were: <5% volumes 

exceed artifact detection criteria for motion or signal intensity outliers and ≥90% coverage 

of signal within 5mm bilateral ventral striatum spheres centered at (±12, 10, −10). 

Additionally, data were only included in further analyses if the participant demonstrated 

sufficient engagement with the task, defined as responding to and receiving positive or 

negative feedback on at least 60% of trials within win and loss blocks, respectively. Imaging 

data for 13 out of the 178 non-Hispanic Caucasian DNS participants who completed the 

mYFAS were excluded based on the above criteria, resulting in a total of 165 participants 

with high quality imaging data available for subsequent analyses.

BOLD fMRI Data Analysis

The general linear model of SPM8 (http://www.fil.ion.ucl.ac.uk/spm) was used to conduct 

fMRI data analyses. After preprocessing, linear contrasts using canonical hemodynamic 

response functions were used to estimate condition-specific (i.e., positive > negative 

feedback) BOLD responses for each individual and paradigm. These individual contrast 

images (i.e., weighted sum of the beta images) were then used in second-level random-

effects models to determine mean condition-specific neural reactivity using one-sample t-
tests with a voxel-level statistical threshold of p < .05, familywise error (FWE) corrected for 

multiple comparisons across the entire search volume. Contrast estimates were then 

extracted from the peak activation voxel (MNI coordinates: x = ±12, y = 12, and z = −10) 

exhibiting a main effect of task using the above threshold within the left and right 

hemispheres of the anatomically defined VS ROI. The VS ROI was constructed using the 

Talairach Daemon option of the WFU PickAtlas Tool v2.4. BOLD parameter estimates 

exhibiting a main effect of contrast (e.g., positive > negative feedback) were extracted from 

the VS ROIs using the volume of interest (VOI) tool in SPM8 and used in our primary 

analyses described below.

Genotyping

DNA was isolated from saliva derived from Oragene DNA self-collection kits (DNA 

Genotek) customized for 23andMe (www.23andme.com). DNA extraction and genotyping 

were performed through 23andMe by the National Genetics Institute (NGI), a CLIA-

certified clinical laboratory and subsidiary of Laboratory Corporation of America. One of 

two different Illumina arrays with custom content was used to provide genome-wide SNP 

data, the HumanOmniExpress or HumanOmniExpress-24 (Eriksson et al., 2010; Do et al., 

2011; Tung et al., 2011; Hu et al., 2016).
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Imputation

Genotype imputation was performed on all DNS participants with genome-wide chip data 

using the prephasing/imputation stepwise approach implemented in SHAPEIT/IMPUTE2 

(Howie et al., 2011; Delaneau et al., 2012). Imputation was run separately for participants 

genotyped on the Illumina HumanOmniExpress and the Illumina HumanOmniExpress-24 

arrays using biallelic SNPs only, the default value for effective size of the population 

(20,000), and chunk sizes of 3 Mb and 5 Mb for the respective arrays. Within each array 

batch, genotyped SNPs used for imputation were required to have missingness < 2%, Hardy-

Weinberg equilibrium p > 10−6, and minor allele frequency >.01. The imputation reference 

set consisted of 2504 phased haplotypes from the full 1000 Genomes Project Phase 3 data 

set (May 2013, >70 million variants, release “v5a”). Imputed SNPs were retained if they had 

high imputation quality (Info >.9), low missingness (<5%), and minor allele frequency >.01. 

Of the 165 participants with high quality imaging data, imputed DRD2 −141C Ins/Del 

(rs1799732) data were excluded in 50 participants due to failing to meet these criteria.

Dopamine Polygenic Scores

Three of the five dopamine gene polymorphisms found by Nikolova et al. (2011) to predict 

ventral striatum activity were used to generate polygenic scores in the current analyses: 

DRD2 −141C Ins/Del (rs1799732), COMT Val158Met (rs4680), and DRD2 Taq1A 

(rs1800497). In our sample of 115 participants, there were 30 participants who were Del 

carriers and 85 Ins/Ins homozygotes for −141C Ins/Del; 26 participants homozygous for the 

Met allele, 37 for the Val allele, and 52 heterozygotes for Val158Met; 72 participants 

homozygous for the C allele, 3 for the T allele and 40 heterozygotes for Taq1A. All 

polymorphisms were in Hardy-Weinberg Equilibrium (genotype frequencies for each locus 

with associated X2 test p-values, are summarized in Supplemental Table 1).

According to Nikolova et al. (2011), genotypes that are associated with relatively higher 

dopamine signaling were assigned a score of 1; those with intermediate signaling were 

assigned a score of 0.5; those with lower signaling were assigned a score of 0 (Supplemental 

Table 2). For the DRD2 −141C Ins/Del polymorphism, Del carriers (Del+), who have been 

associated with increased dopamine signaling, were given a score of 1, and Ins/Ins 

homozygotes were given a score of 0. For the COMT Val158Met polymorphism, Met/Met 

homozygotes were given a score of 1 (high), Val/Met heterozygotes were given a score of 

0.5 (intermediate), and Val/Val homozygotes were given a score of 0 (low). For the DRD2 
Taq1A polymorphism, C/C homozygotes were given a score of 1 (high), C/T heterozygotes 

were given a score of 0.5 (intermediate), and T/T homozygotes were given a score of 0 

(low). The polygenic score for each participant was the sum of the score at each locus, with 

a range from 0 to 3 (1.51 ± 0.68).

Statistical Analyses

Descriptive statistics were calculated for all measures and are displayed in Table 1. In our 

sample, the mean BMI was 23.44 (SD = ± 3.22). According to World Health Organization 

Criteria, 44 participants were classified as overweight/obese (BMI ≥ 25.00), 115 participants 

as normal (BMI between 18.5 and 25.00), and 6 participants as underweight (BMI <18.5). 

Table 1 also shows that there are no significant differences in any of the variables included in 
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subsequent analyses among participants with and without polygenic scores. We also 

examined the bivariate associations among polygenic scores, right and left VS activity, 

mYFAS scores, BMI and all control variables (Table 2). Control variables included sex, age, 

and the top two ancestry principal components, which were computed using 

multidimensional scaling (MDS; i.e., no individuals were ±6 SDs from the mean on the top 

10 components) in PLINK (Purcell et al., 2007).

We conducted exploratory post-hoc path analyses with robust standard errors using the 

program Mplus (Muthén & Muthén, 2010). Based on both the results from the correlations 

and our hypotheses, we tested whether dopamine polygenic scores and BMI were indirectly 

related via the path through reward-related VS activity and mYFAS scores. Direct and 

indirect effects were computed using bias-corrected bootstrapping procedures with 5,000 

samples (MacKinnon, Lockwood, & Williams, 2004). Standard methods for assessing 

goodness of fit were used, including the maximum likelihood goodness-of-fit chi-square test 

(p > .05), the comparative fit index (CFI > .95), the standardized root mean square residual 

(SRMR<0.05), and the root mean square error of approximation (RMSEA < .08) (Kline, 

2011). We used full information maximum likelihood to estimate missing PGS scores for the 

30% of the sample who did not have data available. This procedure is recommended when 

data are missing at random (Enders, 2010), a condition that was likely given that there were 

no demographic differences between participants with or without polygenic scores (see 

Table 1). We also conducted the path analyses excluding the 50 participants who did not 

have genetic data available to ensure that our results were not driven by any biases 

introduced by imputing missing scores.

Results

Simple Correlations

Consistent with our prior work (Nikolova et al., 2011), there was a significant positive 

correlation between dopamine signaling polygenic scores and reward-related activity in the 

right VS (see Table 2); however polygenic scores were not significantly associated with left 

VS activity, mYFAS scores, or BMI. There was a significant negative correlation between 

mYFAS scores and right but not left VS activity. Women had higher mYFAS scores, but 

mYFAS scores were positively correlated with BMI across men and women. BMI was not 

significantly associated with polygenic scores or VS activity in either hemisphere.

Exploratory Post-Hoc Indirect Path Model

Based on the results from the correlations described above, only right VS activity was 

included in the path model, given that polygenic scores, mYFAS scores, and BMI all were 

unrelated to left VS activity. The correlation between sex and mYFAS scores was added to 

the model, given the relatively strong bivariate relation between these variables (r = 0.43). 

Correlations also were added between polygenic scores and sex and ancestry MDS 

components.

The model with a path from dopamine signaling polygenic scores to right reward-related VS 

activity to mYFAS scores to BMI demonstrated overall good fit (X2(11) = 11.352, p = 
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0.414; CFI = 0.993; TLI = 0.988; RMSEA = 0.014; SRMR = 0.042; see Table 3). Within the 

full model, the polygenic scores positively predicted right VS activity (βPGS→VS = 0.219, 

95% CI [0.026, 0.406]), which, negatively predicted mYFAS scores (βVS→mYFAS = −0.211, 

95% CI [−0.339, −0.108]), which, in turn, positively predicted BMI (βmYFAS→BMI = 0.256, 

95% CI [0.095, 0.407]). The resulting indirect pathway from polygenic scores to BMI was 

significant (βPGS→BMI = −0.0012, 95% CI [−0.042, −0.002], Figure 1). Similarly, the 

indirect pathway from polygenic scores to mYFAS scores through right VS activity was 

significant as well (βPGS→mYFAS = −0.046, 95% CI [−0.123, −0.007]. The direct path 

between polygenic scores and BMI (βPGS→BMI = −0.079, 95% CI [−0.250, 0.119]) as well 

as polygenic scores and mYFAS scores were not significant (βPGS→mYFAS = 0.062, 95% CI 

[−0.129, 0.245]). When using listwise deletion (N = 115), the path model continued to 

demonstrate a good fit (X2(18) = 16.672, p = 0.546; CFI = 1.000; TLI = 1.068; RMSEA = 

0.000; SRMR = 0.056). The indirect pathways from polygenic scores to right VS activity to 

mYFAS and polygenic scores to right VS activity to mYFAS to BMI also were significant in 

the smaller sample (see Supplemental Table 3 and Figure 3). The pathways from polygenic 

scores to mYFAS to BMI and polygenic scores to right VS activity to BMI were non-

significant in the smaller sample.

Discussion

The overarching goal of this study was to examine a possible biological pathway through 

which prior risk-related genetic and neural phenotypes may be associated with an 

individual’s propensity for food addiction and, ultimately, likelihood for obesity. Consistent 

with the pattern of hypothesized simple inter-correlations between our individual variables 

of interest, a path model revealed that higher polygenic scores approximating dopamine 

signaling in vivo predicted higher food addiction symptoms and, ultimately, BMI via 

relatively blunted reward-related activity of the ventral striatum. Identifying these novel 

links with known risk-related neural and genetic biomarkers adds to existing findings 

supporting the utility of food addiction in obesity research.

Broadly, the results replicate our prior finding that the additive effect of individual alleles 

associated with relatively increased dopamine signaling map onto increased reward-related 

VS activity (Nikolova et al., 2011). However, in contrast to previous findings from fMRI 

studies of food addiction (Gearhardt et al, 2011; Stice et al., 2011), our analyses revealed 

that VS activity and food addiction were inversely correlated. This difference may be partly 

attributed to the different nature of the study samples. Prior work in food addiction, as well 

as in obesity, has focused on participants who were obese or diagnosed with binge eating 

disorder (Davis et al., 2011). However, relative to the national average BMI of 28.7 (Flegal 

et al., 2012), our sample consisted of lean healthy adults with an average BMI of 23.55 

± 3.44, and only six participants met diagnostic criteria for clinically significant food 

addiction.

Moreover, unlike previous studies in which the fMRI task specifically targeted response to 

food-related stimuli, such as images of food (Pelchat et al., 2004) and hyper-palatable food 

consumption (Gearhardt et al., 2011), our VS activity is associated with more general reward 

processing response to positive versus negative feedback within a monetary incentive 
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paradigm. Notably, in a sample of lean participants, a similar polygenic score for dopamine 

signaling was negatively correlated to neural response to food reward (e.g., low dopamine 

signaling and greater response in reward-related regions), but positively to monetary reward 

(e.g., low dopamine signaling and blunted striatal response), emphasizing the critical role for 

the specific form of reward in neuroimaging studies of eating behaviors (Stice, Yokum, 

Burger, Epstein, & Smolen, 2012). To this end, conflicting patterns of results (e.g., hyper- 

and hypo-activation of the same regions) are commonly reported in substance addiction, and 

are often attributed to differences in fMRI tasks and clinical or demographic factors 

(Limbrick-Oldfield, van Holst, & Clark, 2013).

Because our sample consisted of largely lean healthy young adults, and most participants 

exhibited relatively low mYFAS scores, the majority of our sample did not meet the clinical 

threshold for food addiction. Although we were able to adapt the YFAS with a new 

dimensional scoring algorithm to capture a wider range of symptoms, given that only six 

participants met the diagnostic criteria for food addiction, our results should be interpreted 

with caution. Nevertheless, our results indicate that emerging symptoms of food addiction 

and risk for obesity may have identifiable biological correlates in lean individuals. Given 

that reward-seeking behaviors become compulsive only after a prolonged period of self-

administration (Vanderschuren & Everitt, 2004), such risk-related biomarkers that predict 

subclinical symptoms of food addiction may inform increasing efforts for early identification 

and prevention approaches to weight gain and obesity.

Of course, our work is not without limitations that can be addressed in future research. First, 

our polygenic score assumes equal magnitude of effect for each locus on dopamine 

signaling, and models employing weighted effects may better capture the putative variability 

in dopamine signaling associated with the polygenic score. A reliable basis for such 

weighting, however, is not yet available. Second, reduced neural sensitivity to reward has 

been proposed as a consequence of overeating and weight gain (Stice, Yokum, Blum, & 

Bohon & 2010), and given the cross-sectional design of our study, it is difficult to conclude 

the extent to which the observed differences in VS activity are preexisting or acquired. 

Third, it is unclear whether the associations between dopamine signaling, food addiction, 

BMI, and VS activity are driven by either anticipating or receiving a reward given that our 

blocked-design does not allow for the separation of VS activity during those stages of 

reward processing. Future research should examine this question. Finally, relatively blunted 

reward responsiveness influences not only eating but multiple behavioral domains, such as 

affective state and the general ability to experience pleasure. Several studies suggest that 

hedonically-driven eating is a common method of self-medication in response to negative 

affect (Davis, Strachan, & Berkson, 2004; Macht, 2008). In fact, food addiction has been 

found to be closely associated with emotional eating, perhaps due to the “comforting” effect 

of palatable foods (Miller-Matero et al., 2014; Parylak, Koob, & Zorilla, 2001), and one 

study has reported that anxiety and depression were stronger predictors of food addiction 

than BMI (Miller-Matero et al., 2014). Therefore, it will be important to disentangle 

components of food addiction that are driven by addiction-like behavior and affective state 

for future research.
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Figure 1. 
Exploratory post-hoc path analysis model showing the association between dopamine 

signaling polygenic scores (PGS) and food addiction and body mass index (BMI) through 

right VS reward-related activity. Standardized regression coefficients are shown. The direct 

effect is reported along the lower path. * p < .05; ** p < .01. 95% bias corrected confidence 

intervals (CI) are shown in brackets. N=165.
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Table 1.

Descriptive Statistics of Measures Included in Analyses and Test of Differences Between Participants With 

and Without Dopamine Signaling Polygenic Scores.

PGS Present (N=115) PGS Absent (N=50) P-Value Full Sample (N=165)

Measures Min Max Mean Std. Dev. Min Max Mean Std. Dev. T-test Min Max Mean Std. Dev

Age 18 22 19.86 1.18 18 22 20.16 1.30 0.15 18 22 19.95 1.22

BMI 17.48 43.38 23.55 3.44 18.73 29.82 23.18 2.67 0.50 17.48 43.38 23.44 3.22

mYFAS 0 16 5.71 3.74 0 13 5.92 3.57 0.74 0 16 5.78 3.68

Right VS −0.45 0.44 0.07 0.16 −0.48 0.74 0.09 0.20 0.50 −0.48 0.74 0.07 0.17

Left VS −0.24 1.12 0.09 0.17 −0.18 0.43 0.08 0.13 0.55 −0.24 1.12 0.09 0.16

PGS 0 3 1.51 0.68

% Sample % Sample X2 % Sample

Sex

 Male 43.5 48.0 0.59 44.8

 Female 56.5 52.0 55.2

Note. “PGS Present” refers to the 115 participants without missing PGS data. “PGS Absent” refers to the 50 participants with missing PGS data. 
“Full Sample” refers to the 165 participants with and without missing PGS data. The P-value column refers to independent samples t- and chi-
square tests that compare differences between the PGS present (N=115) and PGS absent (N=50) samples on measures included in subsequent 
analyses. BMI = body mass index; mYFAS = Modified Yale Food Addiction Scale; VS = ventral striatum; PGS = polygenic scores.
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Table 2.

Inter-Correlations Among All Measures.

PGS Right VS Left VS mYFAS BMI Sex Age C1 C2

PGS 1

Right VS 0.230* 1

Left VS −0.008 −0.456*** 1

mYFAS 0.083 −0.204** −0.020 1

BMI −0.068 −0.101 0.024 0.257** 1

Sex 0.160 −0.019 −0.026 0.420*** −0.003 1

Age −0.003 −0.055 −0.001 −0.071 0.155* 0.004 1

C1 −0.162 0.030 0.067 −0.166* 0.018 −0.040 0.027 1

C2 0.029 −0.081 −0.084 0.065 0.012 −0.053 −0.051 −0.053 1

Note. Pearson’s r is reported in each cell. All correlations with PGS include N=115. All other correlations include N=165. PGS = polygenic scores; 
VS = ventral striatum; mYFAS = Modified Yale Food Addiction Scale; BMI = body mass index; C1 = MDS ancestry principal component 1; C2 = 
MDS ancestry principal component 2.

*
p < .05

**
p < .01

***
p < .001.
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Table 3.

Goodness of Fit Indices and Standardized Weights of Direct and Indirect Paths of the Model.

Path Estimate 95% CI

Correlation

s PGSTM

Sex 0.140 (−0.047, 0.316)

 C1 −0.129 (−0.295, 0.080)

 C2 0.013 (−0.180, 0.210)

Direct

PGS →

 RVS 0.219 (0.026, 0.406)

 mYFAS 0.062 (−0.129, 0.245)

 BMI −0.079 (−0.250, 0.119)

RVS →

 YFAS −0.211 (−0.339, −0.087)

 BMI −0.031 (−0.166, 0.110)

mYFAS →

 BMI 0.256 (0.095, 0.407)

 Sex 0.409 (0.262, 0.531)

Indirect

 PGS → mYFAS → BMI 0.016 (−0.025, 0.083)

 PGS → RVS → BMI −0.007 (−0.054, 0.019)

 PGS → RVS → mYFAS −0.046 (−0.123, −0.007)

 PGS → RVS → mYFAS → BMI −0.012 (−0.042, −0.002)

X2/df 11.352/11

CFI 0.993

TLI 0.988

RMSEA (90% CI) 0.014 (0.00, 0.084)

SRMR 0.042

Note. CI = confidence interval; PGS = polygenic scores; RVS = Right ventral striatum; mYFAS = Modified Yale Food Addiction Scale; BMI = 
body mass index; C1 = MDS ancestry principal component 1; C2 = MDS ancestry principal component 2; df = degrees of freedom; CFI = 
Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = root mean square error of approximation; SRMR = standardized root mean square 
residual.
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