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Abstract

Herein we report a dearomative syn-1,4-diamination protocol using simple nonactivated arenes 

and amines. This one-pot method utilizes arene–arenophile para-cycloadducts, formed via visible-

lightmediated [4+2]-photocycloaddition that undergoes formal allylic substitution with amine 

nucleophiles under Pdcatalysis. The products are obtained with exclusive syn-1,4-selectivity; the 

method permits enantioselective desymmetrization of naphthalene, as well as elaborations of 

amine-containing drug molecules. Furthermore, the resulting unsaturated products are amenable to 

numerous options for diversification. Overall, this novel dearomative functionalization strategy 

offers rapid and straightforward access to complex building blocks, which are difficult to prepare 

otherwise, from simple arenes.

Dearomatization represents one of the most prominent and effective complexity-generating 

strategies,1 as it directly converts aromatic building blocks into functionalized, high-value 

added compounds.2 In addition to the venerable Birch reduction3 and dearomative oxidation 

of phenols,4 the field has witnessed numerous developments in recent years, mainly in the 

area of stoichiometric transition-metal-mediated dearomatizations5 and catalytic 

dearomative elaborations of phenols and heterocycles.6 However, such transformations 

involving nonactivated arenes are widely underdeveloped and catalytic methods that result in 

concomitant introduction of functionality are particularly scarce.7

Recently, we have reported several dearomative functionalization methods using small 

organic molecules called arenophiles,8 such as N-methyl-1,2,4-triazoline-3,5-dione (MTAD, 

1), which can undergo visible-light-mediated para-cycloaddition with simple arenes (Figure 

1a).9 The resulting arene–arenophile bicycles of type I provide ample opportunities for 

subsequent in situ catalytic functionalizations, as demonstrated with Pd- and Ni-catalyzed 

dearomative carboaminations.10 These transformations enable the direct introduction of 
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multiple functionalities onto the arene, displaying a high degree of atom, step, and redox 

economy11 compared to the traditional approaches needed for preparation of such products. 

Consequently, we have been interested in extending the scope of these catalytic processes, 

anticipating that the arenophile-mediated dearomative functionalization would also be 

feasible beyond carbon nucleophiles. Specifically, we postulated that the intermediate 

allylpalladium species (II) would be electrophilic enough to react with other nucleophiles,12 

such as neutral amines, to provide syn-1,4-aminofunctionalized unsaturated products.13

Syn-1,4-cyclohexanediamines are important structural motifs that exist in many natural 

products and biologically active compounds, as exemplified by aminoglycoside antibiotic 

astromicin (2),14 VLA-4 antagonist tetrahydrobenzoquinoline 3,15 or fungicidal 

carboxamide 416 (Figure 1b). Despite their abundance, preparation of decorated syn-1,4-

cyclohexanediamines is not straightforward; thus, a more general and efficient strategy is 

needed for the synthesis of these compounds.17 Herein, we disclose a conceptually different 

approach to syn-1,4-cyclohexanediamine derivatives based on the dearomative 1,4-

diamination of arenes. This process involves arenophile-mediated photochemical para-

cycloaddition and subsequent palladium-catalyzed ring-opening of the resulting 

cycloadducts with amines (Figure 1a). A range of simple arenes and amines provided 

products with exclusive syn-1,4-selectivity, and high enantioselectivity was achieved in the 

case of naphthalene. The dearomatized products contain multiple handles amenable to 

further derivatizations and functional group interconversions, providing rapid access to a 

diverse set of highly functionalized molecules. Finally, this dearomatization process was 

used for structural elaboration of memantine, a drug that is used to treat Alzheimer’s 

disease.

Our preliminary investigations commenced with exposure of a cold solution of naphthalene 

(5) and MTAD (1) to visible light, followed by the addition of amine and Pd catalysts in 

THF and subsequent warming of the reaction mixture to 0 °C (Table 1). Thus, using CH2Cl2 

as the solvent and Pd2(dba)3/PPh3 as the catalysts, product 7a was obtained in 52% yield 

and as a single constitutional and diastereoisomer (entry 1). Importantly, this initial result 

demonstrated the feasibility of catalytic dearomative syn-1,4-diamination. Next, we turned 

our attention toward the evaluation of reaction parameters (see Supporting Information for 

full details). Probing the steric and electronic properties of monodentate phosphines, 

exemplified by PPhCy2, P(o-MeC6H4)3, and P(p-MeOC6H4)3 (entries 2–4), as well as using 

bidentate dppf (entry 5), typically used in allylic substitution reactions, did not increase the 

yield of the desired product. Use of an alternative Pd source (entries 6 and 7) revealed that 

Pd(PPh3)4 gave a slight increase in efficiency. However, in all cases a significant amount of 

unreacted MTAD-naphthalene cycloadduct was observed after analyzing the crude reaction 

mixtures. In order to improve conversion, we kept the temperature of the ring-opening step 

at −20 °C and used longer reaction times, which proved highly beneficial for product 

formation (entries 8–10).18 Finally, using this procedure with EtOAc as the solvent provided 

the highest yield of product (62%, entry 10).

With optimized conditions in hand (Table 1, entry 10), we examined the amine scope for this 

protocol using naphthalene (5) and benzene (6, Table 2). Aside from methylbenzylamine 

(7a), other acyclic secondary amines proved to be viable nucleophiles, as exemplified with 
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dimethylamine (7b) and diethylamine (7c), which gave products with similar yields. 

Moreover, cyclic secondary amines, such as pyrrolidine, piperidine, morpholine, and N-

methylpiperazine, were good substrates for this transformation as well (7d–7h). In addition 

to naphthalene (5), benzene (6) also showed the desired reactivity, delivering products 8a–8d 
with a representative set of linear (8a and 8b) and cyclic (8c and 8d) secondary amines. 

Next, we explored the dearomative diamination process with primary amines as substrates 

and observed significant erosion in yields using Pd(PPh3)4 as the catalyst. Gratifyingly, after 

performing an additional screen, we found that changing the catalyst to Pd2(dba)3/dppf 

(2.5/6.0 mol %) greatly improved efficiency for these substrates. Thus, the reaction of 

naphthalene (5) with a range of aliphatic amines, such as linear propyl-, pentyl-, and 

benzylamine (7i–7k), or branched isopropyl-, cyclohexyl-, and tert-butylamine (7l–7n), all 

gave products in good yields. Notably, this dearomative difunctionalization is mild enough 

to tolerate a variety of functionality as demonstrated with products derived from amines 

incorporating alkene (7o), silyl-protected alcohol (7p), and ester groups (7h and 7q). We 

also tested the scalability of this transformation by conducting dearomative 

difunctionalization of naphthalene with propylamine on a gram scale; accordingly, we 

obtained 7i in 74% yield on an 8.8 mmol scale. Finally, benzene (6) reacted successfully 

with primary amines, albeit slightly lower yields of products 8e–8h were obtained compared 

to naphthalene. Throughout these experiments, disubstituted products are formed as single 

diastereo- and constitutional isomers (see Table 2 for representative X-ray structures of 7a, 

8d, 7i, and 8f).

We next investigated the scope of arenes using propylamine as an amine source (Table 3). 

While benzene worked well (Table 2, insets), substituted mononuclear analogs proved to be 

unproductive substrates for this reaction. On the other hand, polynuclear arenes delivered 

desired products 10a–10d. In the case of 10b–10e, mixtures of constitutional isomers were 

observed, resulting from the lack of regioselectivity in opening the nonsymmetrical arene–

arenophile cycloadducts.19 Additionally, polynuclear heteroarenes were also amenable to 

dearomative syn-1,4-diaminofunctionalization, providing products 10e–10h. Compared to 

arene-derived products 10a–10d, these heteroarene-based compounds were obtained with 

noticeably higher selectivities. In all cases, dearomative cycloaddition with polynuclear 

arenes proceeded in a highly site-selective manner; functionalization was observed only at 

the terminal, nonsubstituted ring.

We then focused on providing an enantioselective variant of this transformation for the 

arene–arenophile cycloadducts that are amenable to desymmetrization (Table 4). 

Accordingly, we screened chiral ligands that could enable asymmetric diamination of 

naphthalene, and observed high enantioselectivities with Pd2(dba)3 and (S,Sp)-tBu-

Phosferrox (2.5/6.0 mol %). Using this protocol, a representative collection of amine–

naphthalene adducts were obtained from secondary (7e and 7f) and primary amines (7i, 7l, 
and 7m) with selectivities ranging from 97:3 to 99:1 er.

The dearomative elaboration described herein can serve as an entry point for rapid molecular 

diversification and structural elaboration of amine-containing drugs (Figure 2). For example, 

representative product 7i encompasses several handles for further functionalization (Figure 

2a). Accordingly, the corresponding unsaturated amines 11 and 12, saturated amine 13, 
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aminoketone 14, and differentially substituted diamine 15 were obtained from 7i in one to 

three steps.20 We were also interested in probing this dearomative diamination protocol as a 

tool for diversification of medicinally relevant amines (Figure 2b). Thus, memantine (16), an 

FDA-approved drug used for the treatment of dementia associated with Alzheimer’s disease, 

was further elaborated with naphthalene. Using our standard conditions (see Table 2), 

dearomatized product 7r was obtained in 66% yield. Moreover, in one to three steps, this 

intermediate was further diversified to alkene 17, saturated ketone 18, and diaminodiol 19, 

showcasing the diverse functionalization opportunities this chemistry provides.

In summary, we have reported a dearomative diamination strategy. This process involves 

visible-light-mediated para-cycloaddition of arenes with an arenophile and subsequent Pd-

catalyzed ring-opening of the resulting cycloadducts with amines as nucleophiles. A variety 

of amines and arenes provided products with exclusive syn-1,4-selectivity, and high 

enantioselectivity was observed for the desymmetrization of naphthalene. The corresponding 

dearomatized products offered unique access to functionalized small molecules, as they 

contained unsaturation and the arenophile motif, which could be used for further 

manipulations. The synthetic value of this method has also been demonstrated by rapid and 

selective elaboration of memantine, an anti-Alzheimer drug, into new analogs. Finally, from 

a practical perspective, it is noteworthy that this dearomatization protocol could be 

conducted on a gram scale without significant loss of efficiency. Further studies regarding 

scope and utility, as well as the development of related transformations and applications of 

this method, are ongoing and will be reported in due course.
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Figure 1. 
(a) Pd-catalyzed dearomative syn-1,4-diamination (this work). (b) Examples of biologically 

active compounds that feature a syn-1,4-cyclohexanediamine motif.
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Figure 2. 
(a) Diversification of product 7i. (b) Elaboration of anti-Alzheimer drug memantine (16). 

Reagents and conditions: (a) Li, NH3, 60%; (b) (i) H2, Rh/Al2O3 (cat.), 83%; (ii) HCl, 48%; 

(c) (i) H2, Rh/Al2O3 (cat.), 83%; (ii) Li, NH3, 71%; (d) (i) H2, Rh/Al2O3 (cat.), 83%; (ii) 

tBuOCl, 50%; (e) (i) Boc2O; then NaOMe 79%; (ii) PhCOCH2Br, K2CO3, 81%; (iii) KOH, 

64%; (f) Li, NH3, 64%; (g) H2, Rh/Al2O3 (cat.), 57%; (ii) tBuOCl, 80%; (h) (i) 

PhCOCH2Br, K2CO3, 71%; (ii) OsO4 (cat.), NMO, 80%; (iii) KOH, 58%.
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Table 1.

Optimization of Reaction Conditions
a

entry [Pd] source (mol %) solvent solvent temp (°C) time (h) yield (%)
b

1 Pd2(dba)3/PPh3 (2.5/6) CH2Cl2 −50 to 0 5 52

2 Pd2(dba)3/PPhCy2 (2.5/6) CH2Cl2 −50 to 0 5 22

3 Pd2(dba)3/P(o-
MeOC6H4)3 (2.5/6)

CH2Cl2 −50 to 0 5 5

4 Pd2(dba)3/P(p-
MeOC6H4)3 (2.5/6)

CH2Cl2 −50 to 0 5 44

5 Pd2(dba)3/dppf (2.5/6) CH2Cl2 −50 to 0 5 36

6 [Pd(allyl)Cl]2/PPh3 (2.5/6) CH2Cl2 −50 to 0 5 51

7 Pd(PPh3)4 (5) CH2Cl2 −50 to 0 5 57

8 Pd(PPh3)4 (5) CH2Cl2 −20 20 70

9 Pd(PPh3)4 (5) EtCN −20 20 70

10 Pd(PPh3)4 (5) EtOAc −20 20 72 (62)

a
Standard reaction conditions: MTAD (1, 0.5 mmol, 1.0 equiv), naphthalene (5, 1.0 mmol, 2.0 equiv), solvent (0.1 M), visible light, −50 °C, 12 h; 

then addition of BnNHMe (1.0 mmol, 2.0 equiv) and [Pd] catalyst in THF.

b
Determined by 1H NMR integration relative to the internal standard. Isolated yield shown in parenthesis.
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Table 2.

Amine Scope of the Dearomative syn-1,4-Diamination of Naphthalene (5) and Benzene (6)
a

a
Standard reaction conditions for naphthalene (5): MTAD (1, 0.5 mmol, 1.0 equiv), naphthalene (5, 1.0 mmol, 2.0 equiv), EtOAc (0.1 M), visible 

light, −50 °C, 12 h; then addition of amine (1.0 mmol, 2.0 equiv) and [Pd] catalyst in THF, −20 °C, 20 h. Reaction conditions for benzene (6): 
MTAD (1, 1.0 mmol, 1.0 equiv), benzene (6, 10 mmol, 10 equiv), CH2Cl2 (0.2 M), visible light, −78 °C, 12 h; then addition of amine (2.0 mmol, 

2.0 equiv) and [Pd] catalyst in THF, −20 °C, 20 h. Reported yields are of isolated products.
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Table 3.

Arene Scope of the Dearomative syn-1,4-Diaminationa
a

a
Standard reaction conditions: MTAD (1, 1.0 mmol, 1.0 equiv), arene (9, 2.0 mmol, 2.0 equiv), EtOAc (0.1 M), visible light, −50 °C, 12 h; then 

addition of nPrNH2 (2.0 mmol, 2.0 equiv) and [Pd] catalyst (5 mol %) in THF, −50 to 0 °C, 5 h. Reported yields are of isolated products, with 

ratios of constitutional isomers (in parentheses) determined by 1H NMR of the crude reaction mixtures.

b
[Pd] catalyst in THF, −20 °C, 20 h.

c
CH2Cl2 was used instead of EtOAc.

d
10 mol % of [Pd] catalyst was used.

e
Cycloaddition was run at 0.05 M concentration.
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Table 4.

Pd-Catalyzed Enantioselective Dearomative syn-1,4-Diaminationa
a

a
Standard reaction conditions: MTAD (1, 0.5 mmol, 1.0 equiv), naphthalene (5, 1.0 mmol, 2.0 equiv), EtOAc (0.1 M), visible light, −50 °C, 12 h; 

then addition of amine (1.0 mmol, 2.0 equiv) and Pd2(dba)3 (2.5 mol %) and (S,Sp)-tBu-Phosferrox (6.0 mol %) in THF, −20 °C, 20 h. Reported 

yields are of isolated products.
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