Skip to main content
. Author manuscript; available in PMC: 2020 Jan 9.
Published in final edited form as: J Am Chem Soc. 2018 Dec 21;141(1):163–167. doi: 10.1021/jacs.8b13030

Table 1.

Optimization of Reaction Conditionsa

graphic file with name nihms-1015920-t0003.jpg
entry [Pd] source (mol %) solvent solvent temp (°C) time (h) yield (%)b
1 Pd2(dba)3/PPh3 (2.5/6) CH2Cl2 −50 to 0 5 52
2 Pd2(dba)3/PPhCy2 (2.5/6) CH2Cl2 −50 to 0 5 22
3 Pd2(dba)3/P(o-
MeOC6H4)3 (2.5/6)
CH2Cl2 −50 to 0 5 5
4 Pd2(dba)3/P(p-
MeOC6H4)3 (2.5/6)
CH2Cl2 −50 to 0 5 44
5 Pd2(dba)3/dppf (2.5/6) CH2Cl2 −50 to 0 5 36
6 [Pd(allyl)Cl]2/PPh3 (2.5/6) CH2Cl2 −50 to 0 5 51
7 Pd(PPh3)4 (5) CH2Cl2 −50 to 0 5 57
8 Pd(PPh3)4 (5) CH2Cl2 −20 20 70
9 Pd(PPh3)4 (5) EtCN −20 20 70
10 Pd(PPh3)4 (5) EtOAc −20 20 72 (62)
a

Standard reaction conditions: MTAD (1, 0.5 mmol, 1.0 equiv), naphthalene (5, 1.0 mmol, 2.0 equiv), solvent (0.1 M), visible light, −50 °C, 12 h; then addition of BnNHMe (1.0 mmol, 2.0 equiv) and [Pd] catalyst in THF.

b

Determined by 1H NMR integration relative to the internal standard. Isolated yield shown in parenthesis.