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Abstract

This work presents an accurate and efficient approach to the calculation of long-range interactions 

for molecular modeling and simulation. This method defines a local region for each particle and 

describes the remaining region as images of the local region statistically distributed in an isotropic 

and periodic way, which we call isotropic periodic images. Different from lattice sum methods that 

sum over discrete lattice images generated by periodic boundary conditions, this method sums 

over the isotropic periodic images to calculate long-range interactions, and is referred to as the 

isotropic periodic sum (IPS) method. The IPS method is not a lattice sum method and eliminates 

the need for a reciprocal space sum. Several analytic solutions of IPS for commonly used 

potentials are presented. It is demonstrated that the IPS method produces results very similar to 

that of Ewald summation, but with three major advantages, (1) it eliminates unwanted symmetry 

artifacts raised from periodic boundary conditions, (2) it can be applied to potentials of any 

functional form and to fully and partially homogenous systems as well as finite systems, and (3) it 

is more computationally efficient and can be easily parallelized for multiprocessor computers. 

Therefore, this method provides a general approach to an efficient calculation of long-range 

interactions for various kinds of molecular systems.

I. INTRODUCTION

Molecular simulation has been widely used in the study of many-particle systems.1,2 Long-

range interactions, such as electrostatic and van der Waals (VDW) interactions, are usually 

the most costly part of a molecular simulation. Electrostatic interaction is especially 

troublesome since its range reaches far beyond the size of a typical simulation system. There 

are many approaches for long-range interaction calculation,1 such as cutoff methods,3–6 

reaction field methods,7–11 and lattice sum methods.1,2,12,13 The cutoff methods calculate 

interactions within a cutoff range and approximate the interactions beyond the cutoff range 

as zero or, after long-range correction, a constant. The reaction field methods assume a 

continuum dielectric medium with a predefined dielectric constant beyond the cutoff range 

and long-range interactions are replaced by reaction field interactions. The lattice sum 

methods use discrete lattice images created by periodic boundary conditions (PBC) to 

calculate long-range interactions. Among these methods, the lattice sum methods are widely 

recognized to be the most accurate.
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Lattice sum methods calculate long-range interactions by summing over all interactions with 

the lattice images generated by periodic boundary conditions. Obviously, lattice sum 

methods do not apply to systems with irregular boundaries or no boundaries such as 

vacuum. For periodic boundary systems, an accurate summation over all lattice images is 

difficult to compute. To improve calculation efficiency, many methods such as particle-mesh 

Ewald,14,15 particle-particle-particle-mesh Ewald,16 and fast multipole method17 have been 

developed for the electrostatic potential. While for other potential forms such as the 

Lennard-Jones potential, the calculation is complicated by the diversity of atom sizes. In 

addition, the lattice sum methods exaggerate the symmetry effect imposed by periodic 

boundary conditions. When noncrystalline systems such as liquids and solutions are 

simulated under periodic boundary conditions, they may give rise to unwanted long-range 

correlation artifacts18 as well as anisotropy effects due to the artificially induced periodicity.
19 This anisotropy effect is especially troublesome when studying macromolecular systems 

where conformational distributions are very sensitive to image interactions.

In this work, we present an approach called isotropic periodic sum (IPS) to calculate long-

range interactions. Unlike lattice sum methods, this method does not sum the lattice images. 

Instead, this method uses so-called isotropic periodic images to represent remote structures 

statistically in calculating long-range interactions. The isotropic and periodic characters of 

the images make the summation of long-range interactions a much easier problem than the 

summation over the discrete lattice images. This method simplifies particle interactions to 

short-range interactions within a defined region plus long-range interactions given by the 

isotropic periodic sums.

In the following sections, we first describe the IPS method and calculation details. Then, 

through several examples, we examine the accuracy of IPS in energy and force calculation 

for homogeneous as well as heterogeneous systems. Finally, we evaluate the application of 

the IPS method through simulations of two example systems.

II. THEORIES AND METHODS

A. Isotropic periodic images and isotropic periodic sum

In a molecular system, the energy of a particle is the sum of interactions with all other 

particles. For a particle i, it is convenient to define a local region Ωi centered at this particle, 

so that the interactions with particle i can be divided into local interactions within the local 

region and long-range interactions outside the local region:

Ei = 1
2 j

∞
εi j(ri j) = 1

2 r j ∈ Ωi

εi j(ri j) + 1
2 r j ∉ Ωi

εi j(ri j), (1)

where rj is the position of particle j and rij is the vector from particle i to particle j. 
Normally, all short-range interactions such as covalent bonding interactions, as well as all 

other interactions with the local particles, are included in the local region interactions shown 

as the first term in the right-hand side of Eq. (1). The second term includes only long-range 
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interactions, such as electrostatic and VDW potentials, with all particles outside the local 

region. Theoretically, the long-range contribution, the second term in the right-hand side of 

Eq. (1), should cover the whole system, which is unrealistic to calculate explicitly for normal 

systems of interest.

The summation over a large number of interactions beyond the local region can be 

simplified by assuming that the particle configurations outside the local region are somehow 

related to the configurations in the local region, so that the long-range contribution becomes 

a function of the configuration of the local region:

Ei = 1
2 r j ∈ Ωi

εi j(ri j) + 1
2 r j ∈ Ωi

ϕi j(ri j, Ωi)

= 1
2 r j ∈ Ωi

[εi j(ri j) + ϕi j(ri j, Ωi)] .

(2)

Here, ϕij(rij, Ωi) represents the long-range contribution as a function of rij and Ωi. The cutoff 

methods use a spherical local region of radius rc, and assume ϕij(rij, Ωi) = 0 or 

ϕi j(ri j, Ωi) = εi j
LRC(rc) where εi j

LRC(rc) is the long-range correction (LRC) term based on a 

uniform distribution1 or calculated using a longer cutoff distance.20 The reaction field 

methods assume a continuum dielectric medium surrounding the local region and ϕij(rij, Ωi) 

represents the interaction with the medium. The lattice sum methods assume a local region 

defined by a periodic boundary condition and ϕij(rij, Ωi) represents the sum over interactions 

with all lattice images created by the periodic boundary condition. Obviously, these methods 

are different in the way a local region is defined and the estimation of the long-range 

contributions.

For an isotropic, homogeneous system consisting of many particles, there is no structural 

preference in any direction. Statistically, two regions far away may be similar in structure. 

To calculate the interactions of a particle, assuming any region far away from it be an image 

of its local region is a reasonable approximation. The widely used periodic boundary 

condition is a special case of this approximation, which assumes that the images of the local 

regions are arranged to follow a given lattice symmetry. Instead of using the static lattice 

images created by periodic boundary conditions, we use so-called isotropic periodic images 

of a local region as described below to calculate long-range interactions.

In a homogenous system, for each particle, the near region around it is defined as its local 

region and the remaining region is represented by a distribution of images of this local 

region. The size of the local region determines how much heterogeneity will be considered. 

Because the system is isotropic, the local region should be spherical and the images of the 

local region, which we call image regions, should distribute statistically around the local 

region in all directions. If we denote the radius of the local region as rc, based on periodicity, 

the nearest image regions are bound with the local region and their centers must be 2rc from 

the center of the local region. Because the image regions distribute in all directions, the 

centers of the nearest image regions will form an image shell with a radius of 2rc. Similarly, 
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the next image shell has a radius of 4rc and the mth shell has a radius of 2mrc. Because all 

image regions are the same as the local region and have a radius of rc, the space with a 

radius from (2m−1)rc to (2m+1)rc belongs to the mth image shell. The image regions on 

image shells are simply translations of the local region without any rotation. Therefore, the 

images of each particle in the local region form its own image shells centered at this particle. 

Because of the isotropic and periodic distribution, we call these images the isotropic periodic 

images. It should be noted that these isotropic periodic images are only used to represent 

statistically the conformation beyond the local region for long-range interaction calculation. 

They are not actually present in a simulation system.

Figure 1 illustrates the definition of the local region and its isotropic periodic images in a 

square periodic boundary system. The local region of particle 1 is enclosed by a dashed 

circle of radius rc. The isotropic periodic images of the local region and its particles are 

shown as dotted circles and dotted particles labeled correspondingly. The image regions of 

the first layer are bounded with the local region and occupy the area with a radius from rc to 

3rc. In this layer, the isotropic periodic images of particle 1 are distributed on image shells 

with a radius of 2rc. The image regions on an image shell are statistical representation of 

conformations around this image shell and can overlap with each other. Because the image 

regions are translation of the local region, the images of each particle will distribute on its 

own image shells centered at this particle. As shown in Fig. 1, the isotropic periodic images 

of particle 2 distribute on image shells centered at particle 2. Particle 1 only interacts with 

particles within its local region, i.e., particles 2, 3, and 4, and the isotropic periodic images 

of all particles in its local region, including itself. Similarly, all particles in the local region 

will interact with the isotropic periodic images of particle 1. All other particles, such as 

particles 5, 6, 7, and all images generated by the periodic boundary condition that are 

outside the local region are not seen by particle 1 and are replaced by the isotropic periodic 

images of the local particles in the calculation of long-range energies. Particle 4 is at the 

boundary of the local region of particle 1 and has the same distance rc from particle 1 and 

from its nearest isotropic periodic image on the first image shell. Due to the periodicity, the 

total force on particle 4 from particle 1 and its images is zero. Please note that the total 

interaction between particle 1 and all images of particle 2 will be the same as that between 

particle 2 and all images of particle 1.

Some systems are homogenous only in certain directions, which we call partially 

homogenous systems. For example, planar membranes are often homogenous along their 

planar directions, and a metal wire can be thought to be homogenous along the elongate 

direction. To be general, we define a homogenous index (px, py, pz) to describe a partially 

homogenous system. The index component is 1 if it is homogenous along this component 

direction or 0 otherwise. For example, a fully homogenous system which we call a three-

dimensional (3D) homogenous system has a homogenous index of (1,1,1); for a membrane 

on the x–y plane, which we call a 2D homogenous system, the homogenous index is (1,1,0); 

and for a metal wire along the z axis, which we call a 1D homogenous system, the 

homogenous index is (0,0,1). Note that all systems we discuss here are in three-dimensional 

space, while the number of homogenous dimensions is 1, 2, or 3 for 1D, 2D, or 3D 

homogenous systems, respectively.
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Based on the homogenous index, we separate a Cartesian coordinate r=(x, y, z) to an 

isotropic coordinate u (pxx, pyy, pzz) and an anisotropic coordinate h=[(1–px)x,(1–py) y,(1–

pz)z]. Correspondingly, we have the isotropic distance

ui j = px
2(x j − xi)

2 + py
2(y j − yi)

2 + pz
2(z j − zi)

2 (3)

and the anisotropic distance

hi j = (1 − px)
2(x j − xi)

2 + (1 − py)
2(y j − yi)

2 + (1 − pz)
2(z j − zi)

2, (4)

where (xi, yi, zi) and (xj, yj, zj) are the coordinates of particles i and j, respectively. Because 

the homogenous indices px, py, and pz are either 0 or 1, we have the following relation:

ri j = (x j − xi)
2 + (y j − yi)

2 + (z j − zi)
2 = ui j

2 + hi j
2 . (5)

Any potential function of distance r is also a function of u and h: ε(r)= ε(u,h).

In partially homogenous systems, the local region of any particle i includes all particles j 
whose isotropic distance uij is less than the cutoff distance rc. For a 3D homogenous system, 

the local region is a sphere with a radius rc. For a 2D homogenous system, the local region is 

a cylinder of radius rc with an infinite length perpendicular to the homogeneous plane. And 

for a 1D homogenous system, the local region is a cylinder of length 2rc along the 

homogeneous axis with an infinite radius. Here, the partially homogenous systems are those 

with small system sizes in the anisotropic direction, as the 1D or 2D CaCl2 fluids shown 

later in this paper. Even though the local regions are infinitely large in these directions, the 

particles contained in the local region are limited. When the system size in the anisotropic 

direction is large, for example, periodic, the system would be better treated approximately as 

a fully (3D) homogenous system to avoid a large number of particles in a local region.

Figure 2 shows a partially homogenous system of two particles. Two particles A and B are 

separated by an isotropic distance u and an anisotropic distance h. Between A and all images 

of B, the anisotropic distances are same, while the isotropic distances are different. If u is 

less than the cutoff distance rc, particle B will be in the local region of particle A. The total 

interaction between A and B is the sum of the direct interaction between them and all 

interactions with their images:

εIPS(r) = ε(r) +
m

ε(um, h) = ε(r) + ϕ(u, h) . (6)

Here, um is the isotropic distance between particle A and the mth image of particle B. The 

summation ϕ(u,h) = Σmε(um,h) runs over all isotropic periodic images of particle B and is 

called an isotropic periodic sum.

Wu and Brooks Page 5

J Chem Phys. Author manuscript; available in PMC 2019 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For any particle in a local region of volume V0, its density is 1/V0. On each image shell, the 

number of images can be calculated from the volume of the image shell:

n(m) =
Vm
V0

, (7)

where Vm is the volume of the mth image shell defined as the region where the isotropic 

distance runs from (2m−1)rc to (2m+1)rc. For different type of homogenous systems, we can 

calculate the shell image numbers according to equations listed below:

n1D(m) =
2 2m + 1 rc − (2m − 1)rc

2rc
= 2, (8)

n2D(m) =
π 2m + 1 2rc

2 − π(2m − 1)2rc
2

πrc
2 = 8m, (9)

n3D(m) =
4
3π 2m + 1 2rc

3 − 4
3π(2m − 1)3rc

2

4
3πrc

3 = 24m2 + 2. (10)

The distribution of the n(m) images on image shells effects the particle-image interaction. 

Because there are more than one images on each image shell, the image distribution cannot 

be fully random due to the mutual exclusion between images. We divide the distribution of 

the images on each image shell into two parts, a random distribution and a non-random 

distribution. For a pair of interacting particles, the image distribution should be symmetric 

about the axis connecting the two particles. The simplest nonrandom distribution that is 

symmetric about the axis would be the one with particles distributing on the axis, i.e., with 

particles sitting at the two points where the axis crosses the shell, as shown in Fig. 3. We call 

this kind of distribution the axial distribution. For simplicity, we use the axial distribution to 

describe approximately the effect due to the nonrandom distribution of the images. On each 

image shell, assume there are ξ images on each of the two axis-crossing positions. We call ξ 
the distribution parameter, which describes the nonrandomness of the image distribution. 

The rest images n(m)−2 ξ distribute randomly on the shell.

The isotropic distances between particle A and the two axial images of particle B on the mth 

shell are 2mrc−u and 2mrc+u (see Fig. 3). The sum of the interactions between A and all 

axial images of B is called the axial interaction:
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ϕaxial(u, h) = ξ
m = 1

∞
{ε[ (2mrc − u)2 + h2]

+ ε[ (2mrc − u)2 + h2]} .

(11)

The sum of the interactions with the random distributed images on all image shells is called 

the random interaction:

ϕrandom(u, h) =
m = 1

∞
[n(m) − 2ξ]ϕshell(u, h, m), (12)

where ϕshell(u,h,m) is the interaction with one image distributed randomly on the mth shell. 

We call ϕshell(u,h,m) the shell integration because it is calculated by integration over the 

shell.

For 1D homogenous systems, all images are axial images. Therefore, the isotropic periodic 

sum is calculated from the axial interaction given by Eq. (11) with ξ=1. If 2rc = L, where L 
is the periodic boundary side length along the homogenous direction, and the other sides are 

infinite large, the IPS is exactly the same as the lattice sum.

For 2D homogenous systems, the shell integration is

ϕshell
(2D)(u, h, m)

= 1
π 0

π
ε[ u2 + (2mrc)

2 − 4mrcucosθ + h2]dθ .

(13)

For 3D homogenous systems, the anisotropic distance h=0 and the isotropic distance u=r. 
The shell integration has the following form:

ϕshell
(3D)(u, h, m)

= ϕshell
(3D)(r, m)

= 1
2 0

π
sinθε[ r2 + (2mrc)

2 − 4mrcrcosθ]dθ .

(14)

The isotropic periodic sum is the combination of the axial interaction and the random 

interaction:

ϕ(u, h) = ϕaxial(u, h) + ϕrandom(u, h) . (15a)
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It should be noted that for some energy functions like electrostatic potential the summations 

in Eqs. (11)–(14) do not converge. In this case, we use the configuration with u=0 and h=0 

as a reference state and calculate the IPS as the difference to the reference state:

ϕ(u, h) = ϕaxial(u, h) − ϕaxial(0, 0)
+ ϕrandom(u, h) − ϕrandom(0, 0) .

(15b)

The summations of the differences in Eq. (15b) converge for most potentials. Using a 

reference state will not change the force, and for neutral systems, will not change the total 

electrostatic energy because the total IPS of electrostatic energy at the reference state is zero.

To apply Eq. (15) to the calculation of long-range interactions, we need to determine the 

distribution of the isotropic periodic images on the image shells. In other words, we need to 

determine the distribution parameter ξ. Based on the periodicity of the images, we can solve 

the distribution parameter according to the following equation:

∂
∂u [ε(u, h) + ϕ(u, h)]

u = rc
= 0. (16)

Equation (16) means when a particle is at the boundary of a local region, the total force 

along homogenous directions from the center particle and its images is zero. As shown in 

Fig. 2, when particle B is at the boundary of the local region of particle A, it is also at the 

boundary of an image region. Therefore, the force along the isotropic direction from all 

images of A has the same strength as, but opposite direction to that from A itself, and the 

total force along the isotropic direction from A and its images is zero.

The IPS method described above is not based on a static physical model as lattice sum 

methods do. Instead, the IPS method is based on a statistical description of homogenous 

systems. The solution of the IPS is greatly simplified by using the axial image distribution to 

represent the nonrandom distribution of images on image shells. Obviously, other image 

distributions can be chosen to represent the nonrandom distribution. The IPS method can be 

applied to potentials of any functional form and to both fully and partially homogenous 

systems. To save space, in the following section, we only present the analytic IPS functions 

of the electrostatic potential, Lennard-Jones potential, as well as an exponential potential for 

3D homogenous systems as examples.

B. Isotropic periodic sums for 3D homogenous systems

In this section, we present the analytic IPS functions of some common used potentials for 

3D homogenous systems to demonstrate the application of the IPS method.

1. Electrostatic potential—Electrostatic energy can be represented by the following 

functional form:
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εele(r) = 1
r . (17)

The charges and dielectric constant are dropped for the convenience of discussion. Because 

the summations in Eqs. (11)–(14) do not converge for this function, we calculate the IPS 

difference to the reference state according to Eq. (15b). For neutral systems, the total IPS of 

electrostatic energy at the reference state is zero, therefore, the total difference to the 

reference state is the same as the total absolute value.

The contribution from the axial distribution is

ϕaxial(r) − ϕaxial(0)

= ξele
m = 1

∞ 1
2mrc − r + 1

2mrc + r − 2
2mrc

= −
ξele
2rc

2γ + ψ 1 − r
2rc

+ ψ 1 + r
2rc

.

(18)

Here, γ is the Euler’s constant, γ = limm ∞(∑k = 1
m (1/k) − logm) ≈ 0.577216, and ψ(z) is the 

digamma function: ψ(z) = Γ′(z)/Γ(z) and Γ(z) = 0
∞tz − 1e−tdt.

The contribution from the random distribution is also calculated as the difference to the 

reference state:

ϕrandom(r) − ϕrandom(0)

=
m = 1

∞ 24m2 + 2 − 2ξele
2

×
0

π
sinθ

r2 + (2mrc)
2 − 4mrcrcosθ

dθ

−
0

π sinθ
2mrc

dθ = 0.

(19)

Because ∂ϕrandom(r,m)/∂r=0 and ∂ϕaxial(r)/∂r=ξele, we can solve ξele=1 from Eq. (16). 

Therefore, for 3D homogenous systems, the analytic IPS function of the electrostatic 

potential is
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ϕele(r) = − 1
2rc

2γ + ψ 1 − r
2rc

+ ψ 1 + r
2rc

. (20)

2. Lennard-Jones potential—Lennard-Jones potential has the following form:

εL − J(r) = 4ε0
σ
r

12
− σ

r
6

= A
r12 − C

r6 , (21)

which can be split into a dispersion term

εdisp(r) = 1
r6 (22)

and a repulsion term

εrep(r) = 1
r12 . (23)

Again, the constants A and C are dropped for the convenience of discussion.

First, let us consider the dispersion term. The axial interaction has the following analytic 

form:

ϕaxial
disp (r) = ξdisp

m = 1

∞ 1
(2mrc − r)6 + 1

(2mrc − r)6

=
ξdispπ6csc6α

30720α6rc
6 (225 + 208α6)cos(2α)

− (90 − 8α6)cos(4α) − 150 + 264α6

+15cos(6α) ,

(24)

where α = πr/2rc. The image shell integration is
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ϕshell
disp (r, m) = 1

2
0

π
sinθ

[r2 + (2mrc)
2 − 4mrcrcosθ]3dθ

=
4m2rc

2 + r2

(4m2rc
2 − r2)4 .

(25)

The random interaction is

ϕrandom
disp (r) =

m = 1

∞
(24m2 + 2 − 2ξdisp)ϕshell

disp (r, m)

=
m = 1

∞
24m2ϕshell

disp (r, m) + (2 − 2ξdisp)

×
m = 1

∞
ϕshell

disp (r, m) .

(26)

The two summations in Eq. (26) have the following analytic expressions:

m = 1

∞
24m2ϕshell

disp (r, m) = π4csc4α
128αrc

6 4α + 2αcos(2α)

−3sin(2α) ,

(27)

m = 1

∞
ϕshell

disp (r, m) = π6

1536α6rc
6 −12 + 3α2csc2α

+ 2α4cot2αcsc2α + α4csc4α

+3cotα(α + α3csc2α) .

(28)

From Eq. (16), we can solve

ξdisp = 60 − 4π2

60 + 5π2 ≈ 0.187 672.

For the repulsion term, the axial interaction has the following expression:
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ϕaxial
rep (r) = ξrep

m = 1

∞ 1
(2mrc − r)12 + 1

(2mrc + r)12

=
ξrepπ12csc12α

1 307 993 702 400α12rc
12 125 793 984α12 − 72 037 350 + (123 492 600

+ 155 809 824α12)cos(2α)

− (77 182 875 − 35 255 808α12)cos(4α) + (34 303 500 + 2 442 192α12)cos(6α) −

(10 291 050 − 32 576α12)

× cos(8α) + (1 871 100 + 16α12)cos(10α) − 155 925 cos(12α) .

(29)

The image shell integration is

ϕshell
rep (r, m) = 1

2
0

π
sinθ

[r2 + (2mrc)
2 − 4mrcrcosθ]6dθ

=
5r8 + 240m2rc

2r6 + 2016m4rc
4r4 + 3840m6rc

6r2 + 1280m8rc
8

5(4m2rc
2 − r2)10 .

(30)

The random interaction is

ϕrandom
rep (r) =

m = 1

∞
(24m2 + 2 − 2ξrep)ϕshell

rep (r, m)

=
m = 1

∞
24m2ϕshell

rep (r, m) + (2 − 2ξrep)
m = 1

∞
ϕshell

rep (r, m) .

(31)

The summations in Eq. (31) have the following analytic expressions:
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m = 1

∞
24m2ϕshell

rep (r, m) = π10csc10α
1 238 630 400αrc

12 156 190α + 176 468αcos(2α) + 29 216αcos(4α)

+ 1004αcos(6α) + 2αcos(8α) − 101 934sin(2α) − 36 414sin(4α)

− 2214sin(6α) − 9sin(8α)],

(32)

From Eq. (16), we can solve

m = 1

∞
ϕshell

rep (r, m) = π12

234 243 200α12rc
12 [ − 28 350 + 2835α2csc2α + α9cot7αcsc2α(9 + 2αcotα

) + 945α4csc4α

+ 378α6csc6α + 153α8csc8α + 62α10csc10α + 18α7cot5αcsc2α(7

+ 30α2csc2α) + α8cot6αcsc2α(36

+ 247α2csc2α) + 9α5cot3αcsc2α(105 + 182α2csc2α + 192α4csc4α)

+ 6α6cot4αcsc2α(63

+ 171α2csc2α + 242α4csc4α) + α4cot2αcsc2α(1890 + 2079α2csc2α

+ 1620α4csc4α + 1072α6csc6α)

+ 9αcotα(315 + 315α2csc2α + 210α4csc4α + 119α6csc6α + 62α8csc8α)] .

(33)

From Eq. (16), we can solve

ξrep = 3 991 680 + 332 640π2 + 33 264π4 + 3366π6 − 496π8

3 991 680 + 332 640π2 + 33 264π4 + 3366π6 + 341π8≈0.532 459 .
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From Eqs. (24)–(33), we can calculate the IPS of the Lennard-Jones potential as below:

ϕL − J(r) = A[ϕaxial
rep (r) + ϕrandom

rep (r)]
− C[ϕaxial

disp (r) + ϕrandom
disp (r)] .

(34)

3. Exponential potentials—Another common used potential function is the 

exponential potential

εexp(r) = e−κr . (35)

For example, the Buckingham potential (or exp-6 potential) uses this function as the 

repulsion term. This type of potential is especially easy for IPS integrations for 3D 

homogenous systems. The analytic solution of its IPS is provided here for reference:

ϕexp(r) = 1
cr [eκr(a − br) − e−κr(a + br)], (36)

where a, b, and c are constants defined by the exponential parameter κ and the cutoff 

distance rc according to the following relations:

a = 12κrc
2e

2κrc(e
4κrc − 1),

b = 1 + κrc + κ2rc
2 + e

2κrc(9 + 11κrc − 3κ2rc
2) + e

4κrc(3

+ 23κrc + 3κ2rc
2) − e

6κrc(13 − 13κrc + κ2rc
2),

c = (e
2κrc − 1)

3
[(e

2κrc − 1)(1 + (κrc)2)

− κrc(e
2κrc + 1)] .

C. A general IPS numerical function for efficient computation

Although analytic IPS solutions are available for some potentials as shown above, there are 

many cases where IPS cannot be solved analytically, especially for 2D and 1D homogenous 

systems. Even with analytic IPS solutions, the complicated functional terms could make the 

calculation time consuming. In practice, it is more convenient to express it as numerical 

functions. For potentials of the form

ε(r) = 1
rn , (37)

we propose the following numerical function to calculate IPS:
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ϕ(u, h) =
∑i = 0

m ai
h
rc

2i

2rc
2 + h2 n/2 +

∑i = 0
m ∑ j = 0

m − i bi j
u
rc

2i h
rc

2i

2rc
2 − u2 + h2 n/2 , (38)

where m is the order of the numerical function, ai and bij are parameters used to fit Eq. (38) 

to IPS solutions. Typically, m = 2 is accurate enough to fit Eq. (38) to IPS solutions. This 

numerical function can be applied to both fully and partially homogenous systems. Applying 

Eq. (16) to Eqs. (37) And (38), we obtain the following constraints which must be applied 

when fitting the parameters:

b00 = 1 −
(n + 2)b10 + (n + 4)b20 + (n + 6)b30

n ,

b01 = −
2b10 + 4b20 + 6b30 + (2 + n)b11 + (4 + n)b21

n ,

b01 = −
2b11 + 4b21 + b12(2 + n)

n ,

(39)

b03 = −
2b12

n ,

a0 = 2n/2ϕ0 − b00,

where ϕ0 = rc
nϕ(0, 0) is the IPS at zero distance when rc = 1. For 3D homogenous systems, 

the independent parameters are b10, b20, b30, while for 2D and 1D homogenous systems, 

additional independent parameters a1, a2, a3 and b11, b12, b21 must be determined.

The parameters of the zeroth-, first-, second-, and third-order numerical functions, Eq. (38), 

with n = 1 – 14 for 3D homogenous systems have been calculated by fitting to the analytic 

solutions (except for n = 2 where the IPS is solved numerically) of IPS and are listed in 

Table I. As can be seen, the second-order numerical functions (m = 2) are already very 

accurate [rmsd<0.1% (rmsd—root-mean-square deviations) of ε(rc) = 1/rc
n]. Tables II and III 

list the parameters of the third-order numerical functions (m = 3) of the electrostatic 

potential (n = 1) and Lennard-Jones potential (n = 6 and 12) for 2D and 1D homogenous 

systems. For these partially homogenous systems, the IPS is solved numerically.

D. Calculation of IPS potentials in molecular simulation

The IPS energy from Eq. (6) is not zero when a particle is at the boundary of a local region 

(Fig. 4). If not treated properly, this nonzero boundary energy could cause problems in 
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energy-based studies like Monte Carlo simulations. Here, we describe how to work with 

interactions with non-zero boundary energies in molecular simulation.

We divide the IPS energy into two parts, a configuration energy and a boundary energy (see 

Fig. 4):

εi j
IPS(ui j, hi j) = εi j

conf(ui j, hi j) + εi j
bound(hi j) . (40)

The configuration energy, εi j
conf(ui j, hi j) = εi j

IPS(ui j, hi j) − εi j
IPS(rc, hi j), is distance dependent, 

which approaches zero when uij → rc. The boundary energy, εi j
bound(hi j) = εi j

IPS(rc, hi j), is the 

energy at the boundary, which is independent of the isotropic distance. Correspondingly, the 

total energy of a system is also divided into a total configuration energy and a total boundary 

energy

E = 1
2 i

N

j

ui j < rc
εi j

IPS(ui j, hi j)

= 1
2 i

N

j

ui j < rc
εi j

conf(ui j, hi j) + 1
2 i

N

j

ui j < rc
εi j

bound(hi j)

= Econf + Ebound .

(41)

The total configuration energy, which is continuous upon particles moving in and out of a 

local region, depends on the configuration of the local region:

Econf = 1
2 i

N

j

ui j < rc
εi j

conf(ui j, hi j) . (42)

The total boundary energy depends on the number of particles in the local region and, for 

enclosed homogeneous systems, depends on the system volume and composition:

Ebound = 1
2 i

N

j

ui j < rc
εi j

bound(hi j) ≈
V0
2V i

N

j

N
εi j

bound(hi j), (43)

where V0 and V are the volumes of the local region and the whole system, respectively. 

Equation (43) is based on the homogenous approximation that the number of particles in a 

local region is proportional to the volume of the local region. According to Eq. (43), Ebound 

depends on the volume of the local region and the particle densities of the whole system, 
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while does not change upon particles moving in and out of a local region. Therefore, the 

total energy, Eq. (41), is continuous when particles cross local region boundaries.

For partially homogenous systems, when a particle is at the boundary of a local region, uij 

=rc, the force in the isotropic direction is zero: f ui j
IPS(rc, hi j) = 0. Therefore, the force is 

continuous at the boundary in the isotropic direction. But in the anisotropic direction the 

force is not continuous because f hi j
IPS(rc, hi j) ≠ 0 (see Fig. 2). This difference in force 

continuity can be understood by the fact that there are periodic images in the isotropic 

direction but not in the anisotropic direction. Similar to the energy treatment, we can divide 

the IPS force into a configuration force and a boundary force:

f hi j
IPS(ui j, hi j) = [ f hi j

IPS(ui j, hi j) − f hi j
IPS(rc, hi j)] + f hi j

IPS(rc, hi j)
= f hi j

conf(ui j, hi j) + f hi j
found(hi j) .

(44)

The total configuration force on particle i is

f hi
conf =

j

ui j > rc
[ f hi j

IPS(ui j, hi j) − f hi j
IPS(rc, hi j)] (45)

and the total boundary force is

f hi
bound =

j

ui j > rc
f hi j

IPS(rc, hi j) ≈
V0
V j

N
f hi j

IPS(rc, hi j) . (46)

The configuration force is continuous at the boundary in all directions [ f hi j
conf(rc, hi j) = 0 and 

f ui j
conf(rc, hi j) = f ui j

IPS(rc, hi j) = 0]. Because the total boundary force shown in Eq. (46) is 

calculated in a way independent of the number of particles in local regions, the total force 

from Eq. (44) is continuous upon particles moving in and out of local regions.

For 3D homogenous systems things are simple. There is no boundary force and no 

anisotropic coordinate. The total electrostatic boundary energy can be simplified to

Eele
bound =

V0
2V i

N
ei

2
εele

IPS(rc), (47)

where ei is the charge of particle i. Obviously, for neutral systems where ∑i
N ei = 0, 

Eele
bound = 0. For the Lennard-Jones potential, the total boundary energy is
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EL − J
bound =

V0
2V εrep

IPS(rc)
i

N

j

N
Ai j − εdisp

IPS (rc)
i

N

j

N
Ci j . (48)

It should be noted that for molecular systems, all atom pairs, including self-pairs, must be 

considered when calculating configuration energies and configuration forces because all 

these pairs have been included in the calculation of the boundary energies and boundary 

forces in Eqs. (43), (45), (47), and (48). It is a normal practice that self-pairs and atoms 

forming bonds, bond angles, and dihedral angles are excluded or scaled down in a 

nonbonded energy calculation. Because the boundary energies are removed from all atom 

pairs, the configuration energies between all atom pairs, including self-pairs, should be 

calculated according to the following equation:

εconf(ri j) =

ϕi j(ui j, hi j) − εi j(rc, hi j) − ϕi j(rc, hi j) 1 − 1, 1 − 2, 1 − 3 pairs

εi j
(1 − 4)(ri j) + ϕi j(ui j, hi j) − εi j(rc, hi j) − ϕi j(rc, hi j) 1 − 4 pairs

εi j(ri j) + ϕi j(ui j, hi j) − εi j(rc, hi j) − ϕi j(rc, hi j) otherwise,

(49)

where εi j
(1 − 4)(ri j) is a special energy function for 1–4 covalent bonded atom pairs, normally 

a function scaled down from εij(rij). No exclusion or scale down should apply to ϕij(uij, hij).

Pressure is an important property for simulation studies. When using IPS for energy 

calculation, the boundary energy must be considered accordingly for pressure calculation. 

Pressure is related to the partition function Q by the following equation:

P = − ∂A
∂V NT

= − ∂Aid
∂V

NT
− ∂Aconf

∂V
NT

= NkT
V

+ kT ∂lnQ
∂V NT

,

where Aid is the Helmholtz free energy of idea gas and Aconf is the configuration 

contribution. After dividing the energy into the configuration energy and the boundary 

energy,
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PV = NkT + VkT
Q

∂
∂V e−E /kTdΩ = NkT

− 1
Q V ∂Econf

∂V + V ∂Ebound

∂V e−E /kTdΩ = NkT

+ Wconf + Wbound .

(50)

For 3D homogenous systems, the configuration viral Wconf can be calculated from 

interaction forces:

Wconf = − V ∂Econf

∂V = 1
6 i

N

j

ri j < rc
ri j f i j

IPS = 1
3 i

N
ri f i

IPS . (51)

The boundary viral Wbound can be derived from the boundary energy according to Eq. (43):

Wbound = − V ∂Ebound

∂V ≈
V0
2V i

N

j

N
εi j

IPS(rc) = Ebound . (52)

Similarly, when studying 2D or 1D homogenous systems, boundary energies also must be 

considered to calculate properties such as surface tension.

III. SIMULATION SYSTEMS AND CONDITIONS

We chose the following systems to examine the accuracy and application of the IPS method 

in long-range interaction calculations. The IPS energies are calculated using the third-order 

numerical function, Eq. (38), with parameters listed in Tables I, II, and III. The IPS method 

has been implemented into the CHARMM program6 and is available in version 32. The 

CHARMM force field21 is used in all calculations presented here.

A. CaCl2 ionic fluids

This highly charged system is chosen to examine the calculation of electrostatic interactions. 

The ions interact through charge-charge Coulomb potential, Eq. (17), and the 6–12 Lennard-

Jones potential, Eq. (21). There are 2048 Ca2+ ions and 4096 Cl− ions in the system.

To generate homogenous conformations of different sizes, the system is simulated at a high 

temperature of 10 000 K to make the system fully expandable. During the simulations, the 

electrostatic interaction is calculated using the particle-mesh Ewald method,14 and the 

Lennard-Jones interaction is calculated with a force-switch cutoff method3 with a switch-on 

distance of 8 Å and a cutoff distance of 10 Å.

The conformations of a 1D homogenous system are generated by simulations in a 500 × 500 

× L Å3 rectangular box, where L is the box side length in z axis with values varying from 60 
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to 160 Å. To keep the system together along the z axis, the 1D homogenous system is 

restrained with a cylinder potential of the form

ε1D(r) = k(x2 + y2) . (53)

The force constant is set to be k = 1 kcal/mol Å2. Figure 5(a) shows a typical conformation 

of the 1D homogenous system.

The conformations of a 2D homogenous system are generated by simulations in an L × L × 

500Å3 rectangular box, where L is the box side length in x axis and y axis with values 

varying from 60 to 160 Å. To keep the system together along the x–y plane, the system is 

restrained with a planar potential function

ε2D(r) = kz2 (54)

The force constant is set to k = 1 kcal/mol Å2. Figure 5(b) shows a typical conformation of 

the 2D homogenous system.

The conformations of a 3D homogenous system are generated by simulations in an L × L × 

L Å3 cubic box with the box side length L ranging from 40 Å to 140 Å. Figure 5(c) shows a 

typical conformation of the 3D homogenous system.

B. Argon fluids

A cubic box of 9450 argon atoms is used to compare the calculation of Lennard-Jones 

interactions. Argon’s Lennard-Jones parameters [see Eq. (21)] are σ = 3.405 Å and ε0 = 

−0.238 kcal/mol.

C. Acetylcholine binding protein and its pentamer

We chose the x-ray structures of acetylcholine binding protein (ACHBP) (Ref. 22) to 

examine the energy calculation for heterogeneous systems as well as the symmetry effect of 

periodic boundary conditions. The monomer and pentamer structures of this protein are 

shown in Fig. 6.

IV. RESULTS AND DISCUSSIONS

A. Comparison of long-range energy calculation methods

The IPS method introduces a distance-dependent image contribution to particle interactions. 

As a result, long-range interactions are transformed to short-range interactions as shown in 

Eq. (6). It would be interesting to examine how different the IPS interaction εIPS(r) is from 

the interactions calculated using other methods. Using the electrostatic potential, Eq. (17), as 

an example, we compare the IPS interactions with that from the cutoff methods, including 

straight truncation, energy switch, energy shift, force switch, and force shift,3 the reaction 
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field method, as well as Ewald summation. The reaction field (RF) results are calculated 

using the Barker-Watts function:23

εRF(r) = 1
r + r2

rc
3

ϵ − 1
2ϵ + 1, (55)

where ϵ is the predefined dielectric constant of the medium surrounding the local region.

Ewald summation results are calculated from the isotropic approximation functions, Eqs. 

(56) and (57), which are fitted to Ewald summation data with a simple cubic (SC) or a 

truncated octahedral (TO) periodic boundary condition by Adams and Dubey:24

εTO
Ewald(r) ≈ 1

r − 3.369 233 45
L + 3.538 73

L3 r2 + 8.339 58
L5 r4

− 28.512 89
L7 r6,

(56)

εSC
Ewald(r) ≈ 1

r − 2.837 297 479
L + 2.750 22

L3 r3

− 2.944 14
L5 r4 + 0.869 10

L7 r6 .

(57)

The IPS results are calculated using the following equation, which is derived from the third-

order numerical function, Eqs. (38) and (39), with parameters shown in Table I:

εIPS(r) = 1
r + 2.737 821

rc 2

+
−2.737 821 + 1.109 466 r

rc

2
+ 0.070 800 r

rc

4
+ 0.007 918 r

rc

6

2rc
2 − r2 .

(58)

The IPS method uses the radius of the local region, or the cutoff distance, rc to define the 

local region, while Ewald summation uses lattice parameters (box sizes and angles) to define 

the local region. To make the two methods comparable, the local regions should have the 

same volume to produce images of the same densities. For the cubic box, this requires 

L = 4
3πrc

33 ≈ 1.6120rc, and for the truncated octahedral box, this requires 

L = 8
3πrc

33 ≈ 2.0310rc.
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Figure 7(a) shows the electrostatic energies from different methods. The energies from the 

cutoff based methods are significantly lower than the Coulomb potential given by ε(r) = 1/r, 
because these methods assume zero energy beyond the cutoff distance. On the contrary, the 

IPS method, as well as the reaction field and Ewald summation, gives higher energies than 

the Coulomb potential.

The reaction field results depend on the predefined dielectric constant ϵ. When ε = 1, the 

reaction field energies reduce to the Coulomb potential, εϵ = 0
RF (r) = 1/r. When ϵ = 5, the 

reaction field energies are very close to the IPS results, while at ϵ = 80, the reaction field 

energies are all above the IPS results. Overall, the IPS energies fall within the range of the 

reaction field results.

The Ewald energies are different in different periodic boundary conditions. In both cases, SC 

and TO, the Ewald energies are above the IPS results. Considering the fact that the Ewald 

isotropic approximations have maximum errors of 0.0097 Å−1 for SC and 0.0062 Å−1 for 

TO as compared to the true Ewald summation energies of this system,24 we can say that the 

IPS energies are very close to the Ewald summation results.

Forces are more important than energies in molecular dynamics simulations. Figure 7(b) 

shows the forces calculated from different methods. As can be seen, except for the force-

shift method, which produces much weaker forces than the IPS method, the cutoff-base 

methods produce stronger forces than the IPS method. The energy-switch method produces 

a very abrupt force in the switch region and should be used with great care. The reaction 

field forces show strong dependence on the predefined dielectric constant. At ϵ = 5, the 

reaction field forces agree with the IPS forces at short distances, while at ϵ = 80, a better 

agreement is found at distances close to the cutoff boundary. Compared with Ewald forces, 

the IPS forces are stronger at short distances, while at large distances the IPS force becomes 

weaker and is zero at the cutoff boundary.

Even though the reaction field method and the Ewald isotropic approximations produce 

energies and forces close to the IPS results, they are inconvenient to be applied directly to 

molecular dynamics simulations. For the reaction field method, the dielectric constant of the 

medium surrounding the local region must be predefined, which may cause artifacts in 

simulation results. Furthermore, if ϵ is not infinitely large, the force is not continuous at the 

cutoff boundary and additional shift or switch functions must be used, which may introduce 

additional artifacts to simulation results. For the Ewald isotropic approximations, first, they 

are different for different periodic boundary conditions. Second, they are approximations to 

the true Ewald summations and have large errors at large distances. Third, they do not have a 

defined boundary and normally are applied to all minimum images, which is time 

consuming for large systems. Also, their forces are not continuous when minimum images 

cross the periodic boundary. In all these aspects, the IPS method is a better solution.

B. Accuracy in calculating long-range interactions of homogeneous systems

For a homogeneous system of many particles, even though the IPS method and Ewald 

summation use different local regions and images, they should yield similar results if their 

local regions and images can correctly describe the homogenous system. Using different 
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local regions and images should only cause differences in the partition between the local 

contribution and the long-range contribution as shown in Eq. (2), while the total interactions 

should remain the same.

Figure 8 shows the electrostatic energies of the highly charged CaCl2 ionic fluid. The 

conformations are generated as a 3D homogenous system with different box sizes (the left 

panel). The energies from Ewald summation are compared with that from the cutoff method 

(the middle panel) and the IPS method (the right panel). A 10 Å cutoff is used for both the 

IPS method and the cutoff method. Because there are many ways to implement the cutoff 

method,3 to avoid any arbitrary factor, we chose straight truncation to perform the cutoff 

calculation in the following discussion. When the box size changes from 40 Å to 140 Å, the 

electrostatic energies change from −1.6 × 106 kcal/mol to −1.3 × 106 kcal/mol. The energies 

from the cutoff method show significant deviations from Ewald summation results, while the 

energies from the IPS method show very nice correlation with the Ewald results, indicating 

that the IPS method can be as good as Ewald summation in describing the electrostatic 

interactions. A comparison of forces calculated from different methods can be found in Fig. 

12 and will be discussed later.

The accuracy of the IPS results increases with the size of the local region. Figure 9 shows 

the average deviations of the electrostatic energies using the cutoff and IPS methods at 

different cutoff distances. The energy deviations are calculated against the energies from 

Ewald summation. Clearly, the IPS method is one or two orders of magnitude more accurate 

than the cutoff method. As the cutoff distance increases, the accuracy of the IPS method 

increases nearly exponentially (linearly in the semilogarithm plot).

Figure 10 shows the accuracy of the Lennard-Jones energies calculated using the cutoff and 

IPS methods at different cutoff distances. Because the Lennard-Jones energy converges very 

quickly, we use the cutoff results with a 40 Å cutoff distance as the standard to calculate the 

deviations. As can be seen, the IPS method is significantly more accurate than the cutoff 

method for all types of homogenous systems. For 3D homogenous systems, the LRC 

method1 can be used to improve the energy calculation. From Fig. 10 it is clear that the LRC 

substantially improves the accuracy, but not as much as does the IPS method. It should be 

stressed that LRC only improves energies, while IPS improves both energies and forces.

C. Accuracy in calculating long-range interactions of heterogeneous systems

Long-range interactions are also important in the study of large heterogeneous systems such 

as protein complexes. For large systems without periodic boundary conditions, the cutoff 

methods are the major approaches to calculate long-range interactions. It would be 

interesting to examine how well IPS can be applied to such heterogeneous systems.

We use the ACHBP monomer and pentamer shown in Fig. 6 to examine the accuracy of the 

IPS method. The size of the monomer is about 30 × 40 × 60 Å3, while the size of the 

pentamer is about 60 × 80 × 80 Å3. Using the forces calculated with no cutoff as the 

standard, we compare the rmsd of forces calculated with the cutoff method and the IPS 

method at different cutoff distances for the monomer and the pentamer (Fig. 11). As can be 

seen, for the monomer, the IPS method is more accurate when the cutoff distance is 12 Å or 
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less, while for the pentamer, the IPS results are more accurate with cutoff distances up to 20 

Å. These results indicate that when the a heterogeneous system is large as compared to the 

local region (the cutoff distance), it is better to assume isotropic periodic images than to 

assume a vacuum beyond the cutoff.

D. Comparison of lattice images and isotropic periodic images in describing long range 
interactions

Periodic boundary conditions are designed to overcome boundary effect. However, if the 

lattice images generated from periodic boundary conditions are used in energy calculation, 

the symmetry effect will be embedded into long-range interactions. Because periodic 

boundary conditions impose structural symmetries into a system and make it look like a 

super lattice, it is advised that the interaction range should not exceed the PBC box to 

minimize the imposed symmetry effect.1 However, some long-range interactions such as the 

electrostatic potential extend far beyond a normal PBC box and a truncation at the box size 

will raise large errors. Therefore, using lattice images to calculate long-range interactions 

becomes a natural solution to get accurate interactions. Unlike lattice sum, the IPS method 

uses isotropic periodic images to calculate long-range interactions. It would be interesting to 

examine which images, the lattice images or the isotropic periodic images, can better 

describe long-range interactions.

As pointed out in Eq. (2), using images of any kind to represent long-range region is an 

approximation to a real system. The question is how accurate the interaction can be 

calculated with an image approximation. Here, we use a large box (60 × 60 × 60 Å3) of the 

CaCl2 ionic fluid under a cubic periodic boundary condition to represent a ‘‘real’’ system 

and the forces calculated in the large box system using Ewald summation are considered the 

‘‘true’’ forces. For each ion, this system can be represented by a smaller local region (a 

cubic PBC cell) around it plus lattice images generated by the PBC. Also, this system can be 

represented by a spherical local region centered at the ion plus the isotropic periodic images 

around the local region. The particles in the local regions have the same configuration as in 

the large system, while the particles beyond the local region are replaced with either the 

lattice images for Ewald summation or the isotropic periodic images for the IPS method. 

The force deviation from the large system will measure how well these images describe 

long-range interactions.

Figure 12 shows the rmsd of forces calculated from Ewald summation with smaller PBC 

cells and from the IPS method as well as the cutoff method (straight truncation) at different 

cutoff distances. To be comparable, the Ewald results are plotted against the half box side 

length while the other methods against the cutoff distance. Clearly, the straight truncation 

method produces very inaccurate forces. The IPS forces are much more accurate than the 

cutoff forces, and the accuracy of the IPS forces increases nearly exponentially with the 

cutoff distances (linearly in the semilogarithm plot), similarly to the accuracy of the IPS 

energies (see Fig. 9). Interestingly, the forces from Ewald summation show larger rmsd than 

the IPS forces. Because the local regions have the same conformation as the real system, the 

force deviations come from the difference between the images and the real conformation 

beyond the local region. This result indicates that, with local regions of similar sizes, the 
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lattice images results in larger force deviations than the isotropic periodic images. In other 

words, the isotropic periodic images can better describe long-range interactions than the 

lattice images.

The PBC symmetry effect is a serious problem when studying macromolecular systems. It is 

often the case that only one or several macromolecules of interest are included in a 

simulation system due to the limit in computing resources. The small number of 

macromolecules, which often account for a large portion of a system, make the system far 

from homogeneous and as a result, the periodic macromolecular system acts like a super 

lattice as shown in Fig. 13. Also due to the limit in computing resources, the box size is set 

as small as possible. The interaction between the macromolecule and its images will 

strongly depend on its orientation in the box, which could alter the conformational 

distribution.

We calculated the electrostatic energies of the system shown in Fig. 13 with different protein 

orientations using different methods. Figure 14 shows the energy ranges (the difference 

between the maximum and minimum energies over all orientations) at different box sizes. 

As can be seen, with Ewald summation, the energy range is more than 30 kcal/mol when the 

box size is 70 Å and is about 0.5 kcal/mol when the box size is as large as 160 Å. This 

orientational dependence of energy varies with protein conformations, and therefore, has 

strong effect on protein conformational distribution.

Using the cutoff method, the orientational dependence decays quickly as the box size 

increases. A smaller cutoff distance results in a quicker decay, because a smaller cutoff 

distance results in fewer images to be seen. When the cutoff distance is large as compared to 

the PBC box size, e.g., rc = 60 Å for L<120 Å, the cutoff method has an even stronger 

orientational dependence than Ewald summation. That is the reason why the cutoff should 

not reach beyond a PBC box.

The IPS method shows an even smaller orientational dependence than the cutoff method and 

can eliminate orientational dependence with a PBC box: L> M + rc, where M is the 

maximum molecular dimension and M ≈ 60 Å for this protein.

For macromolecular systems, the IPS method can fully consider the heterogeneity of a 

macromolecule by using a cutoff distance: rc > M. When the cutoff distance is large 

compared to the PBC box size, e.g., rc = 60 Å for L <100 Å, the IPS method shows 

orientational dependences similar to Ewald summation (Fig. 14). To eliminate the PBC 

symmetry effect while considering fully the heterogeneity of a macromolecule, a large PBC 

box, L ≈ 2 M, should be used.

E. Simulations using isotropic periodic sum

Molecular simulation can sample the energy surfaces of multibody systems and produce 

structural, thermodynamic, and dynamic properties of interest. Therefore, through 

simulations, we can examine how well overall the IPS describes the energy surface. Due to 

the space limit, we only present the following two examples.

Wu and Brooks Page 25

J Chem Phys. Author manuscript; available in PMC 2019 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The first example is to evaluate the description of long-range VDW interactions through N-

P-T simulations of an argon fluid. The simulations are conducted at P = 1 atm and T = 100 

K. Figure 15 shows the average densities and potential energies with different cutoff 

distances using three different methods, the cutoff method, the cutoff method plus LRC,1 

and the IPS method. The force-switch algorithm was used for the cutoff method.3 As can be 

seen (Fig. 15, the lower panel), using the cutoff method the density increases as the cutoff 

distance increases, indicating that a shorter cut-off distance results in more long-range 

interaction unaccounted. With LRC,1 the dependence of the density on cutoff distances is 

much smaller but is still significant. Using the IPS method, the density is almost the same 

for all the cutoff distances from 8 Å to 40 Å. Similar behaviors are also found for the 

average potential energies shown in the upper panel of Fig. 15. These results clearly 

demonstrate that IPS can better describe long-range VDW interactions than the cutoff 

method, even augmented with LRC.

The second example is to evaluate the description of a charged system through N-V-T 
simulations of a highly charged ionic CaCl2 fluid. The simulations are carried out at T = 10 

000 K with a cubic PBC of 60×60×60 Å3. The Lennard-Jones energies are calculated using 

the IPS method or the force-switch cutoff method plus LRC. The electrostatic energies are 

calculated using the IPS method, the force-switch cutoff method, or Ewald summation. 

Figure 16 shows the average Lennard-Jones energies (upper panel) and the average 

electrostatic energies (lower panel) from these simulations. As can be seen, the simulations 

using the cutoff method plus LRC show obvious dependence on cutoff distances in both 

average energies, while the simulations using the IPS method produce almost constant 

average energies with cutoff distances of 7 Å and up. The average electrostatic energies from 

the IPS simulations are almost identical to the simulation results using Ewald summation. 

These results clearly demonstrate that the IPS method can properly describe the energy 

surface of the system.

V. CONCLUSIONS

This work proposes an idea of using isotropic periodic images to describe statistically the 

remote structures of homogenous systems in the calculation of long-range interactions. The 

summation of interactions over isotropic periodic images is much easier than that over 

anisotropic lattice images used in lattice sum methods. This method can be applied to 

potentials of any functional form and for both fully and partially homogenous systems as 

well as finite systems. Analytic IPS functions of some typical potentials for fully (3D) 

homogenous systems are presented. For computing efficiency, we present a general 

numerical IPS function for potentials of the form: ε(r) = 1/rn for both fully and partially 

homogenous systems.

For homogenous systems, the IPS method produces results very close to that from Ewald 

summation. The accuracy of IPS results increases exponentially with the cutoff distance. 

Through comparison with a large box of CaCl2 ionic fluid, we demonstrate that the isotropic 

periodic images are better than lattice images in describing long-range interactions. For 

macromolecular systems, the IPS method is better than lattice sum methods by avoiding the 

symmetry effect imposed from periodic boundary conditions.
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Like the cutoff methods, the IPS method can be applied to systems with or without periodic 

boundary conditions. For nonperiodic systems, the IPS method can better describe long-

range interactions than the cutoff methods if the system size is large as compared to the 

cutoff distance. Because the IPS method is calculated the same way as the cutoff methods, it 

is comparable to the cutoff methods in computing cost and can be easily parallelized for 

multiprocessor computers.
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FIG. 1. 
The local region and isotropic periodic images in a square periodic boundary system. The 

local region of particle 1 is enclosed by the dashed circle. The image shells of particles 1 and 

2 are shown as dotted-dashed circles around particles 1 and 2, respectively. The image shells 

of other particles are not shown for clarity. The isotropic periodic images of the local region 

shown as dotted circles distribute around the local region and can overlap with each other. 

Particle 1 interacts with particles 2, 3, and 4 in its local region and the isotropic periodic 

image particles, shown as dotted particles. Particle 4 is at the boundary of the local region 

and has the same distances to particle 1 and to the nearest image of particle 1.
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FIG. 2. 
A partially homogenous system of two particles, A and B, viewed on the u×h plan. The 

system is periodic in the u direction and vertical lines mark the boundaries. The images 

labeled ‘‘B’’ are images of particle B, and images labeled ‘‘A’’ are images of particle A. B 
interacts with A and all images. In u direction (horizontal), the forces from A and from A’s 

images have opposite direction and when B is at the boundary (u=rc) they cancel with each 

other. In h direction (vertical), the forces from A and from A’s images have same direction 

and will not cancel when B is at the boundary.
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FIG. 3. 
The distribution of isotropic periodic images of particle A on its image shells. The 

distribution is a combination of a random distribution and a nonrandom distribution. The 

nonrandom distribution is represented by 2ξ particle images sitting at the two points where 

the axis connecting particles A and B crossing the shell. The rest n(m)−2ξ images distribute 

randomly on the shell. Particle B interacts with all images of particle A. The image shells of 

particle B are not shown here, which would be centered at particle B. Please note that the 

interaction energy between particle B and all images of particle A is the same as that 

between particle A and all images of particle B.
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FIG. 4. 
The IPS interaction as a function of the isotropic distance. At the cutoff boundary u = rc = 10 

Å, εIPS(rc, h) ≠ 0. The IPS energy is divided into a boundary energy, εbound(h) = εIPS(rc, h), 

and a configuration energy, εconf(u, h) = εIPS(u, h) – εIPS(rc, h).
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FIG. 5. 
(a) A typical conformation of the 1D homogenous CaCl2 system along z axis. (b) A typical 

conformation of the 2D homogenous CaCl2 system along x–y plan. (c) A typical 

conformation of the 3D homogenous CaCl2 system in a cubic box. The white lines mark the 

PBC boundaries. Ca2+ and Cl− ions are represented by black and gray balls, respectively.
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FIG. 6. 
The x-ray structures of acetylcholine-binding protein (PDB code: li9b). The left images are 

the structure of its monomer viewed from side and top. The right image is a top view of the 

pentamer. The backbone traces are shown as ribbons. For clarity, atoms are rendered as 

sticks and are shown only in the side view of the monomer structure.
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FIG. 7. 
(a) The electrostatic energies calculated using different methods. (b) Electrostatic forces 

calculated from different methods. The cutoff distances for energy switch, energy shift, force 

switch, and force shift methods or the radius of local region for the IPS method are rc = 10 

Å. The force switch and energy switch are turned on at 8 Å. The reaction field (RF) results 

are calculated using Eq. (55). The Ewald results are calculated using Eq. (56) TO and Eq. 

(57) SC. The IPS results are calculated using Eq. (58). The box sizes for Ewald summation 

are set to be equal to the local region volume for the IPS calculation.
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FIG. 8. 
Electrostatic energies of the 3D homogenous CaCl2 ionic fluid at conformations of different 

box sizes. The vertical axis is the energy calculated from Ewald summation. The left panel is 

against the box side lengths, the middle panel is against the energies calculated from the 

cutoff method with a cutoff distance of 10 Å, and the right panel is against the energies 

calculated from the IPS method with a local region radius of 10 Å.
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FIG. 9. 
Average deviations of electrostatic energies calculated using the cutoff and IPS methods at 

different cutoff distances. The conformations of the CaCl2 ionic fluid are generated as 1D, 

2D, and 3D homogenous systems with different box sizes. The deviations are against the 

results of Ewald summation.
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FIG. 10. 
Average deviations of the Lennard-Jones energies calculated using the cutoff and IPS 

methods at different cutoff distances. The conformations of the CaCl2 ionic fluid are 

generated as 1D, 2D, and 3D homogenous systems with different box sizes. The deviations 

are against the cutoff energies with a cutoff distance of 40 Å.
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FIG. 11. 
The root-mean-square deviations (rmsd) of the forces calculated from the cutoff method and 

the IPS method with different cutoff distances. The rmsd is calculated against the forces 

calculated with no cutoff. The monomer and pentamer structures of the acetylcholine-

binding protein are shown in Fig. 6.
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FIG. 12. 
The rmsd of the electrostatic forces in a 3D homogenous CaCl2 ionic fluid at different PBC 

box sizes for Ewald summation and at different cutoff distances for the IPS method and the 

cutoff method. The deviations are against the Ewald forces in a 60×60×60 Å3 PBC box. See 

text for details.
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FIG. 13. 
The ACHBP monomer under a cubic periodic boundary condition. Interactions with its 

images will depend on its orientation in the box and the size of the box.
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FIG. 14. 
The orientational dependence of electrostatic energies at different box sizes. The system is 

shown in Fig. 13.
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FIG. 15. 
Average densities (lower panel) and average Lennard-Jones molar energies (upper panel) of 

the argon fluid from N-P-T simulations with different cutoff distances.
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FIG. 16. 
Average Lennard-Jones (upper panel) and electrostatic (lower panel) molar energies of the 

CaCl2 ionic fluid from N-V-T simulations with different cutoff distances.
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