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Abstract

Agents living in volatile environments must be able to detect changes in contingencies while

refraining to adapt to unexpected events that are caused by noise. In Reinforcement Learn-

ing (RL) frameworks, this requires learning rates that adapt to past reliability of the model.

The observation that behavioural flexibility in animals tends to decrease following prolonged

training in stable environment provides experimental evidence for such adaptive learning

rates. However, in classical RL models, learning rate is either fixed or scheduled and can

thus not adapt dynamically to environmental changes. Here, we propose a new Bayesian

learning model, using variational inference, that achieves adaptive change detection by

the use of Stabilized Forgetting, updating its current belief based on a mixture of fixed, initial

priors and previous posterior beliefs. The weight given to these two sources is optimized

alongside the other parameters, allowing the model to adapt dynamically to changes in envi-

ronmental volatility and to unexpected observations. This approach is used to implement

the “critic” of an actor-critic RL model, while the actor samples the resulting value distribu-

tions to choose which action to undertake. We show that our model can emulate different

adaptation strategies to contingency changes, depending on its prior assumptions of envi-

ronmental stability, and that model parameters can be fit to real data with high accuracy.

The model also exhibits trade-offs between flexibility and computational costs that mirror

those observed in real data. Overall, the proposed method provides a general framework to

study learning flexibility and decision making in RL contexts.

Author summary

In stable contexts, animals and humans exhibit automatic behaviour that allows them to

make fast decisions. However, these automatic processes exhibit a lack of flexibility when

environmental contingencies change. In the present paper, we propose a model of beha-

vioural automatization that is based on adaptive forgetting and that emulates these prop-

erties. The model builds an estimate of the stability of the environment and uses this

estimate to adjust its learning rate and the balance between exploration and exploitation

policies. The model performs Bayesian inference on latent variables that represent
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relevant environmental properties, such as reward functions, optimal policies or environ-

ment stability. From there, the model makes decisions in order to maximize long-term

rewards, with a noise proportional to environmental uncertainty. This rich model encom-

passes many aspects of Reinforcement Learning (RL), such as Temporal Difference RL

and counterfactual learning, and accounts for the reduced computational cost of auto-

matic behaviour. Using simulations, we show that this model leads to interesting predic-

tions about the efficiency with which subjects adapt to sudden change of contingencies

after prolonged training.

Introduction

Learning agents must be able to deal efficiently with surprising events when trying to represent

the current state of the environment. Ideally, agents’ response to such events should depend

on their belief about how likely the environment is to change. When expecting a steady envi-

ronment, a surprising event should be considered as an accident and should not lead to updat-

ing previous beliefs. Conversely, if the agent assumes the environment is volatile, then a single

unexpected event should trigger forgetting of past beliefs and relearning of the (presumably)

new contingency. Importantly, assumptions about environmental volatility can also be learned

from experience.

Here, we propose a general model that implements this adaptive behaviour using Bayesian

inference. This model is divided in two parts: the critic which learns the environment and the

actor that makes decision on the basis of the learned model of the environment.

The critic side of the model (called Hierarchical Adaptive Forgetting Variational Filter,

HAFVF [1]) discriminates contingency changes from accidents on the basis of past environ-

mental volatility, and adapts its learning accordingly. This learner is a special case of Stabilized

Forgetting (SF) [2]: practically, learning is modulated by a forgetting factor that controls the

relative influence of past data with respect to a fixed prior distribution reflecting the naive

knowledge of the agent. At each time step, the goal of the learner is to infer whether the envi-

ronment has changed or not. In the former case, she erases her memory of past events and

resets her prior belief to her initial prior knowledge. In the latter, she can learn a new posterior

belief of the environment structure based on her previous belief. The value of the forgetting

factor encodes these two opposite behaviours: small values tend to bring parameters back to

their original prior, whereas large values tend to keep previous posteriors in memory. The first

novel contribution of our work lies in the fact that the posterior distribution of the forgetting

factor depends on the estimated stability of past observations. The second and most crucial

contribution lies in the hierarchical structure of this forgetting scheme: indeed, the posterior

distribution of the forgetting factor is itself subject to a certain forgetting, learned in a similar

manner. This leads to a 3-level hierarchical organization in which the bottom level learns to

predict the environment, the intermediate level represents its volatility and the top level learns

how likely the environment is to change its volatility. We show that this model implements a

generalization of classical Q-learning algorithms.

The actor side of the model is framed as a full Drift-Diffusion Model of decision making [3]

(Normal-Inverse-Gamma Diffusion Process; NIGDM) that samples from the value distribu-

tions inferred from the critic in order to select actions in proportion to their probability of

being the most valued. We show that this approach predicts plausible results in terms of explo-

ration-exploitation policy balance, reward rate, reaction times (RT) and cognitive cost of deci-

sion. Using simulated data, we also show that the model can uncover specific features of
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human behaviour in single and multi-stage environments. The whole model is outlined in

Algorithm 8: the agent first selects an action given an (approximate) Q-sampling policy, which

is temporally implemented as a Full DDM [3] with variable drift rate and accumulation noise,

then learns based on the return of the action executed (reward r(sj, aj) and transition s0 = T(sj,
aj)). Then, the critic updates its approximate posterior belief about the state of the environ-

ment qj� p.

Algorithm 1: AC-HAFVF sketch a represents actions, r stands for rewards, s stands for

state and x stands for observations. μr is the expected value of the reward. q represents the

approximate posterior of the latent variable z and θ0 stands for the prior parameter values of

the distribution of z
1 for j = 1 to J do
2 Actor: NIGDM Line 8;
3 select aj � pðaj ¼ arg maxamrðsj; aÞjx<jÞ;
4 Observe xj = {r(sj, aj), sj+1};
5
6 Critic: HAFVF Line 8;
7 update qj(z(sj, aj)) � p(z(sj, aj)|xj;x<j, θ0);
8 end

We apply the proposed approach to Model-Free RL contexts (i.e. to agents limiting their

knowledge of the environment to a set of reward functions) in an extensive manner. We

explore in detail the application of our algorithm to Temporal Discounting RL, in which we

study the possibility of learning the discounting factor as a latent variable of the model. We

also highlight various methods for accounting for unobserved events in a changing environ-

ment. Finally, we show that the way our algorithm optimizes the exploration-exploitation bal-

ance is similar to Q-Value Sampling when using large DDM thresholds.

Importantly, the proposed approach is very general, and even though we apply it here only

to Model-Free Reinforcement Learning, it could be also extended to Model-Based RL [4],

where the agent models a state-action-state transition table together with the reward functions.

Additionally, other machine-learning algorithms can also benefit from this approach [1].

The paper is structured as follows: first (Related work section) we review briefly the state of

the art and place our work within the context of current literature. in the Methods section, we

present the mathematical details of the model. We derive the analytical expressions of the

learning rule, and frame them in a biological context. We then show how this learning scheme

directly translates into a decision rule that constitutes a special case of the Sequential Sampling

family of algorithms. In the Results section, we show various predictions of our model in

terms of learning and decision making. More importantly, we show that despite its complexity,

the model can be fitted to behavioural data. We conclude by reviewing the contributions of the

present work, highlighting its limitations and putting it in a broader perspective.

Related work

The adaptation of learning to contingency changes and noise has numerous connections to

various scientific fields from cognitive psychology to machine learning. A classical finding in

behavioural neuroscience is that instrumental behaviours tend to be less and less flexible as

subjects repeatedly receive positive reinforcement after selecting a certain action in a certain

context, both in animals [5–8] and humans [9–13]. This suggests that biological agents indeed

adapt their learning rate to inferred environmental stability: when the environment appears

stable (e.g. after prolonged experience of a rewarded stimulus-response association), they

show increased tendency to maintain their model of the environment unchanged despite

reception of unexpected data.
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Most studies on such automatization of behaviour have focused on action selection. How-

ever, weighting new evidence against previous belief is also a fundamental problem for percep-

tion and cognition [14–16]. Predictive coding [17–22] provides a rich, global, framework that

has the potential to tackle this problem, but an explicit formulation of cognitive flexibility is

still lacking. For example, whereas [22] provides an elegant Kalman-like Bayesian filter that

learns the current state of the environment based on its past observations and predicts the

effect of its actions, it assumes a stable environment and cannot, therefore, adapt dynamically

to contingency changes. The Hierarchical Gaussian Filter (HGF) proposed by Mathys and col-

leagues [23, 24] provides a mathematical framework that implements learning of a sensory

input in a hierarchical manner, and that can account for the emergence of inflexibility in vari-

ous situations. This model deals with the problem of flexibility (framed as expected “volatility”)

by building a hierarchy of random variables: each of these variables is distributed with a Gauss-

ian distribution with a mean equal to this variable at the trial before and the variance equal to a

non-linear transform of the variable at superior level. Each level encodes the distribution of

the volatility of the level below. Although it has shown its efficiency in numerous applications

[25–30], a major limitation of this model, within the context of our present concern, is that

While the HGF accommodates a dynamically varying volatility, it assumes that the precision

of the likelihood at the lowest level is static. To understand why it is the case, one should first

observe that in the HGF the variance at each level is the product of two factors: a first “tonic”

component, which is constant throughout the experiment, and a “phasic” component that is

time-varying and controlled by the level above. These terms recall the concepts of “expected”

and “unexpected” uncertainty [31, 32], and in the present paper, we will refer to these as vari-

ance (of the observation) and volatility (of the contingency). Now consider an experiment

with two distinct successive signals, one with a low variance and one with a high variance.

When fitted to this dataset, the HGF will consider the lower variance as the first tonic compo-

nent, and all the extra variance in the second part of the signal will be assigned to the “phasic”

part of the volatility, thus wrongfully considering noise of the signal as a change of contingency

(see Fig 1). In summary, the HGF will have difficulties accounting for changes in the variance

of the observations. Moreover, the HGF model cannot forget past experience after changes of

contingency, but can only adapt its learning to the current contingency. This contrasts with

the approach we propose, where the assessment of a change of contingency is made with the

Fig 1. Fitting of HGF model on dataset with changing variance. Two signals with a low (0.1) and high (1) variance were successively

simulated for 200 trials each. A two-level HGF and the HAFVF were fitted to this simple dataset. A. The HGF considered the lower variance

component as a “tonic” factor whereas all the additional variance of the second part of the signal was assigned to the “phasic” (time-varying)

volatility component. This corresponded to a high second-level activation during the second phase of the experiment (B.) reflecting a low

estimate of signal stability. The corresponding Maximum a Posteriori (MAP) estimate of the HAFVF had a much better variance estimate for

both the first and second part of the experiment (A.), and, in contrast to the HGF, the stability measure (B.) decreased only at the time of the

change of contingency. Shaded areas represent the 95% (approximate) posterior confidence interval of the mean. Green dots represent the value

of the observations.

https://doi.org/10.1371/journal.pcbi.1006713.g001
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use of a reference, naive prior that plays the role of a “null hypothesis”. This way of making the

learning process gravitate around a naive prior allows the model to actively forget past events

and to eventually come back to a stable learning state even after very surprising events. These

caveats limit the applicability of the HGF to a certain class of datasets in which contingency

changes affect the mean rather than the variance of observations and in which the training set

contains all possible future changes that the model may encounter at testing.

As will be shown in detail below, in the model proposed in the present paper, volatility is

not only a function of the variance of the observations: if a new observation falls close enough

to previous estimates then the agent will refine its posterior estimate of the variance and will

decrease its forgetting factor (i.e. will move its prior away from the fixed initial prior and closer

to the learned posterior from the previous trial), but if the new observation is not likely given

this posterior estimate, the forgetting factor will increase (i.e. will move closer to the fixed ini-

tial prior) and the model will tend to update to a novel state (because of the low precision of

the initial prior). In the results of this manuscript, we show that our model outperforms the

HGF in such situations.

In Machine Learning and in Statistics, too, the question of whether new unexpected data

should be classified as outlier or environmental change is important [33]. This problem of

“denoising” or “filtering” the data is ubiquitous in science, and usually relies on arbitrary

assumptions about environmental stability. In signal processing and system identification,

adaptive forgetting is a broad field where optimality is highly context (and prior)-dependant

[2]. Bayesian Filtering (BF) [34], and in particular the Kalman Filter [35] often lack the neces-

sary flexibility to model real-life signals that are, by nature, changing. One can discriminate

two approaches to deal with this problem: whereas Particle Filtering (PF) [36–38] is computa-

tionally expensive, the SF family of algorithms [2, 39], from which our model is a special case,

usually has greater accuracy for a given amount of resources [36] (for more information, we

refer to [35] where SF is reviewed). Most previous approaches in SF have used a truncated

exponential prior [40, 41] or a fixed, linear mixture prior to account for the stability of the pro-

cess [37]. Our approach is innovative in this field in two ways: first, we use a Beta prior on the

mixing coefficient (unusual but not unique [42]), and we adapt the posterior of this forgetting

factor on the basis of past observations, the prior of this parameter and its own adaptive for-

getting factor. Second, we introduce a hierarchy of forgetting that stabilizes the learning when

the training length is long.

We therefore intend to focus our present research on the very question of flexibility. We

will show how flexibility can be implemented in a Bayesian framework using an adaptive for-

getting factor, and what prediction this framework makes when applied to learning and deci-

sion making in Model-Free paradigms.

Methods

Bayesian Q-learning and the problem of flexibility

Classical RL [43], or Bayesian RL [44, 45] cannot discriminate learners that are more prone to

believe in a contingency change from those who tend to disregard unexpected events and con-

sider them as noise. To show this, we take the following example: let p(ρ|r�j) = Beta(α, β) be

the posterior probability at trial j of a binary reward rj* Bern(ρ) with prior probability ρ*
Beta(α0, β0). It can be shown that, at the trial j = vj + uj, where vj is the number of successes and

uj the number of failures, the posterior probability parameters read {αj = α0 + vj, βj = β0 + uj}.
This can be easily mapped to a classical RL algorithm if one considers that, at each update of v
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and u, the posterior expectation of ρ is updated by

E½rjr�j� ¼
vj� 1 þ rj

vj� 1 þ rj þ uj� 1 þ ð1 � rjÞ
ð1Þ

¼
j � 1

j
E½rj� 1� þ

rj
j

ð2Þ

¼ E½rj� 1� þ Zðrj � E½rj� 1�Þ ð3Þ

where Z≜
1

j
ð4Þ

which has the form of a classical myopic Q-learning algorithm with a decreasing learning rate.

The drawback of this fixed-schedule learning rate is that, if the number of observed suc-

cesses outnumbers greatly the number of failures (v� u) at the time of a contingency change

in which failures become suddenly more frequent, the agent will need v − u + 1 failures to start

considering that p(rj = 0|r�j)> p(rj = 1|r�j). This behaviour is obviously sub-optimal in a

changing environment, and Dearden [44] suggests adding a constant forgetting factor to the

updates of the posterior, making therefore the agent progressively blind to past outcomes.

Consider the case in which

E½rjr�j� ¼
wvj� 1 þ rj

wvj� 1 þ rj þ wuj� 1 þ ð1 � rjÞ

with w 2 [0; 1] being the forgetting factor. We can easily see that, in the limit case of α0 = 0 and

β0 = 0, aj þ bj !
1

1� w as j!1. We can define 1

1� w as the efficient memory of the agent, which

provides a bound on the effective memory, represented by the total amount of trials taken into

account so far (e.g. αj+ βj in the previous example). This produces an upper and lower bound

to the variance of the posterior estimate of p(ρ|r�j). This can be seen from the variance of the

beta distribution Var½rjr�j� ¼
ðajÞðbjÞ

ðajþbjÞ
2ðajþbjþ1Þ

which is maximized when αj = βj, and minimized

when either αj = α0 or βj = β0. In a steady environment, agents with larger memory are advan-

taged since they can better estimate the variance of the observations. But when the environ-

ment changes, large memory becomes disadvantageous because it requires longer time to

adapt to the new contingency. Here, we propose a natural solution to this problem by having

the agent erase its memory when a new observation (or a series of observations) is unlikely

given the past experience.

General framework

Our framework is based on the following assumptions:

Assumption 1 The environment is fully Markovian: the probability of the current observation
given all the past history is equal to the probability of this observation given the previous
observation.

Assumption 2 At a given time point, all the observations (rewards, state transitions, etc.) are
i.i.d. and follow a distribution p(x|z) that is issued from the exponential family and has a conju-
gate prior that also belongs to the exponential family p(z|θ0).

For conciseness, the latent variables z (i.e. action value, transition probability etc.) and their

prior θ will represent the natural parameters of the corresponding distributions in what

follows.
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Assumption 3 The agent builds a hierarchical model of the environment, where each of the
distributions at the lower level (reward and state transitions) are independent, i.e. the reward dis-
tribution for one state-action cannot be predicted from the distribution of the other state-actions.

Assumption 4 The agent can only observe the effects of the action she performs.
Finally, an important assumption that will guide the development of the model is that the

evolution of the environment is unpredictable (i.e. transition probabilities are uniformly dis-

tributed for all states of the environment) with the notable exception that it is more or less

likely to stay in the same state than to switch to another state. Formally:

Assumption 5 Let fzagAa¼1
be a set of environment states, with A� 0 and a, b, c 2 {1, 2, . . .,

A}, a =2 {b, c}. We assume that the transition probabilities are uniformly distributed for b, c 2 {1:

A}¬a, which reads:

pðzj ¼ zbjzj� 1 ¼ zaÞ ¼ pðzj ¼ zcjzj� 1 ¼ zaÞ 6¼ pðzj ¼ zajzj� 1 ¼ zaÞ:

Assumption 5 implies that any attempt to learn new transitions from state to state based on a

uniform prior over these transitions will harm the performance of the predictive model, and

the best strategy one could adopt is to learn the probability of staying in the same state and

group the probabilities of changing to any other state together. Then, the only two transition

probabilities to learn are:

pðzj ¼ zbjzj� 1 ¼ zaÞ for b 6¼ a

pðzj ¼ zajzj� 1 ¼ zaÞ:

This is what the “critic” part of the AC-HAFVF we propose achieves. Of course, the model

could be improved by learning the other transition probabilities, if needed, but we leave this

for future work (see for instance [35]).

Model specifications. We are interested in deriving the posterior probability of some

datapoint-specific measure pj(z j x�j, θ0), where j indicates the point in time, given the past

and current observations x�j and some prior belief θ0. Bayes theorem states that this is equal to

pðzjxÞ ¼
pðzjθ0Þ

QJ
j¼1

pðxjjzÞ
QJ

j¼1
pðxjÞ

: ð5Þ

We now consider the case of a subject that observes the stream of data and updates her poste-

rior belief on-line as data are gathered. According to Assumption 2, one can express the poste-

rior of z given the current observation xj

pðzjxj; x<jÞ ¼
pðxjjzÞpðzjx<jÞ

pðxjjx<jÞ
: ð6Þ

It appears immediately that the prior p(z|x<j) has the same form as the previous posterior,

so that our posterior probability function can be easily estimated recursively using the last pos-

terior estimate as a prior (yesterday’s posterior is today’s prior) until p(z|θ0) is reached.

Assumption 2 implies that the posterior p(z|xj, x<j) will be tractable: since p(x|z) is from the

exponential family and has a conjugate prior p(z|θ0), the posterior probability has the same

form as the prior, and has a convenient expression:

θj ¼
θxj
y
Z

j

" #

¼
θx

0
þ
Pj

i¼1
TðxiÞ

y
Z

0
þ j

" #

ð7Þ

where T(xi) is the sufficient statistics of the ith sample, and where we have made explicit the
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fact that θ0 ¼ fθ
x

0
; y

Z

0
g can be partitioned in two parts, from which y

Z

0
represents the prior

number of observations. Consequently, y
Z

j is equivalent to the effective memory introduced

above.

This simple form of recursive posterior estimate suffers from the drawbacks we want to

avoid, i.e. it does not forget past experience. Let us therefore assume that zj can be different

from zj−1 with a given probability, which we first assume to be known. We introduce a two-

component mixture prior where the previous posterior is weighted against the original prior

belief:

pðzjx<j; θ0Þ≜
pðzjx<jÞ

wpðzjθ0Þ
1� w

Zðw; x<j; θ0Þ

with w 2 ½0; 1�:

ð8Þ

The exponential weights on this prior mixture allow us to easily write its logarithmic form, but

it still demands that we compute the normalizing constant Z(w, x<j, θ0) =
R
p(z|x<j)

w p(z|θ0)1−w

d z. This constant has, however, a closed-form if both the prior and the previous posterior are

from the same distribution, issued from the exponential family.

In Eq 8, we assumed that the forgetting factor was known. However, it is more likely that

the learner will need to infer it from the data at hand. Putting a beta prior on this parameter,

and under the assumption that the posterior probability factorizes (Mean-Field assumption),

the joint probability at time j reads:

pðxj; z;wjx<j; θ0; �0Þ ¼ pðxjjzÞ
pðzjx<jÞ

wpðzjθ0Þ
1� w

Zðw; x<j; θ0Þ
pðwjx<j;�0Þ ð9Þ

where ϕ0 is the vector of the parameters of the beta prior of w. The model in Eq 9 is not conju-

gate, and the posterior is therefore not guaranteed to be tractable anymore.

Hierarchical filter

Let us now analyze the expected behaviour of an agent using a model similar to the one just

described, in a steady environment: if all x ¼ fxjg
J
j¼1

belong to the same, unknown distribu-

tion p(x|z), the value of Epjðzjx�jÞ
½z� will progressively converge to its true value as the prior (or

the previous posterior) over w will eventually put a lot of weight on the past experience (i.e. it

favours high values of w), since the distribution from which x is drawn is stationary. We have

shown that such models rapidly tend to an overconfident posterior over w [1]. In practice,

when the previous posterior of w is confident on the value that w should take (i.e. has low

variance), it tends to favor updates that reduce variance further, corresponding to values of

pj(w|x�j) that match pj−1(w|x<j), even if this means ignoring an observed mismatch between

pj−1(z|x<j) and pj(z|x�j). In order to deal with this issue, we enrich our model by introducing

a third level in the hierarchy.

We re-define the prior over w as a two-component mixture of priors:

pjðwjx<j; b; �0Þ≜
pðwjx<jÞ

bpðwj�0Þ
1� b

Zðb; x<j; a0Þ
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and the full joint probability has the form

pðxj; z;w; bjx<j; θ0; �0; β0Þ ¼ pðxjjzÞ
pðzjx<jÞ

wpðzjθ0Þ
1� w

Zðw; x<j; θ0Þ

pðwjx<jÞ
bpðwj�0Þ

1� b

Zðb; x<j; �0Þ
pðbjx<j; β0Þ:

ð10Þ

This additional hierarchical level allows the model to forget w as a function of observed data

(i.e. not at a fixed rate) providing it with the capacity to adapt the approximate posterior distri-

bution over w with greater flexibility [1]. The latent variable b can be seen as a regulizer for

pj(w j x�j).
The prior parameters of the HAFVF and their interpretation is outlined in Table 1.

Variational Inference

Eqs 6–10 involve the posterior probability distributions of the parameters given the previous

observations. When these quantities have no closed-form formula, two classes of methods can

be used to estimate them. Simulation-based algorithms [46] such as importance sampling, par-

ticle filtering or Markov Chain Monte Carlo, are asymptotically exact but computationally

expensive, especially in the present case where the estimate has to be refined at each time step.

The other class of methods, approximate inference [47, 48], consists in formulating, for a

model with parameters y and data x, an approximate posterior q(y), that we will use as a

proxy to the true posterior p(y|x). Roughly, approximate inference can be partitioned into

Expectation Propagation and Variational Bayes (VB) methods. Let us consider in more

detail VB, as it is the core engine of our learning model. In VB, optimizing the approximate

posterior amounts to computing a lower-bound to the log model evidence (ELBO)

LðqðyÞÞ � log pðxjx<jÞ, whose distance from the true log model evidence can be reduced by

gradient descent [49]. Hybrid methods, that combine sampling methods with approximate

inference, also exist (e.g. Stochastic Gradient Variational Bayes [50] or Markov Chain Varia-

tional Inference [51]). With the use of refined approximate posterior distributions [52–54],

they allow for highly accurate estimates of the true posterior with possibly complex, non-con-

jugate models.

We define a variational distribution over y with parameters υ: q(y|υ), which we will use as a

proxy to the real, but unknown, posterior distribution p(y|x). The two distribution match

Table 1. HAFVF prior parameters in the case of normally distributed variables. Horizontal lines separate the various levels.

General identifier Parameter Domain Name Interpretation

θ0 m
m
0 R Prior mean Expected value of the observations

k
m

0 Rþ Prior number of observations (over μ) Importance of the prior belief of μ

as
0 Rþ Gamma shape parameter Importance of the prior belief of σ

b
s

0 Rþ Gamma rate parameter Sum of squared residuals

ϕ0 a
�

0
Rþ Beta shape parameter Stability belief of {μ, σ}

b
�

0
Rþ Beta shape parameter Volatility belief of {μ, σ}

β0 a
b
0

Rþ Beta shape parameter Stability belief of w

b
b

0
Rþ Beta shape parameter Volatility belief of w

https://doi.org/10.1371/journal.pcbi.1006713.t001
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exactly when their Kullback-Leibler divergences are equal to zero, i.e.

DKL½qðyÞ k pðyjxÞ� ¼ 0

, DKL½pðyjxÞ k qðyÞ� ¼ 0

, pðyjxÞ ¼ qðyÞ

where we have omitted the approximate posterior parameters υ for sparsity of the expressions.

Given some arbitrary constraints on q(y), we can choose (for mathematical convenience) to

reduce DKL[q(y)||p(y|x)] wrt q(y). Formally, this can be written as

q�ðyÞ ¼ arg min
qðyÞ

DKL½qðyÞ k pðyjxÞ�

¼ arg min
qðyÞ

Z

qðyÞlog
qðyÞ
pðyjxÞ

dy

¼ arg min
qðyÞ

Z

qðyÞlog qðyÞdy �
Z

qðyÞlog pðyjxÞdy:

We can now substitute log p(y|x) by its rhs in the log-Bayes formula

DKL½qðyÞ k pðyjxÞ� ¼
R
qðyÞlog qðyÞdy �

R
qðyÞðlog pðx; yÞ � log pðxÞÞdy

, log pðxÞ ¼
Z

qðyÞlog pðx; yÞdy �
Z

qðyÞlog qðyÞdy
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LðqðyÞÞ

þ DKL½qðyÞ k pðyjxÞ�: ð11Þ

Because log p(x) does not depend on the model parameters, it is fixed for a given dataset.

Therefore, as we maximize LðqðyÞÞ in Eq 11, we decrease the divergence DKL[q(y)||p(y|x)]

between the approximate and the true posterior. When a maximum is reached, we can con-

sider that (1) we have obtained the most accurate approximate posterior given our initial

assumptions about q(y) and (2) LðqðyÞÞ provides a lower bound to log p(x). It should be noted

here that the more q(y) is flexible, the closer we can hope to get from the true posterior, but

this is generally at the expense of tractability and/or computational resources.

The ELBO in Eq 11 is the sum of the expected log joint probability and the entropy of the

approximate posterior. In order for the former to be tractable, one must carefully choose the

form of the approximate posterior. The Mean-field assumption we have made allows us to

select, for each factor of the approximate posteriors, a distribution with the same form as their

conjugate prior, which is the best possible configuration in this context [55].

Applying now this approach to Eq 10, our spherical approximate posterior looks like:

qðz;w; bÞ≜ qðzjθÞqðwj�ÞqðbjβÞ:

In addition, in order to recursively estimate the current posterior probability of the model

parameters given the past, we make the natural approximation that the true previous posterior

can be substituted by its variational approximation:

pðzjx<jÞ � qj� 1ðzÞ ð12Þ

and similarly for p(w|x<j) and p(b|x<j). The use of this distribution as a proxy to the posterior

greatly simplifies the optimization of qj(z, w, b).
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The full, approximate joint probability distribution at time j therefore looks like

pðxj; z;w; bjx<j; θ0; �0Þ � pðxjjzÞ
qj� 1ðzjθj� 1Þ

wpðzjθ0Þ
1� w

Zðw; θj� 1; θ0Þ

qj� 1ðwj�j� 1Þ
bpðwj�0Þ

1� b

Zðb; �j� 1; �0Þ
qðbjbj� 1Þ

where θj−1, ϕj−1 and βj−1 are the variational parameters at the last trial for z, w and b respec-

tively. A further advantage of the approximation made in Eq 12 is that the prior of z and w

simplifies elegantly:

pðxj; z;w; bjx<jÞ � pðxjjzÞpðzjwðθj� 1 � θ0Þ þ θ0Þ�

pðwjbð�j� 1 � �0Þ þ �0Þpðbjbj� 1Þ
ð13Þ

(see Appendix A for the full derivation).

A conjugate distribution for p(w) is hard to find. Šmı̀dl and Quinn [56] propose a uniform

prior and a truncated exponential approximate posterior over w. They interpolate the normal-

izing constant between two fixed value of w, which allows them to perform closed-form

updates of this parameter. Here, we chose p(w|ϕ0) and q(w|ϕj) to be both beta distributions, a

choice that does not impair our ability to perform closed-form updates of the variational

parameters as we will see in the Update equation section.

In this model (see Fig 2), named the Hierarchical Adaptive Forgetting Variational Filter

[1], specific prior configurations will bend the learning process to categorize surprising

events either as contingency changes, or as accidents. In contrast with other models [57], w
and b are represented with a rich probability distribution where both the expected values

and variances have an impact on the model’s behaviour. For a given prior belief on z, a

confident prior over w, centered on high values of this parameter, will lead to a lack of flexi-

bility that would not be observed with a less confident prior, even if they have the same

expectation.

The critic: HAFVF as a reinforcement learning algorithm

Application of this scheme of learning to the RL case is straightforward, if one considers

x ¼ frjðsj; ajÞjg
J

j¼1
as being the observed rewards and z as the parameters of the distribution of

these rewards. In the following, we will assume that the agent models a normally distributed

state-action reward function xj = r(s, a), from which she tries to estimate the posterior distribu-

tion natural parameters z ≜ η(μ(s, a), σ(s, a)) where η(�) is the natural parameter vector of the

normal distribution. In this context, an intuitive choice for the prior (and the approximate

posterior) of these parameters is a Normal Inverse-Gamma distribution (NG� 1
): for the prior,

we have

mðs; aÞ � N m
m

0ðs; aÞ;
s2ðs; aÞ
k
m

0ðs; aÞ

� �

s2ðs; aÞ � G� 1
ðas

0
ðs; aÞ; bs

0
ðs; aÞÞ

and the approximate posterior can be defined similarly with a normal component

N m
m
j ðs; aÞ;

s2ðs;aÞ
k
m

j ðs;aÞ

� �

and a gamma component G� 1
ðasj ðs; aÞ; b

s

j ðs; aÞÞ.
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Update equation. Even though the model is not formally conjugate, the use of a mixture

of priors with exponential weights makes the variational update equations easy to implement

for the first level. Let us first assert a few basic principles from the Mean-Field Variational

Inference framework: it can be shown that, under the assumption that the approximate poste-

rior factorizes in q(y1 y2) = q(y1)q(y2), then the optimal distribution q�(y1) given our current

estimate of q(y2) is given by

q�ðy1Þ ¼ expðEqðy2Þ
½log pðx; yÞ� � log ZðxÞÞ ð14Þ

where log Z is some log-normalizer that does not depend on y. Eq 14 states that each set of var-

iational parameters can be updated independently given the current value of the others: this

usually lead to an approach similar to EM [46], where one iterates through the updates of vari-

ational posterior successively until convergence.

Fortunately, thanks to the conjugate form of the lower level of the HAFVF, Eq 14 can be

unpacked to a form that recalls Eq 7 where the update of the variational parameters of z reads:

θj ¼
ϑ̂x þ TðxiÞ

ŴZ þ 1

" #

ð15Þ

Fig 2. Directed Acyclic Graph of the HAFVF model. Plain circles represent observed variables, white circles represent latent variables and dots

represents prior distribution parameters. Dashed circles and dashed arrows represent approximate posteriors and approximate posterior

dependencies. A weighted prior latent node is highlighed.

https://doi.org/10.1371/journal.pcbi.1006713.g002
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where

ϑ̂≜EqðwÞ½w�ðθj� 1 � θ0Þ þ θ0

is the weighted prior of z (see Appendix A). This update scheme can be mapped onto and be

interpreted in terms of Q-learning [43] (see Appendix B). Again, ŴZ þ 1 is the updated effective
memory of the subject, which is bounded on the long term by the (approximate) efficient mem-
ory 1=ð1 � EqðwÞ½w�Þ. One can indeed see that the actual efficient memory, which reads

EqðwÞ
1

1 � w

� �

¼

a� þ b
�
� 1

b � 1
if b > 1

undefined otherwise

8
<

:

is undefined when b� 1. To solve this issue, we used the first order Taylor approximation

EqðwÞ
1

1 � w

� �

�
1

1 � EqðwÞ½w�

which is a biased but consistent estimator of the efficient memory, as it approaches its true

value for large values of ϕ.

More specifically, for the approximate posterior of a single observation stream x ¼ fxjg
J
j¼1

with corresponding parameters fm
m
j ; k

m
j ; a

s
j ; b

s

j g, we can apply this principle easily, as the result-

ing distribution has the form of a NG� 1
with parameters:

m
m
j ¼

ŵkmj� 1m
m

j� 1 þ ð1 � ŵÞkm0m
m

0

k
m
j

þ
xj
k
m
j

k
m
j ¼ ŵkmj� 1 þ ð1 � ŵÞkm0 þ 1

asj ¼ ŵasj� 1
þ ð1 � ŵÞas

0
þ

1

2

b
s

j ¼ ŵbj� 1 þ ð1 � ŵÞbs
0
þ

1

2
ŵkj� 1ðm

m

j � m
m

j� 1
Þ

2
þ ð1 � ŵÞk0ðm

m

j � m
m

0
Þ

2
þ ðxj � m

m

j Þ
2

� �

ð16Þ

where we have used ŵ ¼ EqðwÞ½w�.
Deriving updates for the approximate posterior over the mixture weights w and b is more

challenging, as the optimal approximate posterior in Eq 14 does not have the same form as the

beta prior due to the non-conjugacy of the model. Fortunately, non-conjugate variational mes-

sage passing (NCVMP) [58] can be used in this context. In short, NCVMP minimizes an

approximate KL divergence in order to find the value of the approximate posterior parameters

that maximize the ELBO. Although NCVMP convergence is not guaranteed, this issue can be

somehow alleviated by damping of the updates (i.e. updating the variational parameters to a

value lying in between the previous value they endorsed and the value computed using

NCVMP, see [58] for more details). The need for a closed-form formula of the expected log-

joint probability constitutes another obstacle for the naive implementation of NCVMP to the

present problem: indeed, computing the expected value of the log-partition functions log Z(w)

and log Z(b) involves a weighted sum of the past variational parameters θj−1 and the prior θ0,

which are known, with a weight w, which is unknown. Expectation of this expression given q
(w) does not, in general, have an analytical expression. To solve this problem, we used the sec-

ond order Taylor expansion around ŵ (see Appendix A).

The derivation of the update equations of ϕ and β can be found in [1].
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Counterfactual learning. As an agent performs a series of choices in an environment, she

must also keep track of the actions not chosen and update her belief accordingly: ideally, the

variance of the approximate posterior of the reward function associated with a given action

should increase when that action is not selected, to reflect the increased uncertainty about its

outcome during the period when no outcome was observed. This requirement implies coun-

terfactual learning capability [59–61].

Two options will be considered here: the first option consists in updating the approximate

posterior parameters of the non-selected action at each time step with an update scheme that

pulls the approximate posterior progressively towards the prior θ0, with a speed that depends

on w, i.e. as a function of the belief the agent has about environment stability. The second

approach will consist in updating the approximate posterior of the actions only when they are

actually selected, but accounting for past trials during which that action was not selected. The

mathematical details of these approaches are detailed in Appendix C.

Delayed updating. Even though the agent learns only actions that are selected, it can

adapt its learning rate as a function of how distant in the past was the last time the action was

selected. Formally, this approach considers that if the posterior probability had been updated

at each time step and the forgetting factor w had been stable, then the impact of the observa-

tions n trials back in time would currently have an influence that would decrease geometrically

with a rate ω≜ wn. We can then substitute the prior over z by:

pðzjx<j; djÞ≜
pj� 1ðzjx<jÞ

opðzjθ0Þ
1� o

Zðo; x<j; θ0Þ
ð17Þ

which is identical to Eq 8 except that w has been substituted by ω.

We name this strategy Delayed Approximate Posterior Updating.

Continuous updating. When an action is not selected, the agent can infer what value it

would have had given the observed stability of the environment. In practice, this is done by

updating the variational parameters of the selected and non-selected action using the observed

reward for the former, and the expected reward and variance of this reward for the latter.

This approach can be beneficial for the agent in order to optimize her exploration/exploita-

tion balance. In Appendix C.1, it is shown that if the agent has the prior belief that the reward

variance is high, then the probability of exploring the non-chosen option will increase as the

lag between the current trial and the last observation of the reward associated with this option

increases.

This feature makes this approach intuitively more suited for exploration among multiple

alternatives in changing environments, and we therefore selected it for the simulations

achieved in this paper.

Temporal difference learning. An important feature required for an efficient Model-Free

RL algorithm is to be able to account for future rewards in order to make choices that might

seem suboptimal to a myopic agent, but that make sense on the long run. This is especially use-

ful when large rewards (or the avoidance of large punishments) can be expected in a near

future.

In order to do this, one can simply sum the expected value of the next state to the current

reward in order to perform the update of the reward distribution parameters. However,

because the evolution of the environment is somehow chaotic, it is usually considered wiser to

decay slightly the future rewards by a discount rate γ. This mechanism is in accordance with

many empirical observations of animal behaviours [62–64], neurophysiological processes [65–

67] and theories [68–70].
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As the optimal value of γ is unknown to the agent, we can assume that she will try to esti-

mate its posterior distribution from the data as she does for the mean and variance of the

reward function. Appendix D shows how this can be implemented in the current context. An

example of TD learning in a changing environment is given in the TD learning with the

HAFVF section.

We now focus on the problem of decision making under the HAFVF.

The actor: Decision making under the HAFVF

Bayesian policy. In a stable environment where the distribution of the action values are

known precisely, the optimal choice (i.e. the choice that will maximize reward on the long

run) is the choice with the maximum expected value: indeed, it is easy to see that if

E½rðs; a1Þ� > E½rðs; a2Þ�, then E½
P

nrnðs; a1Þ� > E½
P

nrnðs; a2Þ� (here and for the next few para-

graphs, we will restrict our analysis to the case of single stage tasks, and omit the s input in the

reward function). However, in the context of a volatile environment, the agent has no certainty

that the reward function has not changed since the last time she visited this state, and she has

no precise estimate of the reward distribution. This should motivate her to devote part of her

choices to exploration rather than exploitation. In a randomly changing environment, there is

no general, optimal balance between the two, as there is no way to know how similar is the

environment wrt the last trials. The best thing an agent can do is therefore to update her cur-

rent policy wrt her current estimate of the uncertainty of the latent state of the environment.

Various policies have been proposed in order to use the Bayesian belief the agent has about

its environment to make a decision that maximizes expected rewards in the long run. Here we

will focus more particularly on Q-value sampling, or Q-sampling (QS) [71]. Note that we use

the terminology Q-value sampling in accordance with Dearden [44, 71], but one should recall

that QS is virtually indistinguishable from Thompson sampling [72, 73]. Our framework can

also be connected to another algorithm used in the study of animal RL [74, 75], based on the

Value of Perfect Information (VPI) [44, 45, 76], which we describe in Appendix E.

QS [71] is an exploration policy based on the posterior predictive probability that an action

value exceeds all the other actions available:

pðaÞ≜ pða ¼ arg max
a

mðaÞÞ ¼ EpðmðaÞÞ½pðmðaÞ > mða0Þ 8a0:aÞ�: ð18Þ

The expectation of Eq 18 provides a clear policy to the agent. The QS approach is compelling

in our case: in general, the learning algorithm we propose will produce a trial-wise posterior

probability that should, most of the time, be easy to sample from.

In bandit tasks, the policy dictated by QS is optimal provided that the subject has an equal

knowledge of all the options she has. If the environment is only partly and unequally explored,

the value of some actions may be overestimated (or underestimated), in which case QS will fail

to detect that exploration might be beneficial. QS can lead to the same policy in a context

where two actions (a1 and a2) have similar uncertainty associated with their reward distribu-

tions (σ1 = σ2) but different means (μ1 > μ2), and in a context where one action has a much

larger expected reward (μ1� μ2) but also larger uncertainty (σ1� σ2) (see [44] for an exam-

ple). This can be sub-optimal, as the action with the larger uncertainty could lead to a higher

(or lower) reward than expected: in this specific case, choosing the action with the largest

expected reward should be even more encouraged due to the lack of of knowledge about its

true reward distribution, which might be much higher than expected. A strategy to solve this

problem is to give to each action value a bonus, the Value of Perfect Information, that reflects

the expected information gain that will follow the selection of an action. This approach, and its

relationship to our algorithm, is discussed in Appendix E.
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Q-sampling as a stochastic process. Let us get back to the case of QS, and consider an

agent solving this problem using a gambler ruin strategy [77]. We assume that, in the case of

a two-alternative forced choice task, this agent has equal initial expectations that either a1 or

a2 will lead to the highest reward, represented by a start point z0 = z/2, where z will be

described shortly. The gambler ruin process works as follows: this agent samples a value

~rða1Þ � pðrða1Þjx<jÞ and a value ~rða2Þ � pðrða2Þjx<jÞ and assess which one is higher. If ~rða1Þ

beats ~rða2Þ, she computes the number of wins of a1 until now as z1 = z0 + 1, and displaces her

belief the other way (z0−1) if a2 beats a1. Then, she starts again and moves in the direction

indicated by sign(r(a1) − r(a2)) until she reaches one of the two arbitrary thresholds situated

at 0 or z that symbolize the two actions available. It is easy to see that the number of wins and

losses generated by this procedure gives a Monte Carlo sample of p(r(a1) > r(a2)|x<j). We

show in Appendix F.1 that this process tends to deteministically select the best option as the

threshold grows.

So far, we have studied the gambler ruin problem as a discrete process. If the interval

between the realization of two samples tends to 0, this accumulation of evidence can be

approximated by a continuous stochastic process [77]. When the rewards are normally distrib-

uted, as in the present case, this results in a Wiener process, or Drift-Diffusion model (DDM,

[78]), since the difference between two normally distributed random variables follows a nor-

mal distribution. This stochastic accumulation model has a displacement rate (drift) that is

given by

d
z
dt
� N ðmða1Þ � mða2Þ; s

2ða1Þ þ s
2ða2ÞÞ

see [79].

Crucially, it enjoys the same convergence property of selecting almost surely the best option

for high thresholds (see Appendix F.2).

Sequential Q-sampling as a Full-DDM model. This simple case of a fixed-parameters

DDM, however, is not the one we have to deal with, as the agent does not know the true value

of {μ(a), σ2(a)}a2a, but she can only approximate it based on her posterior estimate. Assuming

that the approximate posterior over the latent mean and variance of the reward distribution is

a NG� 1
distribution, and keeping the original statement d X

dt ¼ rða1Þ � rða2Þ, we have

d
X
dt
� N ð~m1 � ~m2; ~s

2

1
þ ~s2

1
Þ

where ~mi; ~s
2
i � N ðmmi ; s2

i =k
m
i ÞG

� 1
ðasi ; b

s

i Þ for i ¼ f1; 2g

, ~m1 � ~m2 � N m
m

1 � m
m

2;
s2

1

k
m

1

þ
s2

2

k
m

2

� �

~s2
1
� G� 1

ðas
1
; b

s

1
Þ

~s2
2
� G� 1

ðas
2
; b

s

2
Þ

ð19Þ

and where, for the sake of sparsity of the notation, the indices are used to indicate the corre-

sponding action-related variable.

To see how such evidence accumulation process evolves, one can discretize Eq 19: this

would be equivalent to sample at each time t a displacement

Dx ¼ Dt ~x þ
ffiffiffiffiffi
Dt
p

~B � ð20Þ
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where Δx stands for xt − xt−1. The drift ~x in Eq 20 is sampled as the difference between two

sampled means ~m1 � ~m2 and the squared noise ~B2 is sampled as the sum of the two sampled

variances ~s2
1
þ ~s2

2
. At each time step (or at each trial, quite similarly as we will show), the tuple

of parameters f~m1; ~m2; ~s
2
1
; ~s2

2
g is drawn from the current posterior distribution.

Hereafter, we will refer to this process as the Normal-Inverse-Gamma Diffusion Process, or

NIGDM.

NIGDM as an exploration rule. Importantly, and similarly to QS, this process has the

desired property of selecting actions with a probability proportional to their probability of

being the best option. This favours exploratory behaviour since, assuming equivalent expected

rewards, actions that are associated with large reward uncertainty will tend to be selected more

often. We show that the NIGDM behaves like QS in Appendix F.3. There, it is shown (Proposi-

tion 3) that, as the threshold grows, the NIGDM choice pattern resembles more and more the

QS algorithm. For lower values of the threshold, this algorithm is less accurate than QS (see

further discussion of the property of NIGDM for low thresholds in Appendix E).

Cognitive cost optimization under the AC-HAFVF. Algorithm 2 summarizes the

AC-HAFVF model. This model ties together a learning algorithm—that adapts how fast it for-

gets its past knowledge on the basis of its assessment of the stability of the environment—with

a decision algorithm that makes full use of the posterior uncertainty of the reward distribution

to balance exploration and exploitation.

Importantly, these algorithms make time and resource costs explicit: for instance, time con-

straints can make decisions less accurate, because they will require a lower decision threshold.

Fig 3 illustrates this interpretation of the AC-HAFVF by showing how accuracy and speed of

the model vary as a function of the variance of the reward estimates: the cognitive cost of mak-

ing a decision using the AC-HAFVF is high when the agent is uncertain about the reward

mean (low κj) but has a low expectation of the variance (low βj). In these situations, the choices

were also more random, allowing the agent to explore the environment. Decisions are easier to

make when the difference in mean rewards is clearer or when the rewards were more noisy.

Fig 3. Simulated policies for the AC-HAFVF as a function of reward variance βj and number of effective observations κj, for a fixed

value of posterior mean rewards (μ1 = −μ2 = 1), shape parameter α1 = α2 = 3 threshold z = 2, start point z0 = z/2 and τ = 0. A. Choices

were more random for more noisy reward distributions (i.e. high values of βj) and for mean estimates with a higher variance (i.e. with a lower

number of observations κj). B. Decisions were faster when the difference of the means was clearer (high κj) and when the reward distributions

was noisy (high β). Subjects were slower to decide what to do for noisy mean values but precise rewards, reflecting the high cognitive cost of

the decision process in these situations.

https://doi.org/10.1371/journal.pcbi.1006713.g003
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Besides the decision stage, the computational cost of the inference step can also be deter-

mined. To this end, one must first consider that the HAFVF updates the variational posterior

using a natural gradient-based [80] approach with a Fisher preconditioning matrix [58, 81,

82]: the learner computes a gradient of the ELBO wrt the variational parameters, then moves

in the direction of this gradient with a step length proportional to the posterior variance of the

loss function. Because of this, the divergence between the true posterior probability p(z|x�j)

and the prior probability p(z) (i.e. the mixture of the default distribution and previous poste-

rior) conditions directly the expected number of updates required for the approximate poste-

rior to converge to a minimum DKL[q||p] (see for instance [83]). Also, in a more frequentist

perspective and at the between-trial time scale, convergence rate of the posterior probability

towards the true (if any) model configuration is faster when the KL divergence between this

posterior and the prior is small [84]: in other words, in a stable environment, a higher confi-

dence in past experience will require less observations for the same rate of convergence,

because it will tighten the distance between the prior and posterior at each time step.

These three aspects of computational cost (for decision, for within-trial inference and for

across-trial inference) can justify the choice (or emergence) of lower flexible behaviours as

they ultimately maximize the reward rate [74, 85]: indeed, such strategies will lead in a stable

environment to faster decisions, to faster inference at each time step and to a more stable and

accurate posterior.

Algorithm 2: AC-HAFVF. For simplicity, the NIGDM process has been discretized.
input: prior belief {θ0, �0, β0}

1 for j = 1 to J do
2 Actor: NIGDM;

input: Start point z0, threshold ζ, non-decision time τ
3 k  0;
4 sample ~m i; ~s

2
i � N ðmmi ;s2

i =k
m
i ÞG

� 1
ðasi ;b

s

i Þ for i = {1, 2};
5 while 0 < zk < ζ do
6 k += 1;
7 sample dz � N ð~m1 � ~m2; ~s

2
1
þ ~s2

2
Þ;

8 move zk += δz;
9 end

10 select aj  
1 if zk � z

2 otherwise

(

;

11 Get reward rj = r(sj, aj), Observe transition sj+1 = j(sj, aj);
12
13 Critic: HAFVF;
14 ELBO  −1;
15 while |δL| � 10−3 do
16 update θjðsj; ajÞ ¼ arg maxθjðsj ;ajÞLðqðθjðsj; ajÞ; �j;βjÞÞ using CVMP;

17 update {�j, βj} using NCVMP;
18 dL  Lðqðθjðsj; ajÞ; �j;bjÞÞ � ELBO;
19 ELBO Lðqðθjðsj; ajÞ; �j;bjÞÞ;
20 end
21 end

Fitting the AC-HAFVF

So far, we have provided all the necessary tools to simulate behavioural data using the

AC-HAFVF. It is now necessary to show how to fit model parameters to an acquired dataset.

We will first describe how this can be done in a Maximum Likelihood framework, before gen-

eralizing this method to Bayesian inference using variational methods.
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The problem of fitting the AC-HAFVF to a dataset can be seen as a State-Space model fit-

ting problem. We consider the following family of models:

Ωj;n ¼ f ðΩj� 1;n;Ω0;n; xj� 1;nÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HAFVF

yj;n � Epðm1 ;m2 ;s
2
1
;s2

2
j Ωj;nÞ
½Wienerðm1 � m2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1
þ s2

2

p
; zn; z0n; tnÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NIGDM

8
>>>>>><

>>>>>>:

where Ωj;n ¼ fμ
m
j;n; κ

m
j;n;αs

j;n; β
s

j;n; �j;n; βj;ng
J;N

j;n¼1

and yj;n ¼ ftj;n; aj;ng
J;N
j;n¼1

ð21Þ

and tj,n stands for the reaction time associated with the state-action pair (s, a) of the subject n
at the trial j. Unlike many State-Space models, we have made the assumption in Eq 21 that the

transition model Oj,n = f(Oj−1,n, O0,n, xj−1,n) is entirely deterministic given the subject prior O0,

n and the observations x<j, which is in accordance with the model of decision making pre-

sented in the The actor: Decision making under the HAFVF section. Note that the Bayesian

procedure we will adopt hereafter is formally identical to considering that the drift and noise

are drawn according to the rules defined in the The actor: Decision making under the HAFVF

section, making this model equivalent to:

yj;n �Wienerð~x; ~B; zn; z0n; tnÞ

~x; ~B � f ðΩj� 1;n;Ω0;n; xj� 1;nÞ:

Quite importantly, we have made the assumption in Eq 21 that the threshold, the non-deci-

sion time and the start-point were fixed for each subject throughout the experiment. This is a

strong assumption, that might be relaxed in practice. To simplify the analysis, and because it is

not a mandatory feature of the model exposed above, we do not consider this possibility here

and leave it for further developments.

We can now treat the problem of fitting the AC-HAFVF to behavioural data as two separate

sub-problems: first, we will need to derive a differentiable function that, given an initial prior

O0,n and a set of observations xn produces a sequence Ωn ¼ fΩj;ng
J
j¼1

, and second (Maximum

a Posteriori estimate of the AC-HAFVF section) a function that computes the probability of

the observed behaviour given the current variational parameters.

Maximum a Posteriori estimate of the AC-HAFVF. The update equations described in

the Update equation section enable us to generate a differentiable sequence of approximate

posterior parameters Oj,n given some prior O0,n and a sequence of choices-rewards x. We can

therefore reduce Eq 21 to a loss function of the form

log pðyj;njx�j;n;Ω0;n; zn; z0n; tnÞ

whose gradient wrt O0,n can be efficiently computed using the chain rule:

rΩ0;n
flog pðyj;njx;Ω0;n; zn; z0n; tnÞg ¼

rΩ0;n
ff ðΩ0;n; x�jÞg

T
rΩj;n
flog pðyj;njΩj;n; zn; z0n; tnÞg

where Ωj;n ¼ f ðΩ0;n; x�jÞ:

Recall thatrΩ0;n
ff ðΩ0;n; x�jÞg

T
is the jacobian (i.e. matrix of partial derivative) of Oj,n wrt each
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of the elements of O0,n that are optimized, andrΩj;n
flog pðyj;njΩj;n; zn; z0n; tnÞg is the gradient

of the loss function (i.e. the NIGDM) wrt the output of f(�).
As the variational updates that lead to the evaluation of Oj,n are differentiable, the use of VB

makes it possible to use automatic Differentiation to compute the Jacobian of Oj,n wrtO0,n.

The next step, is to derive the loss function log p(yj,n|Oj,n, zn, z0n, τn). In this log-probability

density function, the local, trial-wise parameters

χj;n≜ fxj;n; l
� 1
ðs2

j;nða1ÞÞ; l
� 1
ðs2

j;nða2ÞÞg ð22Þ

have been marginalized out. This makes its evaluation hard to implement with conventional

techniques. Variational methods can be used to retrieve an approximate Maximum A Posteri-

ori (MAP) in these cases [86]. The method is detailed in Appendix G. Briefly, VB is used to

compute a lower bound (ℓj,n� log p(yj,n|Oj,n, zn, z0n, τn)) to the marginal posterior probability

described above for each trial. Instead of optimizing each variational parameters indepen-

dently, we optimize the parameters ρ of an inference network [87] that maps the current

HAFVF approximate posterior parameters Oj,n and the data yj,n to each trial-specific approxi-

mate posterior. This amortizes greatly the cost of the optimization (hence the name Amortized

Variational Inference), as the nonlinear mapping (e.g. multilayered perceptron) h(yj,n;ρ) can

provide the approximate posterior parameters of any datapoint, even if it has not been

observed yet. We chose qρ(χj,n|yj,n) to be a multivariate Gaussian distribution, which leads to

the following form of variational posterior:

qρðχj;njyj;nÞ ≜N ðmχj;n ;Sχj;nÞ

where mχj;n ; Lχj;n ¼ hðyj;n; ρÞ
ð23Þ

and Lχj;n is the lower Cholesky factor of Sχj;n . Another consideration is that, in order to

use the multivariate normal approximate posterior, the unbounded variances sample

l
� 1
ðs2

j;nðaiÞÞ; i ¼ 1; 2 must be transformed to an unbounded space. We used the inverse soft-

plus transform λ≜ log(exp(�) − 1), as this function has a bounded gradient, in contrasts with

the exponential mapping, which prevents numerical overflow. We found that this simple

trick could regularize greatly the optimization process. However, this transformation of

the normally distributed λ−1(�) variables requires us to correct the ELBO by the log-determi-

nant of the Jacobian of the transform [54], which for the sofplus transform of x is simply

log jd lðxÞ
dx j ¼ � log 1þ exp � xð Þð Þ.

The same transformation can be used for the parameters of θ0 that are required to be

greater than 0 (i.e. all parameters except μ0), which obviously do not require any log-Jacobian

correction.

In Eq 22, we have made explicit the fact that we used the three latent variables: the drift rate

and the two action-specific noise parameters. This is due to the fact that, unfortunately, the dis-

tribution of the sum of two Inverse-Gamma distributed random variables does not have a

closed form formula, making the use of single random variable B2
j;n ¼ s

2
j;nða1Þ þ s

2
j;nða2Þ chal-

lenging, whereas it can be done easily for ξj,n = μj,n(a1) − μj,n(a2), which is normally distributed

(see Eq 19).

The final step to implement a MAP estimation algorithm is to set a prior for the parameters

of the model. We used a simple L2 regularization scheme, which consists trivially in a normal

prior N ð0; 1Þ over all parameters, mapped onto an unbounded space if needed.

Algorithm 3 shows how the full optimization proceeds.

Algorithm 3: MAP estimate of AC-HAFVF parameters.
input: Data x = {rj,n, yj,n for j = 1 to J, n = 1 to N}

Learning and forgetting using reinforced Bayesian change detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006713 April 17, 2019 20 / 41

https://doi.org/10.1371/journal.pcbi.1006713


1 initialize Ωn = {θ0, �0, β0}n for n = 1 to N and IN§ weights ρ;
2 repeat
3 set L  0;
4 for n = 1 to N do
5 Set ~rρ;Ω0;n ;zn ;z0n ;tn

 0;

6 for j = 1 to J do
7 Learning Step: HAFVF;
8 Get Ωj,n = f(Ωj−1,n, Ω0,n, xj−1,n)
9 and Jacobian wrt Ω0,n: rΩ0;n

ff ðΩ0;n; x�jÞg using FAD�;

10 Decision Step: HAFVF;
11 Get ELBO ℓj,n of logpðyj;njΩj;n; zn; z0n

; tnÞ using AVI†;
12 and corresponding gradient rρ;Ωj;n ;zn ;z0n ;tn

f‘j;ng using RAD‡;

13 Increment L += ℓj,n;
14 Compute gradient wrt Ω0,n using the chain rule:
15 ~rΩ0;n

þ ¼ rΩ0;n
ff ðΩ0;n; x�jÞgrΩj;n

f‘j;ng;

16 Increment gradient of DDM and IN parameters
17 ~rρ;zn ;z0n ;tn

þ ¼ rr;zn ;z0n ;tn
f‘j;ng;

18 end
19 L2-norm regularization:
20 Lþ ¼ � 1

2
k fΩ0;n; zn; z0n; tng k

2
2
;

21 ~rΩ0;n ;zn ;z0n ;tn
þ ¼ � fΩ0;n; zn; z0n; tng;

22 end
23 Perform gradient step ρ;Ω0;n; zn; z0n; tnþ ¼ Z

~rρ;Ω0;n ;zn ;z0n ;tn
for a small η;

24 until Some convergence criterion is met;
§ IN = Inference Network, � FAD = Forward Automatic Differenciation,
† AVI = Amortized Variational Inference, ‡ RAD = Reverse Automatic Dif-
ferentiation (i.e. backpropagation).

Results

We now present four simulated examples of the (AC-)HAFVF in various contexts. The first

example compares the performance of the HAFVF to the HGF [23, 24] in a simple contin-

gency change scenario. The second example provides various case scenarios in a changing

environment, illustrating the trade-off between flexibility and the precision of the predictions

(Learning and flexibility assessment section), including cases where agents fail to adapt to con-

tingency changes following prolonged training in a stable environment, as commonly

observed in behavioural experiments [5]. The third example shows that the HAFVF can be

efficiently fitted to a RL dataset using the method described in Fitting the AC-HAFVF section.

The fourth and final example shows how this model behaves in multi-stage environments, and

compares various implementations.

Adaptation to contingency changes and comparison with the HGF

In order to compare the performance of our model to the HGF, we generated a simple dataset

consisting of a noisy square-wave signal of two periods of 200 trials, alternating between two

normally distributed random variables (N ð1; 0:33Þ and N ð� 1; 0:33Þ). We fitted both a

Gaussian HGF and the HAFVF to this simple dataset by finding the MAP parameter configu-

ration for both models. The default configuration of the HGF was used, whereas in our case

we put a normal hyperprior of N ð0; 1Þ on the parameters (with inverse softplus transform for

parameters needing positive domains).

This fit constituted the first part of our experiment, which is displayed on the left part of Fig

4. We compared the quadratic approximations of the Maximum Log-model evidences [88] for
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both models, which for the HAFVF reads

log pðθ�
0
; �
�

0
; β�

0
j xÞ ¼

XJ

j¼1

log pðxjjzÞ þ wlog qj� 1ðzjθj� 1Þ þ ð1 � wÞlog pðzjθ0Þ

� log Zðw; θj� 1; θ0Þ þ blog qj� 1ðwj�j� 1Þ þ ð1 � bÞlog pðwj�0Þ

� log Zðb; �j� 1; �0Þ þ log qðbjβj� 1Þ þ log pðθ0; �0; β0Þ þ
M
2
log 2pþ

1

2
log j � Hj� 1

where H is the hessian of the log-joint at the mode and M is the number of parameters of the

model. We found a value of -186.42 for HAVFV and -204.73 for the HGF, making the

HAVFV a better model of the data, with a Bayes Factor [89] greater than 8 � 107.

The second part of the experiment consisted in adding to this 400-trial signal a 1200-trial

signal of input situated at y = 5. We evaluated for both models the quality of the fit obtained

when using the parameter configurations resulting from the fit of the first part of the experi-

ment (first 400 trials, or training dataset) (Fig 4, right part), on the remaining dataset (follow-

ing 1200 trials, i.e. testing dataset). An optimal agent in such a situation should first account

for the surprise associated with the sudden contingency change, and then progressively reduce

its expected variance estimate to reflect the steadiness of the environment. We considered the

capacity of both models to account for new data for a given parameter configuration as a mea-

sure of their flexibility. This test was motivated by the observation that a change detection algo-

rithm has to be able to detect changes at test time that might be qualitatively different from

Fig 4. HAFVF and HGF performance on the same dataset. Shaded areas represent the ±3 standard error interval. The two models were fitted

to the first 400 trials, and then tested on the whole trace of observations. A. Observations, mean and standard error of the mean estimated by

both models. B. The variance estimates show that the HAFVF adapted better to the variance in the first part of the experiment, reflected better

the surprise at the contingency change and adapted successfully its estimate when the environment was highly stable. The HGF, on the contrary,

rapidly degenerated its estimate of the variance, and did not show a significant trace of surprise when the contingency was altered. C. The value

of the effective memory of the HAVFV is represented by the approximate posterior parameter κμ, and the maximum memory (efficient

memory, see Bayesian Q-Learning and the problem of flexibility) allowed by the model at each trial.

https://doi.org/10.1371/journal.pcbi.1006713.g004
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changes at training time. A financial crisis is for instance an event that is in essence singular

and unseen in the past (otherwise it would have been prevented). The algorithm should never-

theless be able to detect it efficiently.

The HGF was unable to exhibit the expected behaviour: it hardly adapted its estimated vari-

ance to the contingency change and did not adjust it significantly afterwards. This contrasted

with the HAFVF, in which we observed initially an increase in the variance estimate at the

point of contingency change (reflecting a high surprise), followed by progressively decreasing

variance estimate, reflecting the adaptation of the model to the newly stable environment.

Together, these results are informative of the comparative performance of the two algo-

rithms. The Maximum Log-model Evidence was larger for the HAFVF than for the HGF by

several orders of magnitude, showing that our approach modelled better the data at hand than

the HGF. Moreover, the lack of generalization of the HGF to a simple, new signal not used to

fit the parameters, shows that this model tended to overfit the data, as can be seen from the

estimated variance at the time of the contingency change.

Importantly, this capability of the HAFVF to account for unseen volatility changes did not

need to be instructed through the selection of the model hyperparameters: it is a built in fea-

ture of the model.

Learning and flexibility assessment

In the following datasets, we simulated the learning process of four hypothetical subjects dif-

fering in their prior distribution parameters ϕ0, β0, whereas we kept θ0 fixed for all of them

(Table 2). The choice of the subject parameters was made to generate limit and opposite cases

of each expected behaviour. With these simulations, we aimed at showing how the prior belief

on the two levels of forgetting conditioned the adaptation of the subject in case of contingency

change (CC, Experiment 1) or isolated expected event (Experiment 2).

In both experiments, these agents were confronted with a stream of univariate random vari-

ables from which they had to learn the trial-wise posterior distribution of the mean and stan-

dard deviation.

In Experiment 1, we simulated the learning of these agents in a steady environment fol-

lowed by an abrupt CC, occurring either after a long (900 trials) or a short (100 trials) training.

The signal r = {r1, r2, . . ., rn} was generated according to a Gaussian noise with mean μ = 3

before the CC and μ = −3 after the CC, and a constant standard deviation σ = 1. Fig 5 summa-

rizes the results of this first simulation. During the training phase, the subjects with a long

memory on the first level learned the observation value faster than others. Conversely, the SS

subject took a long time to learn the current distribution. More interesting is the behaviour of

the four subjects after the CC. In order to see which strategy reflected best the data at hand, we

computed the average of the ELBOs for each model. The winning agent was the Long-Short

Table 2. This table summarizes the parameters of the beta prior of the two forgetting factors w and b used in the Learning and flexibility assessment section, as well

as the initial prior over the mean and variance. A low value of initial number of observations κ0 was used, in order to instruct learner to have a large prior variance over

the value of the mean. Each subject will be referred by its expected memory at the lower and higher level (i.e. L = long, S = short memory). For instance, the subject number

3 (LS) is expected to have a long first-level memory, but a short second-level memory, which should make her more flexible than subject 2 (SL) after a long training, whom

has a short first-level memory but a long second-level memory.

Subjects μ0 κ0 α0 β0 �10 �20 b10 b20

(1) LL 0 0.1 1 1 4.5 0.5 4.5 0.5

(2) SL 0.5 4.5 4.5 0.5

(3) LS 4.5 0.5 0.5 4.5

(4) SS 0.5 4.5 0.5 4.5

https://doi.org/10.1371/journal.pcbi.1006713.t002
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memory, irrespective of training duration, because it was better able to adapt its memory to

the contingency.

The two levels had a different impact on the flexibility of the subjects: the first level indi-

cated how much a subject should trust his past experience when confronted with a new event,

and the second level measured the stability of the first level. On the one hand, subjects with a

low prior on first-level memory were too cautious about the stability of the environment (i.e.

expected volatile environments) and failed to learn adequately the contingency at hand. On

the other hand, after a long training, subjects with a high prior on second-level memory tended

to over-trust environment stability, compared to subjects with a low prior on second level

memory, impairing their adaptation after the CC.

The expected forgetting factors also shed light on the underlying learning process occurring

in the four subjects: ŵ grew or was steady until the CC for the four subjects, even for the SL

subject which showed a rapid growth of ŵ during the first trials, but failed to reduce it at the

CC. In contrast, the LS subject did not exhibit this weakness, but rapidly reduced its expecta-

tion over the stability of the environment after the CC thanks to her pessimistic prior belief

over b.

In Experiment 2, we simulated the effect of an isolated, unexpected event (rj = −3) after

long and short training with the same distribution as before. For both datasets, we focused our

analysis on the value of the expected forgetting factors ŵ and b̂, as well as the effective memory

of the agents, represented by the parameter κμ. As noted earlier, the value of ŵ sets an upper

Fig 5. HAFVF predictions after a CC. Each column displays the results of a specific hyperparameter setting. The blue traces and subplots

represent the learning in an experiment with a long training, the orange traces and subplots show learning during a short training experiment.

A. The stream of observations in the two training cases are shown together with the average posterior expected value of the mean m
m
j . The

box line width illustrates the ranking of the ELBO of each specific configuration for the dataset considered, with bolder borders corresponding

to larger ELBOs. For both training conditions, the winning model (i.e. the model that best reflected the data) was the Long-Short memory

model. This can be explained by the fact that the first two models trusted too much their initial knowledge after the CC, whereas the Short-Short

learner was too cautious. B. Efficient memory (defined as 1=ð1 � Eq½��Þ) for the first level (ŵ, plain line) and second level (b̂, dashed line).

https://doi.org/10.1371/journal.pcbi.1006713.g005
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bound (the efficient memory) on κμ, which represented the actual number of trials kept in

memory up to the current trial.

Fig 6 illustrates the results of this experiment. Here, the flexible agents (with a low memory

on either the first or second memory level, or both) were disadvantaged wrt the low flexibility

agent (mostly LL). Indeed, following the occurrence of a highly unexpected observation, one

can observe that the LS learner memory dropped after either long or short training. The LL

learner, instead, was able to cushion the effect of this outlier, especially after a long training,

making it the best learner of the four to learn these datasets (Table 3).

Fitting the HAFVF to a behavioural task

The model we propose has a large number of parameters, and overfitting could be an issue.

To show that inference about the latent variables of the model depicted in the Fitting the

AC-HAFVF section is possible, we simulated a dataset of 64 subjects performing a simple one-

stage behavioural task, that consisted in trying to choose at each trial the action leading to the

maximum reward. In any given trial j ¼ fjg1000

j¼1
, the two possible actions (e.g. left or right but-

ton press) were associated to different, normally distributed, reward probabilities with a vary-

ing mean and a fixed standard deviation s2
1;2
¼ 1 : for the first action (a1) the reward had a

Fig 6. HAFVF predictions after an isolated unexpected event. The figure is similar to Fig 5. Here, the winning model was the one with a high

memory on the first and second levels. The figure is structured as Fig 5, and we refer to this for a more detailed description.

https://doi.org/10.1371/journal.pcbi.1006713.g006

Table 3. Average ELBOs for Experiment 1 and 2. Higher ELBOs stand for more probable models.

Experiment 1 Experiment 2

Dataset LL SL LS SS LL SL LS SS

1 -1.719 -1.657 -1.62 -1.863 -1.459 -1.652 -1.501 -1.863

2 -1.526 -1.649 -1.519 -1.866 -1.453 -1.648 -1.495 -1.866

https://doi.org/10.1371/journal.pcbi.1006713.t003
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mean of 0 for the first 500 trials, then switched abruptly to + 2 for 100 trials and then to −2 for

the rest of the experiment. The second action value was identically distributed but in the oppo-

site order and with the opposite sign (Fig 7). This pattern was chosen in order to test the flexi-

bility of each agent after an abrupt CC: after the first CC, an agent discarding completely

exploration in favour of exploitation would miss the CC. The second and third CC tested how

fast did the simulated agents adapt to the observed CC.

Individual prior parameters Ω0;n≜ fNG� 1 prior θ0;n; Beta priors �0;n; β0;ng and thresh-

olds zn were generated as follows: we first looked for the L2-regularized MAP estimates of

these parameters that led to the maximum total reward:

Ω�
0
; ζ� ¼ arg max

Ω0 ;z

YJ

j¼1

pðaj ¼ arg max
aj

rjjr<j; a<j;Ω; zÞpðΩ0; zÞ

using a Stochastic Gradient Variational Bayes (SGVB) [90] optimization scheme. With a negli-

gible loss of generality, the prior mean μ0 was considered to be equal to 0 for all subjects for

both the data generation and the fitting procedures. With a negligible loss of generality, the

prior mean μ0 was considered to be equal to 0 for all subjects for both the data generation and

the fitting procedures.

We then simulated individual priors centered around this value with a covariance matrix

arbitrarily sampled as

SΩ0 ;z
�W � 1

10

1 0 � � � 0

0 1 ..
.

..

. . .
.

0

0 � � � 0 0:1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

Fig 7. Simulated behavioral results. A. The values of the two available rewards are shown with the dotted lines. The average drift rate μ1 − μ2 is

shown in plain lines for two selected simulated subjects n1 and n2, and population average. Subject n1 was more flexible than subject n2 on both

the first and the second level, making her more prone to adapt after the CCs, situated at trials 400, 500 and 600. This result is highlighted in the

underlying zoomed box. B. The subjects’ expected variance (blue, log-valued) correlated negatively with the mean RT. The same correlation

existed with the expected stability on the first level (orange, logit-valued), but not with the second level, which correlated positively with the

average RT (green, logit-valued). Pearson correlation coefficient and respective p-values are shown in rounded boxes. C. Similarly, subjects with

a higher expected variance and first-level stability had a lower average accuracy. Again, second-level memory expectation had the opposite

effect.

https://doi.org/10.1371/journal.pcbi.1006713.g007
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where W � 1

n ð�Þ is an inverse-Wishart distribution with n degrees of freedom. This choice of

prior lead to a large variability in the values of the AC-HAFVF parameters, except for the

NIGDM threshold whose variance was set to a sufficiently low value (hence the 0.1 value in the

prior scale matrix) to keep the learning performance high.

This method ensured that each and every parameter set was centered around an unknown

optimal policy. This approach was motivated by the need to prevent strong constrains on the

data generation pattern while keeping behaviour close to optimal, as might be expected from

healthy population. The other DDM parameters, νn and τn, were generated according to a

Gaussian distribution centered on 0 and 0.3, respectively. Simulated subjects with a perfor-

mance lower than 70% were rejected and re-sampled to avoid irrelevant parameter patterns.

Learning was simulated according to the Continuous Learning strategy (see Counterfactual

learning), because it was supposed to link more comprehensively the tendency to explore the

environment with the choice of prior parameters O0. Choices and RT where then generated

according to the decision process described in the The actor: Decision making under the

HAFVF section using the algorithm described by [91]. Fig 7 shows two examples of the simu-

lated behavioural data.

The behavioural results showed a clear tendency of subjects with large expected variance in

action selection to act faster and less precisely than others. This follows directly from the struc-

ture of the NIGDM: larger variance of the drift-rate leads to faster but less precise policies.

More interesting is the negative correlation between the expected stability and the reward-rate

and average reaction time: this shows that the AC-HAFVF was able to encode a form of sub-

ject-wise computational complexity of the task. Indeed, large stability expectation leads sub-

jects to trust more their past experience, thereby decreasing the expected reward variance after

a long training, but it also leads to a lower capacity to adapt to CCs. For subjects with low

expectation of stability, the second level memory was able to instruct the first-level to trust past

experience when needed, as the positive correlation between accuracy and upper level memory

shows.

Fitting results. The fit was achieved with the Adam [92] Stochastic Gradient Descent

optimizer with parameters s = 0.005, β1 = 0.9, β2 = 0.99, where s decreased with a rate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di=1000e

p
where i is the iteration number of the SGD optimizer. We used the following

annealing procedure to avoid local minima: at each iteration, the whole set of parameters was

sampled from a diagonal Gaussian distribution with covariance matrix 1/i. This simple manip-

ulation greatly improved the convergence of the algorithm.

The MAP fit of the model is displayed in Fig 8. In general, the posterior estimates of the

prior parameters were well correlated with their true value, except for the prior shape parame-

ter α0. This lack of correlation did not, however, harm much the fit of the variance (see below),

showing that the model fit was able to accurately recover the expected prior variability of each

subject, which depended on α0. The NIGDM parameters were highly correlated with their

original value.

In order to evaluate the identifiability of our model, we performed the quadratic approxi-

mation to the posterior covariance of the fitted HAFVF parameters. The average result, dis-

played in Fig 9, shows that covariance between model parameters was low, except at the top

level. This indicates that each of parameter had a distinguishable effect on the loss. The

higher variance and covariance of the parameters αβ and ββ relates to the fact that the

influence of these prior parameters vanishes as more and more data is observed, in accor-

dance with the Bernstein-Von-Mises theorem. In practice, this means that αβ and ββ should

not be given behavioural interpretation but should rather be viewed as regularizers of the

model.
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We also looked at how the true prior expected value of w and b and variance correlated

with their estimate from the posterior distribution. All of these correlated well with their gen-

erative correspondent, with the notable exception of the expected value of the second-level

memory Eq½b� (Fig 10). This confirms again the role of regulizer of b over w.

TD learning with the HAFVF

To study the TD learning described in the Temporal difference learning section, we built two

similar Markov Decision Processes (MDP) which are described in Fig 11. In brief, they consist

of 5 different states where the agent has to choose the best action in order to reach a reward

(r = 5) delivered once a specific state has been reached (hereafter, we will use “rewarded state”

and “rewarded state-action” interchangeably). The task consisted for the agent to learn the cur-

rent best policy during a 1000-trial experiment where the contingency was fixed to the first

MDP during the first 500 trials, and then switched abruptly to the second MDP during the sec-

ond half of the experiment.

The same prior was used for all subjects: the mean and variance prior was set to μ0 = 0, κ0 =

0.5, α0 = 3, β0 = 0.5. The forgetting factors shared the same flat prior a
w;b
0 ¼ 1;b

w;b
0
¼ 1. The

priors on the discounting factor were set to a high value a
g
0 ¼ 9;b

w;b
0
¼ 1 in order to discourage

myopic strategies. The policy prior (see Appendix D) was set to a high value (π0 = 5.) in order

to limit the impact of initial choices on the computation of the state-action value.

Results are displayed in Fig 12. In both experiments, agents had a similar behaviour during

the first phase of the experiment: they both learned well the first contingency by assigning an

Fig 8. Correlation between the true (x axis) and the posterior estimate (y axis) of the parameters of the prior distributions across subjects.

The first row displays the correlations between true value and estimated θ0. The second row focuses on ϕ0 and β0, whereas the third row shows

the correlations for the NIGDM parameters (threshold, relative start-point and non-decision time). Correlation coefficients and associated p-

value (with respect to the posterior expected value) are displayed in blue boxes. All parameters are displayed in the unbounded space they were

generated from. Overall, all parameters correlated well with their true value, except for the α0(a).

https://doi.org/10.1371/journal.pcbi.1006713.g008
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accurate value to each state-action pair in order to reach the rewarded state more often. As

expected, after the contingency change, the agents in experiment (i) took a longer time to

adapt than they took to learn the initial contingency, which can be seen from the steeper slope

of the reward rate during the first half of the experiment wrt the second. This feature can only

be observed if the agent weights its belief by some measure of certainty, which is not modelled

in classical, non-Bayesian RL.

Fig 9. Average quadratic approximation to the posterior covariance of the HAFVF parameters at the mode.

https://doi.org/10.1371/journal.pcbi.1006713.g009

Fig 10. Correlation between true and expected values of the variances and forgetting factors. All the fitted values (y axis) are derived from

the expected value of θ0 (A., variance) and {ϕ0, β0} (B., forgetting factors) under the fitted approximate posterior distribution. Each dot

represents a different subject. A. True (x-axis) to fit (y axis) correlation for the reward (blue) and mean reward (red) variance. Both expected

values correlated well with their generative parameter, although the initial number of observations of the gamma prior α0 did not correlate well

with its generative parameter. B. True (x-axis) to fit (y axis) correlation for the first (blue) and second (red) level expected forgetting factor.

https://doi.org/10.1371/journal.pcbi.1006713.g010
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In experiment (ii), the CC changes less the environment structure than the CC in experi-

ment (i). The agents were able to take this difference into account: the value of the effective

memories dropped less, and so did the reward rate.

Fig 11. MDPs of experiment 1 (A) and 2 (B). Rewarded states are displayed in green. Each action had a probability of 90% to lead to the end

state indicated by the red and black arrows (respectively left and right action). The remaining 10% transition probabilities were evenly

distributed among the other states. For clarity, the thick arrows show the optimal path the agent should aim to take during the two

contingencies. Note that the only difference between experiment (i) and (ii) is the location of the rewarded state after the CC (state 2 for (i) and

5 for (ii)).

https://doi.org/10.1371/journal.pcbi.1006713.g011

Fig 12. Behavioural results in the first (left of Fig 11) and second experiments (right of Fig 11). A. and B. Heat plot of the probability of

visiting each state and selecting each action for the 64 agents simulated. (i) Agents progressively learned the first optimal actions (left action in

state 3-4-5) during the first half of the experiment, then adapted their behaviour to the new contingency (right action in states 1-4-2). (ii)

Similarly, in the second experiment, agents adapted their behaviour according to the new contingency (left action in 1-3-5). C. Efficient memory

on the first and second level, and foreseeing capacity. Since the CC was less important in (ii) than in (i), because the left action in state 3 kept

being rewarded, the expected value of w dropped less. The behaviour of the foreseeing capacity ( 1

1� Eq ½g�
) and, therefore, of the expected value of γ,

is indicative of the effect that a CC had on this parameter: when the environment became less stable, Eq½g� tended to increase which had the

effect of increasing the impact of future states on the current value. D. (i) Reward rate dropped after the CC, whereas the RT increased. The fact

that subjects made slower choices after the CC can be viewed as a mark of the increased task complexity caused by the re-learning phase. Along

the same line, RT decreased again when the subjects were confident about the structure of the environment. (ii) The CC had also a lower impact

on the reward rate and RT in experiment (ii).

https://doi.org/10.1371/journal.pcbi.1006713.g012
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An important feature observed in these two experiments is that the expected value of γ
adapted efficiently to the contingency: although we used a prior skewed towards high values of

γ, its value tended to be initially low as the agents had no knowledge of the various action val-

ues. Also, this value increased afterwards, reflecting a gain in predictive accuracy. The drop of

Eq½w� had the effect of pushing Eq½g� towards its prior, which in this case increased the poste-

rior expectation of γ. At the same time, the uncertainty about γ increased, thereby enhancing

the flexibility of this parameter.

Discussion

In this paper, we propose a new Bayesian Reinforcement Learning (RL) algorithm aimed at

accounting for the adaptive flexibility of learning observed in animal and human subjects. This

algorithm adapts continuously its learning rate to inferred environmental variability, and this

adaptive learning rate is optimal under some assumptions about statistical properties of the

environment. These assumptions take the form of prior distributions on the parameters of the

latent and mixing weight variables. We illustrate different types of behaviour of the model

when facing unexpected contingency changes by taking extreme case scenarios. These scenar-

ios implemented four types of assumptions on the tendency of the environment to vary over

time (first-level memory) and on the propensity of this environmental variability to change

itself over time (second-level memory). This approach allowed us to reproduce the emergence

of inflexible behaviour following prolonged experience of a stable environment, similar to

empirical observations in animals. Indeed, it has long been known that extensive training

leads to automatization of behaviour, called habits [5, 8, 9, 93–96], or procedural “system 1”

actor ([95, 97]), which is characterized by a lack of flexibility (i.e. failure to adapt to contin-

gency changes) and by reduction of computational costs, illustrated by the capacity to perform

these behaviours concomitantly to other tasks [98–100]. These automatic types of behaviour

are opposed to Goal-Directed behaviours ([99–101]) and share the common feature of being

inflexible, either in terms of planning (for Model-Free RL for instance) or in terms of adapta-

tion in general.

Regarding the actor part, we implemented a general, Bayesian decision-making algorithm

that reflects in many ways the Full-DDM proposed by [3], as it samples the reward distribution

associated to each action and selects at each time step the best option. These elementary deci-

sions are integrated until a decision boundary is reached. Therefore, the actor maps the cogni-

tive predictions of the critic onto specific behavioural outputs such as choice and reaction time

(RT). Importantly, this kind of Bayesian evidence accumulation process for decision making is

biologically plausible [102, 103], well suited for decision making in RL [104–107] and makes

predictions that are in accordance with physiological models of learning and decision making

[108]. Other noteworthy attempts have been made to integrate sampling-based decision-mak-

ing and RL [109, 110] using the DDM. However, the present work is the first, to our knowl-

edge, to frame the DDM as an optimal, Bayesian decision strategy to maximize long-term

utility on the basis of value distributions inferred from a RL algorithm. We show that this

RL-DDM association, and especially in the framework of the Full DDM [3], finds a grounded

algorithmic justification in a Bayesian perspective, as the resulting policy mimics the one of an

agent trying to infer the best decision given its posterior belief about the reward distribution.

Interestingly, under some slight modifications (i.e. assuming that the sampled rewards are

not simulated but retrieved from the subject memory), it is similar to the model recently pro-

posed by Bornstein et al. [111, 112]. More specifically, while our decision making scheme used

a heuristic based on the asymptotic property of MCMC, the scheme of decision making pro-

posed by Bornstein and colleagues might recall other approximation techniques such as
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Approximate Bayesian Computation (ABC [113]). Following this approach, data samples are

generated according to some defined rule, and only the samples that match the actual previous

observations are kept in memory to approximate the posterior distribution or, in our case, to

evaluate the option with the greatest reward. This simple trick in the decision making process

keeps the stochastic nature of the accumulation process, while directly linking the level of evi-

dence to items retrieved from memory.

The HAFVF also recalls the learning model proposed by Behrens and colleagues [32] who

studied the variations of human learning rate in volatile environments and showed that activ-

ity in Anterior Cingulate Cortex reflected their model estimate of environmental volatility.

The AC-HAFVF exhibits several differences with respect to this model: first, and crucially, it

uses a Stabilized Forgetting framework to modify the belief that the agent has in the parameter

values at each level, unlike Behrens et al. who used a purely forward model, similar in this

sense to the HGF. Second, our model used Mean-field VB to make inference about the param-

eter values, allowing it to approximate the posterior distribution at low cost. The drawback of

this approach, however, is that the AC-HAFVF presented here does not allow us to compute

posterior covariance of their parameters at each trial, in contrast to Behrens and colleagues.

Given these differences, it would interesting to compare how these various models of adapta-

tion to volatility fit actual behavioural data and how well their parameters follow recorded

neurobiological signals.

An important feature of the HAFVF is that it can account for unstructured changes of con-

tingency. In other words, it allows the agent to learn anew the state of the environment even if

the transition that leads to this state has never been experienced before. This is an important

feature that contrasts with Kalman filters and Hidden Markov Models [1]. Both approaches

have their pros and cons: learning state transition probabilities makes sense in environment

that enjoy specific regularity conditions, but if the environment is chaotic, they can lead to

poor adaptation performance. The approach we adopted here makes sense in situations in

which one expects that the environment may change in an unstructured way, e.g. in which an

environment that has remained stable for a long period of time may (suddenly or progres-

sively) change in a random and hence unpredictable manner. An intermediate approach could

however be developed [35].

One major advantage of our model is that its parameters are easily interpretable as reflect-

ing hidden behavioural features such as trial-wise effective memory, prior and posterior

expected stability, etc. We detail how model parameters can be fitted to data in order to

recover these behavioural features at the trial, subject and population levels. This approach

could be used, for instance, to cluster subjects in high-stability seeking and low-stability seek-

ing sub-populations, and correlate these behaviours to health conditions, neurophysiological

measures or training condition (stress, treatment etc.) We show that, for a simulated dataset,

the fitted posterior distribution of the parameters correlate well with their original value.

Moreover, each of the layers of the model (learning, first level memory and second level mem-

ory) have interesting behavioural correlates in terms of accuracy and RT. These results show

that the model is identifiable and that there is a low redundancy in the various layers of the

model. Also, different priors over the expected distribution of rewards and environment stabil-

ity led also to different outcomes in terms of reward rate and RT: subjects whom assumed

large environmental stability were likely to act faster, but also to be less flexible and to gain less

on average, than subjects whom assumed high likelihood of contingency changes. The second-

level memory had different effect, in the sense that large memory tended to be associated with

flexible or inflexible behavior, depending on whether past experience corresponded to volatile

or stable environment, respectively.
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This finding also resonates with the habitual learning literature, in which decreased flexibil-

ity is also typically associated with short average RT, reflecting lower cognitive cost (see also

[74]). However, in contrast to our approach, Keramati and colleagues suggest that adaptations

to changes in volatility would rely on switching between two alternative decision strategies: an

information-seeking goal-directed controller and a greedy habitual system. Habits would con-

sist in bypassing computationally expensive inference steps in order to maximize reward rate

when information gathering is too costly. The AC-HAFVF does not require to achieve model

selection prior to making a decision: on the contrary, computational cost of the decision pro-

cess is optimized automatically during learning and inference. For instance, VPI-guided evi-

dence accumulation (see Appendix E) is achieved at a cost virtually identical of inference using

a Q-value sampling strategy. Also, the switch from information-gathering to pure value-based

selection strategy is natural when the posterior variance of the action values decreases, and the

VPI vanishes as the average return becomes certain. Furthermore, using Q-value sampling

only, we can see that the behaviour turns from being stochastic and explorative to being deter-

ministic through training, again confirming that the learning and decision scheme we propose

can account for the emergence of automatic behaviours. In turn, this could only happen if the

environment is considered as stable by the agent. Further developments of the model could

show how the threshold (e.g. [114]) and the start point (e.g. [115]) could be adapted to opti-

mize the exploration policy and the cost of decisions.

Finally, we extended our work to MDP and multi-stages tasks. More than adding a mere

reparameterization of TD learning, we propose a framework in which the time discount factor

is considered by the agent as a latent variable: this opens the possibility of studying how ani-

mals and humans adapt their long-term / short-term return balance in different conditions of

environmental variability. We show in the results that deep CC provoke a reset of the parame-

ters, and lead subjects to erase their acquired knowledge of the posterior value of γ. We also

show that this ability to adapt γ to the uncertainty of the environment can also be determinant

at the beginning of the task, where nothing is known about the long term return of each action,

and where individuals might benefit of a low expectation of γ that contrasts with the high

expectation of subjects that have a deeper knowledge of the environment.

The present model is based on forgetting, which is an important feature in RL that should

be differentiated from learning. In signal processing and related fields where online learning is

required, learning can be seen as the capacity to build on previous knowledge (or assess a pos-

terior probability distribution in a Bayesian context) to perform inference at the present step.

Forgetting, on the contrary, is the capacity to erase the learning to come back at a naive, initial

state of learning. The algorithm we propose learns a posterior belief of the data distribution

and infers how likely this belief is to be valid in the next time step, on the basis of past environ-

mental stability. This allows the algorithm to decide when and how much to forget its past

belief in order to adapt to new contingencies. This feature sets our algorithm apart from previ-

ous proposals such as HGF, in which the naive prior looses its importance as learning goes on,

and where the learner has no possibility of coming back to his initial knowledge. This lack of

capacity to forget implies that the agent can be easily fooled by its past experience, whereas our

model is more resistant in such cases, as its point of reference is fixed (which is the common

feature of SF algorithms, see above). We have shown in the results that our model outperforms

the HGF both in its fitting capability and its capacity to learn new observations with a given

prior configuration. The AC-HAFVF should help to flexibly model learning in these contexts,

and find correlates between physiological measures, such as dopaminergic signals [116, 117],

and precise model predictions in term of memory and flexibility.

The SF scheme we have used, where the previous posterior is compared with a naive prior

to optimize the forgetting factor, is widely diffused in the signal processing community [2, 35–
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37, 40, 42, 118, 119] and finds grounded mathematical justifications for error minimization in

recursive Bayesian estimation [120]. However, it is the first time, to our knowledge, that this

family of algorithms is applied to the study of RL in animals. We show that the two algorithms

(RL and SF) share deep common features: for instance, the HAFVF and other similar algo-

rithms ([57]) can be used with a naive prior θ0 set to 0, in which case the update equations

reduce somehow to a classical Q-learning algorithm ([1] and Appendix B). Another interesting

bound between the two fields emerges when the measure of the environment volatility is built

hierarchically: an interesting consequence of the forgetting algorithm we propose is that, when

observations are not made, the agent erases progressively its memory of past events. This leads

to counterfactual learning schedule that favors exploration over exploitation at a rate dictated

by the learned stability of the environment (see Appendix C for a development). Crucially, this

updating scheme, and the consecutive exploration policy, flows directly from the hierarchical

implementation of the SF scheme.

This work provides a tool to investigate learning rate adaptation in behaviour. Previous

work has shown, for instance that the process of learning rate adaptation can be decomposed

into various components that relate to different brain areas or networks [32, 121]. Nassar and

colleagues [122] have also looked at the impact of age on learning rate adaptation, and found

that older subjects were more likely to have a narrow expectation of the variance of the data

they were observing, impairing thereby their ability to detect true CC. The AC-HAFVF shares

many similarities with the algorithm proposed by Nassar and McGuire: it is designed to detect

how likely an observation is to be caused by an abrupt CC, and adapts its learning rate accord-

ingly. Also, this detection of CC depends in both models not only on the first and second

moment of the observations, but also on their prior average and variability. We think, how-

ever, that our model is more flexible and biologically plausible than the model of Nassar and

McGuire for three reasons. First, it is fully Bayesian: when fitting the model, we do not fit an

expected variance of the outcome observed, but a prior distribution on this variance. This

important difference is likely to predict better the observed data, as the subjects performing an

experiment have probably some prior uncertainty about the variability of the outcome they

will witness. Second, we considered the steadiness of the environment as another Bayesian esti-

mate, meaning that the subjects will have some confidence (and posterior distribution) in the

fact that the environment has truly changed or not. Third, we believe that our model is more

general (i.e. less ad hoc) than the model of Nassar, as the general form of Eq 13 encompasses

many models that can be formulated using distributions issued from the exponential family.

This includes behavioural models designed to evolve in multi-stage RL tasks, such as TD learn-

ing or Model-Based RL [123].

It is important to emphasize that the model we propose does not intend to be universal. In

simple situations, fitting a classical Q-learning algorithm could lead to similar or even better

predictions than those provided by our model. We think, however, that our model complexity

makes it useful in situations where abrupt changes occur during the experiment, or where long

sequences (several hundreds of trials) of data are acquired. The necessity to account for this

adaptability could be determined by comparing the accuracy of the HAFVF model (i.e. the

model evidence) to the one obtained from a simpler Bayesian Q-Learning algorithm without

forgetting.

The richness and generality of the AC-HAFVF opens countless possibilities of future devel-

opments. The habitual/goal-directed duality has been widely framed in terms of Model-Free/

Model-Based control separation (e.g. [4, 11, 96, 124–128]). Although we do not model here a

Model-Based learning algorithm, we think our work will ultimately help to discriminate vari-

ous forms of inflexibility, and complete the whole picture of our understanding of human RL:

in the usual Model-Free/Model-Based control duality, overconfidence in a Model-Free
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controller means that the subject will need to go through the same sequences of state-action

transitions over and over to downweight actions situated early in a sequence. This contrasts

with Model-Based control, which can immediately adapt its policy when an action situated far

from the current state is devaluated [129]. The current implementation of the AC-HAFVF can

model a lack of flexibility due to an overconfidence in the volatility of the environment,

whereas adding a Model-Based component to the model might help to discriminate a lack of

flexibility due to the overuse of a Model-Free strategy that characterizes the Model-Free/

Model-Based paradigm. This balance could be learned and, in turn, be subject to forgetting. In

short, implementation of Model-Based RL in an AC-HAFVF context might enrich greatly our

understanding of how the balance between Model-Based and Model-Free RL works. This is

certainly a development we intend to implement in the near future.

In conclusion, we provide a new Model-Free RL algorithm aimed at modelling behavioural

adaptation to continuous and abrupt changes in the environment in a fully Bayesian way. We

show that this model is flexible enough to reflect very different behavioural predictions in case

of isolated unexpected events and prolonged change of contingencies. We also provide a bio-

logically plausible decision making model that can be integrated elegantly in our learning algo-

rithm, and completes elegantly the toolbox to simulate and fit datasets.
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127. Schad DJ, Jünger E, Sebold M, Garbusow M, Bernhardt N, Javadi AH, et al. Processing speed

enhances model-based over model-free reinforcement learning in the presence of high working mem-

ory functioning. Frontiers in Psychology. 2014; 5(December):1–10.

128. Kool W, Gershman SJ, Cushman FA. Cost-Benefit Arbitration Between Multiple Reinforcement-Learn-

ing Systems. Psychological Science. 2017; p. 095679761770828. https://doi.org/10.1177/

0956797617708288 PMID: 28731839
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