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ABSTRACT: Transportation losses of mar-
ket-weight pigs are an animal welfare concern, and 
result in direct economic impact for producers and 
abattoirs. Such losses are related to multiple fac-
tors including pig genetics, human handling, man-
agement, and weather conditions. Understanding 
the factors associated with total transport losses 
(TTL) is important to the swine industry because 
it can aid decision-making, and help in the de-
velopment of transportation strategies to min-
imize the risk of losses. Hence, the objective of 
this study was to investigate factors associated 
with TTL on market-weight pigs in typically field 
conditions for Midwestern United States using a 
generalized additive mixed model (GAMM). The 
final quasi-binomial GAMM included the fixed 
(main and interactions) effects of abattoir of des-
tination, type of driver, average market weight, 
distance traveled, wind speed, precipitation, and 

temperature-humidity index (THI), as well as the 
random effects of truck companies and the com-
bination of site of origin and period of the year. 
Results indicate significant associations between 
TTL and the main effect of all explanatory vari-
ables (P  <  0.05), except for wind speed and pre-
cipitation. Interactions of average market weight 
× abattoir, and wind speed × precipitation were 
also significant. A complex nonlinear relationship 
between TTL and model covariates were observed 
for distance traveled, THI, and interaction terms. 
This study showed that TTL of market-weight pigs 
are caused by a complex system involving multiple 
interacting factors, which can be potentially man-
aged to mitigate the risk of losses. In addition, the 
GAMM showed to be a simple and flexible ap-
proach to model TTL because it can capture non-
linear relationships, handle non-normal data, and 
can potentially accommodate data structure.
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INTRODUCTION

The transport of market-weight pigs is a crit-
ical and integral part of the modern pig production 

in the United States. In 2016, more than 118 mil-
lion pigs were transported to the market in the 
United States (USDA-NASS, 2018). However, 
transportation is a stressful event in the pigs’ life, 
which might result in undesirable losses. Such 
losses are caused either by deaths during the trans-
portation, termed as dead on arrival (DOA), or by 
non-ambulatory pigs (NAP), which are unable to 
continue with their own group during the trans-
portation process (Anderson et al., 2002) due to 
various reasons including lameness, traumas, and 
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injuries. The sum of DOA and NAP is commonly 
referred to as total transport losses (TTL).

TTL are a big problem for commercial pig pro-
duction in the United States, with a direct economic 
impact on producers and abattoirs. Such economic 
impact is magnified as transport losses occur at the 
last step of the production cycle, thus encompass-
ing all aggregated costs to produce a pig. Annual 
transportation losses in the United States have been 
estimated at 50 to 100 million dollars (Ellis et al., 
2003; Ritter et al., 2009). TTL are also a concern 
from an animal welfare and well-being perspec-
tive. DOA and NAP are useful indicators of animal 
welfare and often reflect adverse conditions dur-
ing transportation from farms to abattoirs (Vitali 
et al., 2014). Moreover, higher prevalence of TTL 
may result in negative publicity for pig companies 
and abattoirs. Hence, regulations and procedures to 
improve animal welfare during transportation are 
continuously debated by the swine industry (NPB, 
2017).

TTL are related to multiple factors including 
pig genetics, human handling, management de-
cisions, truck type, facilities design, and weather 
conditions (Rademacher and Davies, 2005; Ritter 
et  al., 2006; Haley et  al., 2008a; Fitzgerald et  al., 
2009; Sutherland et  al., 2009; Vitali et  al., 2014; 
NPB, 2017). These studies helped the swine in-
dustry in developing techniques and standard pro-
cedures to mitigate the risk of losses, but many 
other contributing factors to TTL remain unex-
plained (Fitzgerald et al., 2009). In this context, ob-
servational studies are extremely important as they 
provide data from real field conditions, which can 
be very helpful to investigate additional factors as-
sociated with TTL and thus, help inform manage-
ment decisions.

Transport losses for each truckload, expressed 
as the number of pigs lost over the total number 
of pigs in the shipment, follow a binomial process. 
Binomial response variables can be analyzed using 
generalized linear models, such as logistic regres-
sion (Nelder and Wedderburn, 1972). This method 
uses a linear predictor to describe the relationship 
between the response variable and the covariates, 
in the logistic scale (Hastie and Tibshirani, 1986). 
To accommodate potential nonlinear relationships, 
an alternative is to use generalized additive mod-
els (GAM; Hastie and Tibshirani, 1986; Wood, 
2017). Whenever a GAM incorporates both fixed 
and random effects, it is termed as a generalized 
additive mixed model (GAMM). Such GAMM 
model might be appropriate to study TTL of mar-
ket-weight pigs because of the binomial nature of 

this trait and its potentially nonlinear relationships 
with explanatory variables. Therefore, the objective 
of this study was to investigate factors associated 
with TTL on market-weight pigs in typical field 
conditions in Midwestern United States using a 
GAMM approach.

MATERIALS AND METHODS

Animal care and use approval were not obtained 
for this study because the data provided for statis-
tical analysis came from an existent database.

Data Description

Shipments reports of  market-weight pigs col-
lected from July 2014 to December 2015 were pro-
vided by Iowa Select Farms, Iowa Falls, IA. For 
each shipment of  pigs, available data included 
information about farm of origin, abattoir of  desti-
nation, date of  shipment, management group (i.e., 
pigs were raised in wean-to-finishing or finishing 
groups), transportation company, type of  driver 
(i.e. driver is the owner of  the truck or employee 
of  transportation company), the number of  pigs 
loaded, average market weight per shipment, and 
the latitude and longitude of  all sites and abattoirs 
(Table 1). Latitude and longitude were used to 
estimate the distance traveled between farms and 
abattoirs, by using the R package gmapsdistance 
(Melo et al., 2018). Moreover, the daily average 
measurements for temperature, relative humid-
ity, wind speed, and precipitation were retrieved 
from the National Oceanic and Atmospheric 
Administration (NOAA) government organiza-
tion. In addition, the temperature humidity Index 
(THI) was calculated using the following formula 
(NOAA, 1976):

�
THI = T − [0.55 − (0.0055 × RH)]× [T − 14.5],

where T is the temperature in degree Celsius, 
and   RHis the relative humidity in percentage. 
The exact time of the transportation was not 
available in the dataset. Hence, the date of the 
shipment was used to estimate the weather con-
ditions for each load by applying the weighted 
K-nearest neighborhood algorithm available in 
the R package kknn (Hechenbichler and Schliep, 
2016), using the information of 22 weather sta-
tions. In this approach, the weather condition for 
each shipment was estimated similar to a geo-
metric mean weighted by the distance between 
farms and weather stations.
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Data editing consisted of removing observa-
tions for which: farm of origin, abattoir of destin-
ation, or the number of animals in the shipment 
was not reported; truck companies with missing in-
formation or <20 shipments; loadings with <100 or 
>210 pigs; and any combination of site and quarter 
of the year with less than five observations. After 
this procedure, the final dataset included a total 
of 4,567,514 pigs from 420 farms loaded in 26,819 
shipments delivered to two abattoirs.

Generalized Additive Models

A GAM is a generalized linear model in which 
part of the linear predictor is expressed in terms of 
the sum of smooth functions (Hastie and Tibshirani, 
1986; Wood, 2017). For any response variable yi
(i = 1, ..., n) with a probability distribution from 
the exponential family with mean µi = E(yi) and 
scale parameter φ, i.e., yi ∼ EF(µi,ϕ), the linear 
predictor of a GAM is often represented by the fol-
lowing structure:

� g (µi) = aiθ+
∑

j

fj (xij),

where g is a known link function, ai is the ith row 
of an incidence matrix, θ is the vector of corres-
ponding parameters, and fj is the jth ( j = 1, ..., k) 
unknown smooth function of covariates xij. The 
smooth functions, fj, are commonly depicted by 

reduced rank smoothing splines (Wood et  al., 
2017), including different kind of polynomials 
such as the P-spline, adaptive variants, tensor 
products, thin plate, and cubic splines (Eilers and 
Marx, 1996; Wood, 2006; Wood et al., 2017). Any 
reduced rank smoothing spline can be represented 
as fj = Xjβj , in which Xj  is an n × pj incidence 
matrix containing the smooth spline basis func-
tions evaluated at vector xj, and βj is the corres-
ponding regression coefficient vector.

A common challenge of spline regression is to 
define the type and size of the basis functions in 
a way to prevent model overfitting. This problem 
can be addressed by adding a penalization term in 
the model likelihood. Hence, the estimation of the 
unknown parameters of the model seeks to maxi-
mize β̂ = argmax

β

l (β)− βTSλβ/2, where l(β) is 

the model log likelihood, βT is β transposed, and 
Sλ =

∑
j
λjSj, in which Sj is a matrix with known 

coefficients and λj are the smoothing parameters, 
which control the tradeoff between goodness of fit 
and smoothness of the model. When λj → 0, the 
penalty term has no effect on the jth smoothing 
spline function, which will closely interpolate the 
data observations, leading to a rougher adjustment. 
On the other hand, when λj → ∞ the penalty term 
has a substantial effect on the jth smoothing spline 
function, which become almost perfectly smooth, 
approximating to a straight line. The estimation of 

Table 1. Description of explanatory variables observed on 26,919 shipments, transporting 4,567,514 mar-
ket-weight pigs to two abattoirs from July 2014 to December 2015

Explanatory variables Description Units Number of levels

Abattoir The packing plant of destination — 2

Average market weight The average body weight of the pigs in the shipment kg —

Date1 The date of the shipment — —

Latitude2 The north–south orientation of the farm and abattoir location Degrees —

Longitude2 The east–west orientation of the farm and abattoir location Degrees —

Management group Pigs were raised in finishing or wean-to-finishing groups — 2

Pigs The number of pigs in each shipment Pigs —

Precipitation The estimated average daily precipitation of each shipment mm —

Relative humidity3 The estimated average daily relative humidity of each shipment % —

Site The farm of origin — 420

Temperature3 The estimated average daily temperature of each shipment °C —

THI The estimated average daily temperature-humidity index of each 
shipment

— —

Traveled distance The distance between farms and abattoirs km —

Truck company The company responsible for the transportation — 78

Type of driver The driver is the truck owner or employee — 2

Wind speed The estimated average daily wind speed of each shipment m/s —

1Provided information on the day, month, and year of each shipment.
2Latitude and longitude were used to estimate the travel distance between farms and abattoirs.
3Temperature and relative humidity was used to create a temperature-humidity index (THI).
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the unknown parameters of a GAM can be per-
formed by penalized iteratively re-weighted least 
squares, given λj. In practice, the smoothing param-
eters are unknown but they can be estimated by 
generalized cross-validation (Craven and Wahba, 
1979) or by restricted maximum likelihood estima-
tion (Wood, 2011).

Generalized additive models can be extended 
to accommodate random effects by defining the 
model in an empirical Bayesian approach (Wood, 
2017). In this framework, smooth functions are be-
lieved to be more smooth than wiggly, and this can 
be formalized by specifying an improper prior dis-
tribution for β proportional to exp[(λβTSλβ)/2].  
Re-parametrizations of the model are critical so that 
simple priors can be used, such as a uniform distri-
bution for the fixed effects, and a Gaussian distribu-
tion for the random components, i.e., N

(
0, Iλ−1

)
.  

The large sample approximation can be used to 
obtain credible intervals for β using a Gaussian 
posterior distribution N(β̂, [XTWX/ϕ+ Sλ]

−1
),  

where W = diag(wi) and wi = variance(µ̂i)ĝ′(µ̂i)
2.  

Such intervals are calibrated with the confidence 
intervals obtained by frequentist inference (Wood, 
2013).

Statistical Analysis

TTL (yi) were fit with a GAMM with the R 
package mgcv (Wood, 2011, 2017). Individual ship-
ments were the observation units of this study, and 
TTL were modeled as yi ∼ Binomial(ni, pi), where 
ni is the number of hogs in shipment i and pi is the 
probability of loss for that specific shipment. The 
variance of the Binomial distribution is a function 
of its own mean, making overdispersion a common 
challenge for logistic regression models in which 
ni > 1. Hence, a quasi-likelihood approach was con-
sidered to accommodate potential overdispersion 
in the data. Linear covariates were scaled to display 
mean zero and variance one and to make regression 
coefficients more interpretable. The model was de-
termined gradually by taking the following steps: 
(1) introduction of random effects to specify data 
architecture; (2) fit of a base GLMM including the 
fixed effects of abattoir, type of driver, management 
group, distance traveled, average market weight, 
wind speed, precipitation, and THI, as well as the 
random effects of truck companies and combin-
ation of site and quarter of year; (3) test two-way 
interactions between all fixed effects with a forward 
stepwise procedure considering the model deviance 
(the lowest value) and the statistical significance of 

an interaction as criterion to introduce interactions 
into the base model; (4) replacement of all signifi-
cant linear covariates and interactions by reduced 
ranking smoothing cubic splines; and (5) removal 
of variables for which the main effect and inter-
actions displayed no significance. In this study, a 5% 
level of significance was adopted and the Pearson’s 
correlations and the variation inflation factor were 
used to investigate issues of collinearity among 
covariates. Regression coefficients and confidence 
intervals for all explanatory variables were expo-
nentiated to be interpreted as odds ratios. After 
the forward selection procedure, the final model for 
TTL was specified as follows:

�

(yi|αk[i], γj[i]) ∼ Overdispersed Binomial(ni, pi,ϕ)

logit(pi) = αk[i] + γj[i] + ab[i] + do[i] +
9∑

e=1

bte(ti)βte

+
9∑

g=1

bsg(si)βsg +
9∑

h=1

brh(ri)βrh

+
9∑

p=1

bup(ui)βup +
9∑

c=1

bwc(wi)[ab[i]]
βwc[ab[i]]

+
5∑

l=1

5∑
m=1

βsl,rm bsl(si)brm(ri)

where ab[i] is the fixed effect of abattoir, with two 
levels; do[i] is the fixed effect of the type of driver (em-
ployee or owner); bte(ti), bsg(si), brh(ri), and bup(ui) 
are the reduced ranking cubic splines basis with 
knots e, g, h, and p placed at their corresponding 
10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and 
90th quantiles for distance traveled (i.e., ti), wind 
speed (i.e., si), precipitation (i.e., ri), and THI (i.e. 
ui), respectively; βte, βsg, βrh, and βup are the regres-
sion coefficients for distance traveled, wind speed, 
precipitation, and THI, respectively; bwc(wi)[ab[i]]

 is 
the reduced ranking cubic spline basis for average 
market weight with knots c placed at 10th, 20th, 
30th, 40th, 50th, 60th, 70th, 80th, and 90th quan-
tiles nested within the abattoir b; βwc[ab[i]] is the 
regression coefficients for average market weight 
nested within the abattoir b; βsl,rm is the regression 
coefficient for the interaction between wind speed 
and precipitation which is described by a tensor 
product of the cubic splines bsl(si) and brm(ri) with 
knots l and m placed at their corresponding 10th, 
30th, 50th, 70th, and 90th quantiles; αk[i] is the 
random effect of the kth level of the combination 
of sites and quarters of the year; and γj[i] is the 
random effect of the jth truck company. Random 
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effects were assumed to be independent from 
each other with distributions αk[i] ∼ N(0,λ−1

1 ) 
and γj[i] ∼ N(0,λ−1

2 ), where λ−1
1  and λ−1

2  are the 
smoothing parameters for the combination of 
sites and quarters of year and truck companies, 
respectively. The logit(pi) = log (pi/(1 − pi) ) is 
the link function, and ϕ is the scale parameter 
which is estimated based on the Pearson χ2 stat-
istics and quantifies data dispersion. When ϕ > 1 
the data are underdispersed, for ϕ > 1 the data 
are overdispersed, and for ϕ = 1 the statistical 
model reduces to a binomial logistic regression. 
The cubic splines basis functions were obtained as 
follows: b1(x) = 1, b2(x) = x and bz+2(x) = R(x, x∗z ) 
for z = 1, 2, 3, ..., q, where x∗z is the location 
of each knot z; x is the observed value; and 

R(x, x∗z ) =
[(

x∗z − 1
2

)2 − 1
12

] [(
x − 1

2

)2 − 1
12

]
/4

−
[(
|x − x∗z | − 1

2

)4 − 1
2

(
|x − x∗z | − 1

2

)2
+ 7

240

]
/24.

RESULTS AND DISCUSSION

Descriptive Statistics of TTL

The overall TTL of market-weight pigs from 
July 2014 to December 2015 was 0.76%, in which 
0.19% and 0.57% were attributed to DOA and 
NAP, respectively (Table 2). Fitzgerald et al. (2009) 
found incidences of 0.85%, 0.25%, and 0.60% for 
TTL, DOA, and NAP, respectively. In a review 
paper, Ritter et  al. (2009) reported an average of 
TTL of 0.62%, with 0.25% and 0.37% of DOA 
and NAP. Overall, the incidence of TTL in the pre-
sent study was within the industry range of 0.14% 
to 2.39% (Ritter et  al., 2009), with observed per-
centage of DOA numerically smaller than those 
found in previous studies (Fitzgerald et  al., 2009; 
Ritter et  al., 2009), while the occurrence of NAP 
was numerically higher than those reported by 
Ritter et  al. (2009). These differences in the inci-
dence of TTL, DOA, and NAP may be explained 
by various reasons including differences across pig 
production systems, personnel, management pro-
cedures, companies’ logistics, period when the data 
was collected, and pig genetics.

Weather Variables

The THI was significantly associated with TTL 
(P < 0.0001, Table 3). The risk of loss per shipment 
was fairly constant for THI values between −10 and 

10, with major increases below and above this inter-
val (Figure 1A). This result indicates two critical 
values for TTL at extreme conditions of the THI, 
suggesting that additional care must be considered 
in these cases. For instance, for THI greater than 
10, pigs should be transported at the coolest time 
of the day and cooling devices may be installed in 
trucks (i.e., fans), while for THI lower than −10, 
trucks must be provided with some kind of bed-
ding (Sutherland et  al., 2009; Vitali et  al., 2014). 
Different from our study, Fitzgerald et  al. (2009) 
modeled THI with a quadratic polynomial func-
tion and reported major increases of TTL above 1 
unit of THI, indicating that the probability of TTL 
drastically increased after this point. Differences in 
the shape of the curve and in the number of crit-
ical values are explained by the polynomial func-
tion used across studies. Penalized cubic splines are 
more flexible than quadratic polynomials, justify-
ing part of such difference.

The interaction between wind speed and pre-
cipitation was associated with TTL (P = 0.0209, 
Table 3). For example, for higher values of  pre-
cipitation, the risk of  losses decreased with wind 
speed above 4.5 ms−1, while it increased for lower 
values of  wind speed (Figure 1B). On the other 
hand, in days with no precipitation, TTL seems 
larger with lower values of  wind speed. This re-
sult indicates a complex relationship between 
transportation losses, wind speed, and precipita-
tion. Outside wind speed can affect the air circu-
lation inside trucks, especially for vehicles relying 
on passive ventilation system, which is typically 
used in commercial pig transportation in the 
United States. McGlone et al. (2014) studied dif-
ferent boarding levels to quantify transportation 
losses relative to the amount of  ventilation inside 
trucks in the Midwestern United States. These 
authors found increased losses for low boarding 
levels (0% to 30% of  truck side-vents are closed) 
and temperatures below −5  °C, highlighting the 
importance of  adjust ventilation inside trucks. In 
addition, precipitation may provide some cooling 
effect, decreasing the temperature inside trailers. 
Therefore, wind speed and precipitation have an 
influence on trucks micro-environmental condi-
tions, which can potentially affect pigs’ thermo-
regulation mechanisms. Furthermore, wind speed 
and precipitation can affect TTL by changing 
road conditions. For instance, in harsh transporta-
tion conditions, trucks may become more instable 
resulting in additional stress for pigs, which can 
potentially increase the risk of  transport losses. 
Hence, the effect of  wind speed and precipitation 
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on TTL need to be investigate in further studies 
for a better understand of  such interaction.

Abattoir, Type of Driver, Distance Traveled, and 
Average Market Weight

TTL were negatively associated with the type 
of driver (P < 0.0001, Table 3). The estimated risk 
of losses was 0.867 (95% CI: 0.865 to 0.870) times 
lower when trucks were driven by owners instead 
of by employees. This result might be interpreted 
as truck owners having a vested interest, thus being 
more careful at handling and moving pigs during 
the whole process of the transportation, compared 
with contracted haulers. Fitzgerald et  al. (2009) 
found a significant association of drivers with TTL, 
while Haley et  al. (2008b) reported that ~8% of 
transport losses variation was attributed to differ-
ences between drivers. To the best of the authors’ 

knowledge, no previous studies have reported the 
influence of the type of driver on the risk of TTL. 
These results suggest that understanding in greater 
depth the differences between drivers may further 
explain transportation losses, and thus be useful to 
the swine industry to contract, hire, or train drivers.

The distance traveled was associated with TTL 
(P = 0.0034, Table 3). The risk of losses increased 
with distances up to 125 km and decreased from this 
point to 397 km (Figure 1C). The stress incurred 
during the loading period may result in the increase 
in TTL observed for shipments traveling <125 km, 
as pigs do not have enough time to recover prior to 
arriving at the abattoir. Ritter et  al. (2006) found 
that the vast majority of stressed and fatigued pigs 
can reestablish normal conditions if  they are al-
lowed to rest 2 to 3 h. In addition, Sutherland et al. 
(2009) hypothesized that longer trips may allow 
extra time for pigs to recover and rest from the 

Table 2. Descriptive statistics of sample proportions of transportation losses, and numerical variables ob-
served on 26,919 shipments, transporting 4,567,514 market-weight pigs to 2 abattoirs from July 2014 to 
December 2015

Variable Mean SD Minimum Maximum

DOA, % 0.19 0.45 0.00 7.69

NAP, % 0.57 0.84 0.00 8.82

Total losses, % 0.76 1.04 0.00 9.88

Number of pigs per shipment 170.31 8.44 100.00 201.00

Average market weight, kg 125.50 5.77 104.60 145.09

Distance traveled, km 136.64 63.44 35.62 396.50

Average daily wind speed, ms−1 4.21 1.78 0.52 10.98

Average daily precipitation, mm 2.28 5.91 0.00 58.10

Average daily THI 9.71 9.63 −16.53 26.27

DOA = dead on arrival; NAP = non-ambulatory pigs; THI = temperature-humidity index.

Table 3. Parameter estimates and approximate significance level of smoothing functions on total transport 
losses of market-weight pigs using a generalized additive mixed model

Confidence interval (odds ratios)

Parameters Estimates Odds ratios Lower limit Upper limit P-value

Intercept −4.945 0.007 0.006 0.008 <0.0001

Abattoir: B −0.323 0.720 0.719 0.722 <0.0001

Driver: Owner −0.142 0.868 0.866 0.870 <0.0001

Smoothing functions EDF1 Ref. DF2 P-value

Distance travelled 3.2862 9 0.0034

THI 5.0547 9 <0.0001

Wind speed 0.0004 9 0.9998

Precipitation 1.0021 9 0.8837

Average market weight × abattoir A 4.9742 9 <0.0001

Average market weight × abattoir B 5.0547 9 <0.0001

Wind speed × precipitation 1.5295 16 0.0209

EDF = effective degree of freedom; Ref. DF = reference number of degrees of freedom.
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early stress caused by the loading process, decreas-
ing the overall transportation losses. These findings 
are consistent with Canadian studies that found a 
greater risk of TTL in shorter than longer distances 
(Haley et al., 2008a,b). Loading approaches includ-
ing restricted use of electric prods, loading groups 
of four to six pigs, and avoid mixing of pigs from 
different pens (Goumon and Faucitano, 2017) can 
be used to mitigate the stress incurred at loading. 
Therefore, such strategies can help to reduce TTL, 
especially in short distance trips.

The interaction between average market weight 
and abattoir was associated with TTL (P < 0.0001, 
Table 3). This result leads to different estimates of 
losses through the values of  live weights within 
each abattoir (Figure 1D). TTL increased along the 
values of  average market weight in both abattoirs, 
with a faster increment in the risk of  losses in one 
facility relative to the other. A  linear positive as-
sociation between average market weight and TTL 

has been reported in other studies (Ellis and Ritter, 
2005; Rademacher and Davies, 2005). According 
to Ellis and Ritter (2005), heavier pigs may show 
a greater metabolic response compared to lighter 
pigs during transportation, as a consequence of 
handling procedures. However, Hamilton et  al. 
(2004) reported minimal influence of  live weight 
(104 vs. 128 kg) on blood acid–base status under 
different handling intensity in finishing pigs. The 
stock density inside trucks can be used to adjust 
the average market weight within shipments, re-
ducing the risk of  TTL. Floor space of  0.48 m2 is 
recommended for each pig with about 129  kg to 
reduce transportation losses (Ritter et al., 2006). In 
addition, another strategy to monitor the average 
market weight is to use split marketing. This ap-
proach consists in removing the heaviest 25% to 
50% pigs from a pen to market 1 to 2 weeks earlier 
than their corresponding pen-mates (Scroggs 
et al., 2002; Conte et al., 2012), with the intent to 

Figure 1. Predicted total transport losses of market-weight pigs on the odds ratios scale for each significant reduced ranking cubic splines: (A) 
THI, (B) interaction between precipitation × wind speed, (C) distance traveled, and (D) interaction between average market weight × abattoir.
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deliver pigs with optimal weights to the abattoir. 
The benefits of  split marketing include reduction 
in the production cost, and shipments with more 
uniform weights (Scroggs et al., 2002; Conte et al., 
2012). Despite these advantages, economic and lo-
gistic aspects of  the pig production system should 
be taken into consideration before a farm adopts 
the split marketing strategy.

The abattoir of destination is also an important 
source of variation for TTL, indicating differ-
ences in the risk of losses across plants. This result 
may reflect differences in policies (i.e., discard of 
non-ambulatory pigs, and grid payment), facilities 
(i.e., unloading deck and ramp), management pro-
cedures (i.e., waiting and unloading time), and per-
sonnel of each abattoir. Haley et al. (2008b) studied 
the random effect of 33 abattoirs on transport losses 
of market-weight pigs delivered in Canada and the 
United States. These authors found that ~16% of 
transport losses variation was attributed to differ-
ences among abattoirs, highlighting the importance 
of this factor in the risk of TTL.

Ultimately, economic or logistics analysis to 
quantify the benefits of employing management 
strategies related to factors associated with TTL 
were not investigated in our study. For instance, 
suppose that the swine industry is willing to con-
tract only drivers that are the owners of their 
trucks, as an attempt to decrease TTL. Such deci-
sion, however, may incur in an extra shipping cost 
which could potentially lowered the net economic 
benefit of adopting such strategy. In addition, this 
strategy could reduce the overall availability of such 
type of driver (i.e., owner) compared with the in-
dustry demand. Hence, the adoption of such prac-
tice may not be justified by economic or logistics 
aspects alone. However, TTL is an animal welfare 
issue, and thus, adopting management practices to 
reduce the risk of loss should still be considered. 
Improving animal welfare in pig production is cru-
cial to ensure better quality of life for pigs, as well as 
to improve the overall consumer perception about 
the good practices employed in the swine industry 
to enhance animal welfare.

Generalized Additive Mixed Models

Mixed models have the benefit of accommo-
dating random effects into the statistical analysis, 
thereby accounting for the hierarchical organiza-
tion of the data, which is naturally inherited from 
the data collection process. Taking into consider-
ation, the structure of the data allows the parti-
tion of the total random variation across multiple 

levels of the data architecture, such as farms and 
transport companies, providing a more calibrated 
inference for hypothesis testing (Tempelman, 2009; 
Bello and Renter, 2018). In this study, we treated 
the combination of sites and quarters of the year, 
as well as truck companies as random effects, and 
they represented 21.2% and 0.59% of the total ran-
dom variation of TTL, respectively. These results 
suggest that the differences among truck companies 
are small and may reflect a uniformity in the indus-
try on standard management procedures and truck 
designs between pig carriers. Conversely, the com-
bination of sites and quarters of the year accounted 
for a considerable amount of variance, indicating 
large differences across sites and seasons of the 
year. Farms facilities (e.g., barn design), handling 
techniques, and personnel may partially explain the 
variability of sites and period of the year combi-
nation. This finding is consistent with Haley et al. 
(2008b), who reported that 25% of the total varia-
tion in in-transit losses was attributed to differences 
among farms.

GAMMs are a simple and flexible statistical 
regression technique with the capability to cap-
ture nonlinear relationships between explanatory 
and response variables. This feature of GAMM 
is often investigated by graphical visualization of 
the smoothing function since the interpretation 
of a simple linear coefficient is not meaningful 
in GAMM. The visual inspection of the model 
covariates clearly displayed a nonlinear pattern 
for distance traveled, THI, and both interactions 
of average market weight and abattoir, and wind 
speed and precipitation (Figure 1C, A, D, and B). 
Moreover, the graphical inspection of such curves 
has the advantage to potentially identify regions 
in the curve where the risk of transport losses sub-
stantially increases. For instance, the smoothing 
function of THI showed major increases on the risk 
of TTL between −10 and 10. Another benefit of 
GAMMs is to mitigate issues of overfitting, very 
common for example with linear models involving 
higher order polynomials. To avoid this problem, 
GAMMs introduce penalties in the maximum like-
lihood estimation so that the resulting curves are 
smoother and can potentially increase the model 
ability to predict new observations (Gareth et al., 
2007; Wood, 2017).

Statistical inference using GAMMs is useful to 
provide guidance to support decision-making. The 
estimates of regression coefficients and smoothing 
functions can be used to define strategies to miti-
gate the risk of TTL. For instance, imagine a 
producer transporting pigs in the summer to an 
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abattoir specialized in processed meats (i.e., ham). 
To make these products, heavier pigs are demanded, 
resulting in an expected increase in the risk of TTL 
with higher values of average market weight. In 
this scenario, the producer could contract drivers 
who are the owner of their trucks and try to trans-
port pigs at the coolest times of the day in vehicles 
containing cooling devices (e.g., fans). Therefore, 
according to specific situations, decisions can be 
tuned to balance the risk of TTL.

It is important to notice though that, without 
some additional assumptions, the information con-
veyed by regression models reflects only associations 
between the response and explanatory variables, 
with not necessarily a direct causal interpretation 
(Rosa and Valente, 2013; Bello et  al., 2018). The 
existence of confounders not accounted for in the 
model can generate spurious associations limiting 
the claim of causal mechanisms. Rosa and Valente 
(2013) and Bello et al. (2018) reviewed the potential 
use and implications of inferring causal effects from 
observational data in livestock production. These 
authors discussed specific statistical methods applied 
to causal inference, the challenges, and assumptions 
considered to claim a causal mechanism from ob-
servation data, as well as how causal interventions 
could improve management decisions on livestock 
production. Although GAMMs are not specifically 
designed to infer causal effects from observational 
data, such modeling approach is still important to 
support management decisions, in the sense that 
it provides predictive information of TTL for new 
observations.

CONCLUSIONS

TTL of  market-weight pigs are caused by a 
complex system involving multiple interacting 
factors, and nonlinear relationships. In the cur-
rent study, the risk of  TTL was associated with 
several factors including type of  driver, distance 
traveled, THI, and two interactions terms (e.g., 
average market weight × abattoir and wind speed 
× precipitation). GAMMs showed to be an effi-
cient approach to investigate factors associated 
to TTL, as it can handle non-normal distribution 
of  the response variable (e.g., Binomial, Poisson, 
and Gamma), accommodate nonlinearity be-
tween predictors and response variable, and take 
in consideration the hierarchical structure of  the 
data by introducing random effects. Therefore, 
GAMMs provide a powerful prediction tool for 
the swine industry to forecast potential losses 
during transportation. In addition, GAMMs 

can contribute with a better understanding of 
the factors associated with TTL, which can aid 
decision-making and development of  manage-
ment strategies to try to minimize such losses. 
However, as mentioned before, the GAMM ana-
lysis performed in this study was implemented 
on a predictive context, and thus, the causal in-
terpretation of  parameters is mostly speculative. 
Therefore, further analyses investigating causal 
inference on TTL of  market-weight pigs are a 
subject of  our future work.
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