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Abstract

To date, there is no reliable biomarker for the assessment or determination of cognitive 

dysfunction in Alzheimer’s disease and related dementia. Such a biomarker would not only aid in 

diagnostics, but could also serve as a measure of therapeutic efficacy. It is widely acknowledged 

that the hallmarks of Alzheimer’s disease, namely, amyloid deposits and neurofibrillary tangles, as 

well as their precursors and metabolites, are poorly correlated with cognitive function and disease 

stage and thus have low diagnostic or prognostic value. A lack of biomarkers is one of the major 

roadblocks in diagnosing the disease and in assessing the efficacy of potential therapies. The 

phosphorylation of cAMP Response Element Binding protein (pCREB) plays a major role in 

memory acquisition and consolidation. In the brain, CREB activation by phosphorylation at 

Ser133 and the recruitment of transcription cofactors such as CREB binding protein (CBP) is a 

critical step for the formation of memory. This set of processes is a prerequisite for the 

transcription of genes thought to be important for synaptic plasticity, such as Egr-1. Interestingly, 

recent work suggests that the expression of pCREB in peripheral blood mononuclear cells 

(PBMC) positively correlates with pCREB expression in the postmortem brain of Alzheimer’s 

patients, suggesting not only that pCREB expression in PBMC might serve as a biomarker of 

cognitive dysfunction, but that the dysfunction of CREB signaling may not be limited to the brain 

in AD, and that a link may exist between the regulation of CREB in the blood and CREB in the 

brain. In this Review we consider the evidence suggesting a correlation between the level of CREB 

signals in the brain and blood, the current knowledge about CREB in PBMC and its association 

with CREB in the brain, and the implications and mechanisms for a neuro-immune cross talk that 

may underlie this communication. This Review will discuss the possibility that peripheral 

dysregulation of CREB is an early event in AD pathogenesis, perhaps as a facet of immune system 

dysfunction, and that this impairment in peripheral CREB signaling modifies CREB signaling in 

the brain, thus exacerbating cognitive decline in AD. A more thorough understanding of systemic 

dysregulation of CREB in AD will facilitate the search for a biomarker of cognitive function in 

AD, and also aid in the understanding of the mechanisms underlying cognitive decline in AD.
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1. INTRODUCTION

Alzheimer’s disease (AD) is a devastating neurological disorder affecting learning and 

memory. The incidence of AD is on the rise, and an anticipated 14 million persons will 

suffer from the disease by 2050 in the United States (Hebert et al., 2013). The early onset 

familial form of the disease is caused by mutations in amyloid precursor protein (APP) and 

presenilin-1,2 (PSEN-1,2). The cause of the sporadic disease remains unknown, but is 

hypothesized to be the result of dysfunction in processing of the amyloid precursor protein 

(APP) and hyperphosphorylation of the protein tau. These two processes result in the 

accumulation of beta amyloid (Aβ) plaques and neurofibrilarly tangles, which characterize 

the postmortem AD brain, and are considered to be the diagnostic hallmarks of the disease. 

For this reason, the search for a biomarker to aid in the prediction, diagnosis, and treatment 

of AD has been centered on forms of amyloid and tau. The current most successful 

biomarkers for AD based on amyloid and tau include measurements of total tau, 

phosphorylated tau, and Aβ42 in the cerebrospinal fluid (Olsson et al., 2016).

However, the severity of cognitive dysfunction in AD may be independent of the extent of 

amyloid or tau pathology, and indeed, the relationship between postmortem AD pathology 

and cognitive performance during life is notoriously poor, and therapies targeting amyloid or 

tau have thus far been largely unsuccessful (Morris et al., 2014). Therefore, a biomarker that 

can provide information on cognitive function in AD progression is essential, not only to 

compliment the current diagnostic biomarkers based on amyloid and tau, but also to provide 

a more sensitive means of measuring the efficacy of therapies meant to ameliorate cognitive 

dysfunction in AD.

We, and others, have reported that the expression of an important factor in the formation of 

memory and its retrieval, Cyclic-AMP Response Element Binding Protein (CREB), is 

diminished in the postmortem AD brain. In this review, we first discuss the evidence 

supporting the involvement of CREB in cognitive decline in AD. Then we discuss the 

possibility that CREB signaling in the blood could be an indicator of CREB signaling in the 

brain, thus serving as a biomarker of cognitive function in AD. Finally, we propose a 

hypothesis that peripheral CREB deficits may be an early event in AD pathogenesis, perhaps 

as a result of immune system dysfunction and inflammation, and subsequently modifies 

CREB signaling in the brain, thereby contributing to cognitive decline in AD (Figure 1).

2. CREB

The exact mechanism underlying synaptic plasticity and memory formation, storage and 

retrieval remains a topic of investigation, but one of the prevailing hypotheses is that it is 

dependent on the regulation of key genes and proteins that are modulated as a result of 

neuronal activity. One of the signaling pathways implicated in this process is the CREB 

pathway. In the brain, the CREB pathway responds to the increased calcium that results from 
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neuronal activity. CREB itself can be phosphorylated by a number of kinases that respond 

directly or indirectly to calcium, such as protein kinase A (PKA), protein kinase C (PKC), 

the calcium/calmodulin-dependent protein kinases CaMKII and CaMKIV, the extracellular 

signal-regulated kinase (ERK)-activated kinases mitogen- and stress-activated protein kinase 

(MSK) and the 90 kDa ribosomal S6 kinase (RSK) (Lonze and Ginty, 2002), as well as in 

response to nitric oxide (NO) through cGMP activation of PKG (Teich et al., 2015). 

Following phosphorylation at Ser133 and recruitment of cofactors, such as CREB binding 

protein (CBP) and p300, CREB can bind to a CRE sequence in the promoter region of 

downstream genes implicated in synaptic plasticity, including immediate early genes like 

Egr-1 (Figure 2) (Jones et al., 2001; Kandel, 2012; Lakhina et al., 2015; Yin et al., 1994). 

The critical nature of CREB for learning and memory has been demonstrated by studies 

showing that decreasing the expression or function of the CREB signaling pathway results in 

impairments in learning and memory. For example, CREB mutant mice that lack the major 

α and δ isoforms of CREB (though they retain small amounts of CREB activity due to the β 
isoform) have been generated (Lonze and Ginty, 2002). These CREB mutant mice exhibit 

impairments in LTP and in memory-based behavior tests, such as fear conditioning and 

water maze (Bourtchuladze et al., 1994). Importantly, CREB regulates formation of long-

term memory in other species, as demonstrated by studies in olfaction long-term associative 

memory in C. elegans, indicating that this pathway is evolutionarily conserved (Lakhina et 

al., 2015; Yin et al., 1994). In addition, the effects of CREB signaling impairments may not 

be limited to the hippocampus, as CREB mutant mice also have impaired cortical plasticity 

(Glazewski et al., 1999). The importance of CREB in long term memory has been 

additionally demonstrated in mice by the use of genetic methods including a CREB 

repressor (Kida et al., 2002), and expression of a dominant negative form of CREB 

(Pittenger et al., 2002). Experiments using viruses to enhance CREB signaling in the rodent 

hippocampus have been shown to improve performance in a water maze task (Brightwell et 

al., 2007; Yu et al., 2017). However, indiscriminate upregulation of CREB, particularly of 

basal CREB, is problematic for memory formation and retrieval, and a dominant active form 

of CREB expressed in the mouse hippocampus has been reported to impair performance in a 

water maze task and cause neuronal death (Lopez de Armentia et al., 2007; Viosca et al., 

2009). The difference in these outcomes may be partially due to the magnitude of increase in 

CREB activity, with a more moderate or transient enhancement in activity providing the 

optimal benefits for learning and memory, or the differences may depend on the mechanism 

of action of the enhancement of CREB activity, with forms that mimic the downstream 

effects of wild-type CREB conferring a greater benefit (Suzuki et al., 2011).

In addition to CREB itself, other elements of the CREB signaling complex have also been 

investigated in regards to learning and memory. CBP and p300 are transcriptional 

coactivators for CREB that are similar both in sequence and in function, and are necessary 

for CRE-based gene transcription (Arany et al., 1994; Chrivia et al., 1993). Mice deficient in 

CBP do not respond to an enriched environment (EE) paradigm in the same way as wild-

type mice, in that they do not show enhanced neurogenesis or enhanced performance in 

spatial navigation and pattern separation tasks following EE (Lopez-Atalaya et al., 2011). 

Similarly, when p300 is conditionally knocked out in the mouse hippocampus and cortex, 

the performance of the mice in novel object recognition and contextual fear conditioning 
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tasks is impaired (Oliveira et al., 2011). In addition to their role as a scaffold for the 

transcription complex, CBP and p300 may facilitate gene transcription through their intrinsic 

histone acetyltransferase (HAT) activity (Bannister and Kouzarides, 1996; Ogryzko et al., 

1996). The HAT activity of CBP is essential for memory consolidation, as demonstrated by 

experiments in which the HAT activity of CBP is blocked, while the scaffolding function 

remains intact (Korzus et al., 2004). In addition, experiments using an activator of CBP/p300 

HAT activity that resulted in increased histone acetylation in the hippocampus and cortex, 

also resulted in a greater duration of memory in a water maze task, suggesting that the HAT 

activity may be a critical feature of the importance of CBP/p300 in learning and memory 

(Chatterjee et al., 2013). In support of this idea, poor performance in the novel object 

recognition task by CBP mutant mice is improved by treatment with an HDAC inhibitor 

(Stefanko et al., 2009). On the other hand, HDAC inhibition in a CBP conditional knockout 

was reported not to be sufficient to restore the impairments these mice demonstrated in 

object recognition, fear conditioning, and spatial memory tasks, even when histone 

acetylation was rescued by treatment with and HDAC inhibitor (Chen et al., 2010). 

Therefore, CBP and p300 are likely important factors in learning and memory, but the exact 

mechanism of their involvement is yet to be fully unraveled.

While it is clear that direct manipulation of the CREB signaling pathway impairs the 

learning and memory process, the next question is whether CREB signaling plays a role in 

neurodegenerative diseases characterized by memory impairments, such as in the case of 

AD.

2.1. CREB IN THE AD BRAIN

The critical nature of CREB signaling for neural plasticity and cognitive performance 

suggests that this pathway may be dysfunctional in neurodegenerative diseases in which 

memory and cognitive function are impaired (Cowburn et al., 1992b; Schnecko et al., 1994b; 

Yamamoto-Sasaki et al., 1999a). Importantly, single nucleotide polymorphisms (SNPs) in 

CREB1 and CREBBP (which encodes CBP) have been associated with accelerated cognitive 

decline and impaired episodic memory, semantic memory and executive function (Barral et 

al., 2014; Wolf et al., 2017). These types of memory, and episodic memory in particular, are 

disrupted in AD, supporting a link between dysfunctional CREB and the types of memory 

and cognitive functions impacted in AD (Gold and Budson, 2008). In addition, rare 

mutations in the Snf2-related CREBBP activator protein (SRCAP) were identified in 

individuals with late onset Alzheimer’s disease (LOAD), suggesting a causative role for 

dysfunctional CREB signaling in AD (Vardarajan et al., 2017). However, the underpinnings 

of CREB dysfunction in persons with AD remain elusive. A few groups, including ours, 

have reported diminished levels of total and phosphorylated CREB in the postmortem AD 

brain in the prefrontal cortex (Bartolotti et al., 2016a) and hippocampus (Bartolotti et al., 

2016a; Pugazhenthi et al., 2011; Yamamoto-Sasaki et al., 1999b), two brain structures that 

are thought to be particularly important in episodic and semantic memory (Gold and 

Budson, 2008). Our group also reported that CBP and p300 are reduced in the postmortem 

AD prefrontal cortex (Bartolotti et al., 2016a), an observation that is particularly intriguing 

in light of evidence that p300 may be overactive in the acetylation of tau in the AD 

prefrontal cortex (Aubry et al., 2015; Min et al., 2015; Min et al., 2010a). The level and 
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activity of Type I adenylyl cyclase, an enzyme responsible for the generation of cAMP and 

therefore CREB activation, has been reported to be reduced in the postmortem AD 

hippocampus (Cowburn et al., 1992a; Schnecko et al., 1994a; Yamamoto et al., 1996; 

Yamamoto et al., 1997). Similarly, PKA, PKC, CamK, and ERK, which phosphorylate 

CREB, have been described to be abnormally expressed or activated in the postmortem AD 

prefrontal cortex or hippocampus (Battaini et al., 1999; Bonkale et al., 1999; Kim et al., 

2001; Perry et al., 1999; Reese et al., 2011; Wang et al., 1994). This evidence suggests that 

there may be multiple points of failure in CREB signaling in the AD brain.

While much work remains to be done investigating the status of CREB in persons with AD, 

CREB signaling has been extensively studied in mouse models of genetically-linked AD 

(FAD), although the data from these studies is at times contradictory. For example, 

decreased basal levels of activated CREB have been reported in the hippocampus of 3-

month-old female APPswe/PS1ΔE9 mice (Bartolotti et al., 2016b), 2-month-old male 

APPswe/PS1ΔE9 mice (Hu et al., 2013), and 6-month-old 3xTg-AD mice (sex unspecified; 

(Caccamo et al., 2010)). In addition, CREB activation is diminished in the hippocampus 

following a stimulus, such as environmental enrichment or a learning task such as fear 

conditioning or novel object recognition in 3-month-old female APPswe/PS1ΔE9 mice 

(Bartolotti et al., 2016b), or following training for a maze task in 10-week-old male and 

female TgCRND8 mice (Yiu et al., 2011). On the other hand, increased basal levels of 

activated CREB expression have been reported in the hippocampus of 4-month-old and 13-

month-old Tg2576 (sex unspecified), though these authors observed lower levels of activated 

CREB in this mouse model at 20 months (Dineley et al., 2001). Similarly, increased basal 

levels of activated CREB have been observed in whole-brain homogenates from 4- to 6-

week-old 3xTg-AD and M146V-PS1ki mice (sex unspecified; (Muller et al., 2011). These 

contradictory results may be due to a number of factors, including the type of memory 

tested, the mouse model, the age and sex of the mice, and whether the tissue was harvested 

at a basal state or following a learning and memory task since it is possible that deficits in 

CREB signaling may only become apparent as a failure of CREB activation following a 

learning task in some mouse models of AD. Careful consideration of these factors will be 

necessary in future experiments to determine the most appropriate mouse model for the 

study of CREB in AD. It is also important to consider the type of memory task utilized as a 

function of disease progression. For example, impairments in object recognition tasks [such 

as in (Dere et al., 2005)] may be apparent at a different disease stage than spatial memory 

tasks such as mazes. Selecting the appropriate cognitive test for the disease stage and 

understanding the role of CREB in the formation and retrieval of these types of memory will 

facilitate the translation of the role of CREB in AD, as well as in the development of 

therapies meant to restore CREB signaling and enhance cognitive function in AD.

Additional evidence supporting the role of CREB dysfunction in AD and in cognitive 

impairments comes from the improvements in learning in memory that are observed when 

CREB signaling is enhanced in FAD mice. For example, virus-mediated rescue of CREB 

signaling in the hippocampus of 10-week-old male and female TgCRND8 mice has been 

shown to ameliorate memory deficits in a maze task (Yiu et al., 2011). CREB can also be 

increased through the reduction of phosphodiesterases (PDE), a family of enzymes hydrolze 

cAMP (PDE4, PDE7, PDE8) or cGMP (such as PDE5, PDE6, PDE9) or both cAMP and 
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cGMP (PDE1, PDE2, PDE3, PDE10, PDE11), thereby reducing signaling through these 

molecules (Garcia-Osta et al., 2012). Reducing the expression or activity of PDEs is one 

way in which CREB can be pharmacologically enhanced, and may serve as an effective 

therapy for cognitive dysfunction in AD. For example, downregulation of PDE4D in the 

hippocampus reversed memory deficits induced by Aβ42 in male mice, as measured by a 

novel object recognition and Morris water maze task, as well as rescued pCREB expression 

in the hippocampus (Zhang et al., 2014). Similarly, treatment of male rats with rolipram, a 

PDE4 inhibitor, rescued Aβ40–induced deficits in memory in rats, as measured by a passive 

avoidance task, and also rescued the Aβ40–induced reduction in hippocampal pCREB 

(Cheng et al., 2010). Peripheral administration of rolipram was also able to rescue deficits in 

performance in a contextual fear conditioning task in 3-month-old male and female 

APP/PS1 mice, and rescued diminished expression of pCREB while not significantly 

affecting Aβ40, Aβ42, expression or amyloid plaque burden in the hippocampus (Gong et al., 

2004), again emphasizing that the CREB signaling pathway may be able to affect cognitive 

function independent of regulation of amyloid. Rolipram itself may be limited as a 

therapeutic due to its side effects (Zhu et al., 2001), but these studies have demonstrated the 

potential of PDE inhibition as a means of enhancing CREB signaling and cognitive function 

in AD. Additional support for this idea comes from studies of PDE5 inhibitors. PDE5 

inhibitors can increase pCREB by increasing cGMP, which has been shown to be reduced as 

a result of Aβ-induced reductions in the nitric oxide signaling cascade (Puzzo et al., 2005). 

Indeed, inhibition of PDE5 has been shown to reverse memory deficits a contextual fear 

conditioning and water maze, as well as rescue pCREB expression in the hippocampus of 

male and female 3-month-old APPswe/PS1ΔE9 mice (Puzzo et al., 2009). Amelioration of 

cognitive dysfunction in a Y-maze task was also shown following treatment with a PDE5 

inhibitor in 10-month-old male APPswe/PS1ΔE9 mice (Jin et al., 2014). PDE5 inhibitors are 

particularly attractive candidates for use in treating AD as data from clinical trials of 

extended use of PDE5 inhibitors in the treatment of erectile dysfunction suggests they are 

safe (Fusco et al., 2010). Therefore, in addition to highlighting the importance of CREB 

signaling in cognitive function in AD, the continued research and development of PDE 

inhibitors offer a promising means of enhancing this signaling and improving cognitive 

function in AD (Bischoff, 2004a; Fiorito et al., 2017; Garcia-Osta et al., 2012; Teich et al., 

2015).

The cause of CREB impairments in AD is not clear. In FAD mouse models, dysregulation of 

CREB signaling may result from the mutations in PS1 and or APP that are commonly 

utilized to generate the model (Chen et al., 2012; Marambaud et al., 2003; Wang et al., 

2006). For example, several studies suggest that PS1 regulates CREB expression and 

function, (Bonds et al., 2015; Marambaud et al., 2003; Muller et al., 2011; Watanabe et al., 

2009). In addition, it is thought that normal presenilin may promote CBP-induced 

transcription, and that FAD mutant PS1 can interfere with this process (Francis et al., 2006; 

Saura et al., 2004). Mutations in APP may also contribute to CREB signaling dysfunction, 

possibly through the dysregulation of APP processing or by increasing Aβ toxicity (Dineley 

et al., 2010b; Dineley et al., 2001; Espana et al., 2010; Ma et al., 2007; Nishimoto et al., 

1993). In support of this idea, 5-month-old male C57BL/6 mice treated with Aβ oligomers 

express lower levels of pCREB in the hippocampus and impaired performance in a fear 
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conditioning task (Dineley et al., 2010a). Similarly, treatment of 11- to 12-month-old 

Tg2576 mice (sex unspecified) with anti-Aβ antibodies has been shown to rescue 

impairments in CREB activation (Ma et al., 2007). Interestingly, overexpression of BACE1, 

which is thought to be increased in FAD, reduces CREB phosphorylation, PKA activity, and 

cAMP levels in vitro, independent of its effects through Aβ, suggesting that CREB 

dysfunction may not be exclusively dependent on Aβ levels (Chen et al., 2012). Similarly, 

virus-mediated enhancement of CBP expression reduced memory impairments in a Morris 

water maze task without also affecting changes in amyloid or tau pathology in the 

hippocampus of 6-month-old 3xTg-AD mice (sex unspecified; (Caccamo et al., 2010)). 

Indeed, we have observed deficits in CREB signaling in the hippocampus of both male and 

female APPswe/PS1ΔE9 mice as early as 2-3 months of age (Hu et al., 2013), though these 

mice do not typically demonstrate wide-spread plaque deposition until 4 to 6 months of age 

(Jankowsky et al., 2004; Jankowsky et al., 2005). However, these mice do still have aberrant 

APP processing and increased levels of soluble Aβ at this age, indicating that more study is 

needed to determine the contribution of the different forms of Aβ on CREB signaling 

(Bonardi et al., 2011; Min et al., 2010b; Zhang et al., 2012). Therefore, while the mutations 

in APP and PS1 in mouse models of FAD are clearly the original source of CREB 

impairments, the proximate cause remains unclear and CREB may be regulated 

independently of amyloid and tau in FAD mice.

In sporadic AD, the mechanism underlying CREB dysfunction is even less clear. If CREB 

impairments are simply the result of increased plaque load or NFTs, as might be concluded 

from the FAD mouse data, a relationship between CREB expression and these pathological 

hallmarks should be observed. However, in our recent study in which we examined CREB 

signaling components in the postmortem AD prefrontal cortex, we did not observe a 

relationship between pCREB and the extent of plaque deposition or NFTs in the prefrontal 

cortex (Bartolotti et al., 2016a), suggesting that CREB dysfunction may not be simply a 

result of advanced neurodegeneration and AD pathology.

Aging is one of the primary risk factors for sporadic AD. It is therefore interesting that 

CREB decreases as a function of age in both the human (Yamamoto-Sasaki et al., 1999b) 

and rat hippocampus, both at a basal level (Foster et al., 2001), and following training on a 

contextual fear conditioning task in which the older rats exhibited poorer performance 

(Kudo et al., 2005). While the mechanism responsible for reduced CREB in the 

hippocampus during aging is unclear, reactive oxygen species may play a role (Bevilaqua et 

al., 1999; Ozgen et al., 2009; Ryu et al., 2005; Waldron and Rozengurt, 2000). Another 

hypothesis is that dysregulated inflammation during aging may underlie cognitive decline 

(Franceschi et al., 2007). This explanation is particularly attractive in that it provides a link 

between alterations in CREB signaling in the brain and the periphery, which we review next. 

However, it is important to note that the reductions in CREB signaling components observed 

in AD are typically age-matched, indicating that age alone is not responsible for the further 

reduction of CREB signaling observed in AD.
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2.2. CREB IN PBMC

As CREB is a critical component of memory and cognitive function in the brain, its 

accessibility in the periphery could offer valuable and relevant insight into cognitive decline 

during AD, as well as serve as an indicator of the efficacy of therapies intended to enhance 

cognitive function. In addition, our work in APPswe/PS1ΔE9 mice suggests that CREB 

dysfunction in the hippocampus may precede plaque deposition (Bartolotti et al., 2016b; Hu 

et al., 2013), suggesting that CREB dysfunction is an earlier event than disease pathological 

hallmarks. In that regard, a peripheral marker would also aid in understanding the timescale 

of CREB impairments in AD, rather than depending on an end-state, postmortem analysis.

In our recent paper, we showed that levels of pCREB in PBMC samples isolated during life 

were temporally correlated with levels of pCREB in the postmortem AD prefrontal cortex 

(Bartolotti et al., 2016a). This observation suggests the interesting possibility that analysis of 

peripheral CREB signaling components, and pCREB in particular, could be used as a marker 

for CREB signaling in the brain. Others have previously investigated the potential of CREB 

signaling components in PBMC as markers for CREB signaling in the brain. For example, 

CREB and pCREB are reduced in the postmortem prefrontal cortex and hippocampus of 

individuals suffering from mood disorders (Dwivedi et al., 2003), and a reduction in pCREB 

has been observed in peripheral blood T lymphocytes of individuals suffering from 

depression (Koch et al., 2002), supporting the idea that abnormal CREB function may be 

apparent in the PBMC when it is occurring in the brain.

CREB plays important roles in regulating immune function and a detailed description of its 

roles in that regard are described elsewhere (Wen et al., 2010). In PBMC, CREB is primarily 

thought to be important fo survival, cell cycle and proliferation, and cytokine production 

(Wen et al., 2010). Here we will briefly review the current understanding of CREB signaling 

in different subtypes of PBMC (Table 1), and the evidence supporting the hypothesis that 

these processes are dysfunctional in AD.

Lymphocytes make up the greatest percentage of PBMC and include T cells, B cells and 

natural killer (NK) cells. T cells, particularly CD4+ T cells, in turn make up the greatest 

percentage of lymphocytes. Therefore, it is likely that detectable changes in CREB 

expression in a pool of PBMC come from CD4+ T cells, but CREB may also be 

dysfunctional in other PBMC.

Several cytokines and immune-related factors, including interleukin 2 (IL-2), IL-6, IL-10, 

tumor necrosis factor alpha (TNF-r), cyclooxygenase-2, and macrophage migration-

inhibitory factor possess a CRE element (Wen et al., 2010). In addition, CREB is thought to 

be important for the expression of interferon γ (IFN-γ), and interleukin 4 (IL-4) by CD4+ T 

cells (Zhang et al., 2000), and the expression of these cytokines is thought to be 

dysfunctional in, and perhaps contribute to the pathogenesis of, AD (Zheng et al., 2016). 

Data from CREB mutant mice suggests that CREB is important for regulating Th17 

differentiation and regulatory T cell (Treg) differentiation, and may be a particularly 

important factor in maintaining balance between Th17 and Treg cells (Wang et al., 2017). 

While the role of Th17 and Treg cells in AD is controversial and remains an important topic 

for investigation (Baruch et al., 2015; Dansokho et al., 2016; Flego et al., 2015; He and 
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Balling, 2013; Kim and Leonard, 2007; Larbi et al., 2009; Saresella et al., 2010; 

Tahmasebinia and Pourgholaminejad, 2017), there is some evidence that a dysfunction in 

CREB signaling in these cells could be present in AD. For example, an imbalance between 

Th17 and Treg cells has been reported in AD PBMC (Oberstein et al., 2018). In addition, 

CREB and CBP are important for the expression of interleukin-17 (IL-17) by Th17 cells 

(Hammitzsch et al., 2015; Hernandez et al., 2015), which has been shown to be altered in the 

serum of mice in response to hippocampal administration of Aβ1-42. Similarly, CBP and 

p300 are thought to be important in mediating Treg function, which is an important part of 

appropriate regulation of the inflammatory response (Klatzmann and Abbas, 2015), and 

deletion in CBP and p300 leads to aberrant expression of inflammatory genes (Liu et al., 

2014).

In addition to T cells, other PBMC subsets may be impacted by dysfunctional CREB 

signaling in AD. For example, NK cells isolated from AD patients have been shown to be 

less responsive to stimulation including stimulation by IL-2 (Araga et al., 1991). In addition, 

numbers of NK cells have been reported to be diminished in AD, possibly as a result of 

increased apoptosis (Schindowski et al., 2006, but the important role of CREB signaling in 

NK cell function in response to IL-2 (Ponti et al., 2002) suggests that impaired CREB 

signaling may contribute to the dysregulation of NK cells in AD.

In addition to lymphocytes, macrophages and small numbers of dendritic cells (DCs) can 

also be found in PBMC. As in the case of lymphocytes, CREB may play a role in the 

survival of monocytes (Roach et al., 2005). CREB is thought to mediate interleukin 10 

(IL-10) expression by macrophages (Ananieva et al., 2008) and DCs (Alvarez et al., 2009). 

Specific knockout of CREB in DCs leads to an impairment in immune processes related to 

DC function, specifically the expression of B cell lymphocytes in germinal centers (Ohl et 

al., 2018).

Finally, CREB is thought to be important in the proliferation of B cells (Yasuda et al., 2008). 

B cells have been reported to be decreased in AD PBMC (Richartz-Salzburger et al., 2007; 

Speciale et al., 2007), which might be interpreted as a result of impaired CREB signaling in 

AD PBMC, but further experiments are necessary to support this idea.

From this discussion it is clear that a more thorough understanding of the cell type 

responsible for CREB dysfunction in AD PBMC is critical to understanding this 

phenomenon. Future experiments should examine CREB signaling expression in the 

different subpopulations of PBMC. In addition, the cause of impaired phosphorylation of 

CREB in AD PBMC will be the topic of future study, but we will consider a few 

possibilities here. One possible mechanism for the impairments in CREB phosphorylation 

could be through kinase function. CREB in PBMC responds to many of the same kinases as 

neuronal CREB (for review (Kuo and Leiden, 1999)), suggesting the possibility of common 

regulatory pathways. For example, Granulocyte-Macrophage Colony Stimulating Factor 

(GM-CSF) activates CREB in leukocytes via RSK (Mitton et al., 2014), and peripheral 

administration of GM-CSF to 12-month-old male and female AβPPswe mice has been 

shown to improve cognitive function as measured by a radial-arm water maze (Boyd et al., 

2010). Similarly, mice deficient in CaMKIV not only demonstrate memory impairments in 
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fear conditioning and Barnes circular maze experiments (Takao et al., 2010), but also exhibit 

impaired phosphorylation of CREB in T cells (Anderson and Means, 2002). Mitogen and 

stress activated protein kinase (MSK) has also been shown to activate CREB in T cells, and 

is thought to have an anti-inflammatory role in the cells of the immune system (Kaiser et al., 

2007; Reyskens and Arthur, 2016). Therefore, a common, system-wide impairment in the 

function of one or more kinase could be a mechanism underlying the diminished CREB 

phosphorylation in both brain and blood. We next consider the hypothesis that CREB 

dysfunction actually begins in the periphery and is transferred to the brain, thus contributing 

to cognitive decline in AD.

3. PERIPHERAL CREB DYSFUNCTION AS AN EARLY EVENT IN AD 

PATHOGENESIS

Dysregulation of the immune system is a hallmark of age-related cognitive decline and 

neurodegenerative diseases characterized by dementia (Franceschi et al., 2007). It is thought 

that the aged brain expresses higher levels of pro-inflammatory chemokines and cytokines 

like TNFα and IL-6, as well as lower levels of anti-inflammatory cytokines like IL-2 (Chung 

et al., 2009)). Aged individuals with greater expression of circulating pro-inflammatory 

cytokines are more likely to suffer from cognitive impairments, and this correlative 

observation leads to the hypothesis that pathological neuroinflammation may be playing a 

causative role in cognitive decline observed in aging (Marsland et al., 2015; Wyss-Coray, 

2006). It has also been proposed that dysregulated inflammation during aging may act as a 

prodromal form of AD (Giunta et al., 2008). In support of this idea, it has been reported that 

increased expression of inflammatory proteins in the plasma precedes onset of AD 

(Engelhart et al., 2004). CREB signaling is a key component of appropriate regulation of the 

inflammatory response, particularly in its role of regulating cytokine production by PBMC 

(Raker et al., 2016), which suggests that peripheral CREB signaling may play a role in 

systemic aging. Intriguingly, exposure of old mice to young blood increases pCREB 

expression in the hippocampus of the old mice (Villeda et al., 2014), indicating that the 

effects of aging on peripheral blood may influence CREB signaling in the brain, and thus 

cognitive function. How altered CREB signaling in the aging peripheral blood might relate 

to altered CREB signaling in the brain remains unknown, but elucidating this connection 

may shed light on the connection between peripheral inflammation and cognitive decline in 

AD. Common indicators of inflammation, such as levels of cytokines and chemokines, have 

been repeatedly shown to be altered in AD compared to age-matched controls, both in the 

brain and in the peripheral fluids (for review see (Wyss-Coray and Rogers, 2012)), 

indicating that while increased inflammation may be a part of the aging process, the 

dysregulation of inflammation in AD may be more pathogenic. In our recent paper, we 

observed modest increases in pCREB, Total CREB and CBP in PBMC isolated from persons 

with mild cognitive impairment, the prodromal form of AD (Bartolotti et al., 2016a). We 

hypothesized that this increase could be an early attempt at compensating for impairments in 

CREB signaling in PBMC, or it could be indicative of increased CREB-dependent 

inflammation typical of MCI (Bonotis et al., 2008; Magaki et al., 2007). Indeed, peripheral 

expression of cytokines, including the CREB-driven cytokines IL-2 and IL-10, is reported to 

be especially high in MCI (King et al., 2018), suggesting that alterations in CREB signaling 
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in PBMCs correspond to alterations in inflammation that occur with AD progression 

different from what is occurring in aging without AD.

While the issue of whether peripheral inflammation is a cause or effect of AD remains 

unclear, there is some evidence supporting a causative role. For example, stimulating an 

immune response through peripheral administration of LPS has been shown to cause 

cognitive impairment, as measured by a water maze task, and induce expression of Aβ1-42 in 

the hippocampus and cortex of male mice (Lee et al., 2008), supporting the idea that 

alterations in the periphery can influence cognitive function and AD pathology. In addition, 

a recent meta-analysis reported that increased peripheral inflammation increased risk for 

dementia (Koyama et al., 2013). These studies suggest that dysregulation of the immune 

system may be at least an early event in AD, and may even contribute to the disease in a 

causative way.

Importantly, clinical trials of non-steroid anti-inflammatory drugs (NSAIDs) have largely 

failed thus far as a therapy for AD (Aisen et al., 2003). While this failure may be due to 

many factors, such as initiation of treatment too late in the disease course, or lack of strength 

or specificity, this result does suggest that non-specific lowering of peripheral inflammation 

may not be sufficient to improve cognitive function in AD, and further work needs to be 

done to identify the mechanism of inflammatory dysfunction in AD. Recent evidence 

suggests that inflammasomes may respond to, as well as exacerbate, AD pathology, 

potentially resulting in a cycle of increased inflammation and increased pathology, thus 

emphasizing the contribution of the immune system to AD pathogenesis (Venegas et al., 

2017). We propose that the dysregulated peripheral CREB signaling is a component of 

immune system dysfunction in AD, and that this dysfunction may be communicated to the 

brain, exacerbating cognitive decline in AD.

3.1. MOLECULAR MEDIATORS

Perhaps one of the best-supported mechanisms for neuro-immune communication is via 

cytokines, particularly those expressed by PBMC. In AD, it is thought that the blood brain 

barrier (BBB) exhibits increased “leakiness”, which may allow abnormal trafficking of 

immune cells and increased communication between the blood and brain (Martorana et al., 

2012). For example, activated T cells are able to cross the BBB from the periphery into the 

CNS, and increased levels of infiltrating T cells have been observed in the postmortem AD 

hippocampus (Togo et al., 2002). However, even in the absence of direct contact, brain cells 

and PBMC both produce and respond to cytokines (Bartfai and Schultzberg, 1993), offering 

another potential mechanism for transference of CREB-related signaling deficits (Figure 3).

As mentioned above, CREB regulates both the production of and response to many 

interleukins in the PBMC, including IL-2, IL-4, IL-6, IL-10, and IL-17 (Acarin et al., 2000; 

Avni et al., 2010; Erta et al., 2012; Guyot et al., 1998; Hammitzsch et al., 2015; Hernandez 

et al., 2015; Jansky et al., 2003; Rigano et al., 1996; Zhang et al., 2000). A recent meta-

analysis suggested that the peripheral expression of these and other cytokines is associated 

with AD and cognitive function (Lai et al., 2017). IL-2 has been reported to be both 

decreased (Beloosesky et al., 2002) and increased (Huberman et al., 1994) in AD PBMC, 

though more work needs to be done to determine the exact nature of this dysfunction. 
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Similarly, the reports concerning production of IL-6 are also conflicting and has been 

reported to be both increased (Reale et al., 2005) and decreased (Bergman et al., 2002) in 

AD PBMC. IL-4 and IL-10 have both been reported to be reduced in AD PBMC (Reale et 

al., 2008; Speciale et al., 2007).

Interleukins are thought to have some permeance through the BBB (Alves et al., 2017; 

Banks et al., 2004; Waguespack et al., 1994). IL-2 has been reported to be decreased in the 

postmortem AD hippocampus (Alves et al., 2017), which is likely a result of decreased 

production from the resident cells of the brain, but could be partially due to decreased 

transfer from the periphery. IL-2 receptors are expressed on neurons and IL-2 knockout mice 

exhibit impaired performance on a Morris water maze task (Petitto et al., 1999). Importantly, 

specific knockout of brain-derived IL-2 does not worsen memory impairments as measured 

by a Morris water maze task, indicating a key role for peripherally-derived IL-2 on cognition 

(Petitto et al., 2015). Interestingly, treating 8-month-old male APPswe/PS1ΔE9 mice 

peripherally with IL-2 was found to rescue neurodegeneration and memory impairments in a 

Morris water maze task, as well as increasing the presence of IL-2 and Tregs in the brain 

(Alves et al., 2017). The expression of other CREB-driven interleukins in the AD brain also 

requires more study. The nature of IL-6 dysfunction in the AD brain, for example, remains 

unclear (Chakrabarty et al., 2010; Chong, 1997; Han et al., 2011; Hull et al., 1996a; Hull et 

al., 1996b; Ringheim et al., 1998). While IL-10 is thought to be reduced in AD PBMC, 

recent experiments in mice suggest that increased IL-10 in the brain of mice overexpressing 

APP may worsen cognitive impairments as demonstrated with a contextual fear conditioning 

task in 5-month-old male and female CRND8 mice (Chakrabarty et al., 2015). Similarly, a 

reduction in IL-10 was shown to be beneficial for cognitive function in 12- to 13-month-old 

male and female APP/PS1 mice, as demonstrated by improved performance on a novel 

object recognition task, and the same study reported that IL-10 may be increased in the AD 

brain (Guillot-Sestier et al., 2015). IL-10 may be differentially regulated depending on the 

disease course (Asselineau et al., 2015). Treatment with rolipram, a compound that increases 

phosphorylation of CREB, increases IL-10 levels and decreases TNF-α (a cytokine 

suppressed by CREB (Avni et al., 2010)) in the brain, while improving cognitive functioning 

in an animal model of diabetes, as measured by a Morris water maze task, (Miao et al., 

2015), suggesting a link between these pathways.

It is important to note that the canonical interleukin signaling pathway acts via JAK/STAT, 

and though cytokine signaling via JAK/STAT has been implicated in the formation of LTM 

(Petitto et al., 2015), the relationship between this process and CREB signaling remains to 

be investigated and indicates that deficits in interleukin expression or activity resulting from 

CREB deficits in the periphery may indirectly affect CREB expression in the brain. One 

study demonstrated that JAK2 prevents degradation of pCREB, thus stabilizing it in 

adrenocortical cells, suggesting one potential mechanism by which JAK/STAT signaling 

might be linked to CREB signaling (Lefrancois-Martinez et al., 2011). In addition, the ERK 

and Akt pathways can respond to JAK/STAT signaling, and CREB could in turn respond to 

alterations in ERK or Akt (Kristiansen and Mandrup-Poulsen, 2005), which could lead to 

phosphorylation of CREB. In addition to CREB activation, interleukins may affect the 

expression or activity of CBP/p300. For example, IL-4 has been shown to increase the HAT 

activity of CBP in epithelial cells (Shankaranarayanan et al., 2001). Therefore, while 
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interleukins are a promising candidate to mediate the communication of disrupted CREB 

signaling from the periphery to the brain, more work is needed to demonstrate a mechanistic 

link.

Other potential mediators of CREB deficits from the periphery from the brain include 

neurotrophic factors. PBMC can produce neurotrophic factors, which are BBB-permeable 

and are an important means of communication between the blood and brain (Otten et al., 

2000). Production of neurotrophins by T cells is thought to be an important neuroprotective 

factor for injured neurons (Moalem et al., 2000), suggesting that communication from 

PBMC to the brain by neurotrophins is a plausible mechanism by which a dysfunction in 

CREB might be communicated. CREB is an important mediator both of the transcription of 

neurotrophic factors and of the response to neurotrophic factor signaling. Neurotrophic 

factors have been demonstrated to be dysfunctional in AD, both in peripheral fluids and 

postmortem tissue (Du et al., 2018), supporting the idea that the communication of CREB 

dysfunction may be mediated by neurotrophic factors. For example, brain-derived 

neurotrophic factor (BDNF), which possess a CRE region, has been reported to be decreased 

in AD peripheral blood samples (Qin et al., 2017), and higher levels of BDNF in serum have 

been linked to slower cognitive decline in AD (Laske et al., 2011). Therefore, it is possible 

that CREB dysfunction in PBMC could lead to reduced BDNF production by the PBMC, 

thereby reducing the contribution of circulating BDNF to signaling in the brain, a deficit that 

could presumably accelerate cognitive decline. In addition to BDNF, other neurotrophic 

factors are also potential candidates for the communication of CREB deficits from PBMC to 

the brain. For example, CREB also facilitates expression of NGF (McCauslin et al., 2006) 

and VEGF (Jeon et al., 2007), but the data concerning the expression of these neurotrophic 

factors in AD is conflicting (Du et al., 2018), and requires further study before these factors 

can be supported as a link between dysfunctional CREB in PBMC and in the brain.

Catecholamines (e.g., dopamine, epinephrine, and norepinephrine) are hormones that could 

also contribute to the communication of CREB deficits between the blood and brain. T cells 

can produce catecholamines (Flierl et al., 2008). CREB is important for tyrosine 

hydroxylase, which is a critical enzyme in the biosynthesis of catecholamines (Lewis-Tuffin 

et al., 2004; Piech-Dumas and Tank, 1999), and therefore disrupted CREB signaling could 

impair production of catecholamines. CREB is a mediator of the signaling response of 

catecholamines (Beck et al., 2004; Lorton and Bellinger, 2015) and could therefore be 

impacted by altered peripheral catecholamine signaling. Indeed, catecholamines are thought 

to be dysfunctional in the AD brain and may lead to neurodegeneration and cognitive 

dysfunction (Gannon et al., 2015). However, the role of CREB in the regulation of 

catecholamines in PBMC and the effect this alteration may have on CREB signaling in the 

brain still requires more study.

Though microRNAs (miRs) are typically thought of for their ability to regulate translation 

within a cell, evidence suggests that miRs can exist extracellularly and may be a form of 

cell-cell communication (Valadi et al., 2007). Indeed, trends of expression of miRs in 

peripheral circulation often mirror trends of expression in the brain, which has made them an 

attractive candidate for biomarkers. miRs known to regulate or be regulated by CREB, such 

as miR-9 (Tan et al., 2012a; Tan et al., 2012b), miR-124 (Rajasethupathy et al., 2009; Wu 
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and Xie, 2006), miR-132 (Majer et al., 2012; Vo et al., 2005; Yi et al., 2014), miR-134 (Gao 

et al., 2010; Zhao et al., 2013), miR-212 (Hollander et al., 2010; Vo et al., 2005), could also 

serve as mediators of communicating CREB signaling dysfunction between the blood and 

the brain, and idea supported by evidence that these CREB-linked miRs are abnormally 

regulated in AD (An et al., 2017; Cogswell et al., 2008; Hebert et al., 2008; Lau et al., 2013; 

Lukiw, 2007). However, much work needs to be done to demonstrate not only that these 

miRs respond to CREB in PBMC, but also that the miRs are released from the PBMC, 

traffic to the brain, and impact CREB signaling in the brain and that this process is altered in 

AD for this to be a plausible mechanism of communication of CREB signaling dysfunction 

in AD.

4. CONCLUSIONS

Here we have discussed possible mechanisms underlying systemic and central CREB 

impairments. These mechanisms are important because they may underlie impaired CREB 

signaling as a cause of cognitive decline in AD and potentially other brain disorders 

characterized by cognitive deterioration. Focusing on mechanisms in AD, we have provided 

evidence that CREB signaling in PBMC is related to CREB signaling in the brain, and 

considered the possibility that the expression of CREB signaling components in PBMC may 

be a more faithful biomarker of cognitive function in AD than markers directly reliant on 

pathological hallmarks. We have proposed the hypothesis that CREB dysfunction in PBMC 

is an early event in AD pathogenesis, perhaps as a result of immune system dysfunction, and 

is communicated to the brain, causing dysregulation of CREB signaling in the brain and 

exacerbating cognitive dysfunction in AD. Finally, we have considered potential molecular 

mediators of this communication, with the acknowledgement that the data on immune to 

brain communication is still relatively underexplored and much more research is needed to 

fully elucidate the mechanism. However, a more thorough understanding of CREB in the 

immune system and CREB in the brain and the relationship between these two may shed 

light on the elusive nature of dementia and lead to more effective therapeutics.
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Highlights:

• There is no reliable biomarker for cognitive dysfunction in AD.

• CREB signaling is critical to learning and memory and may be dysfunctional 

in AD.

• Expression of CREB components in PBMC may provide a biomarker for 

CREB in the brain.

• CREB dysfunction in PBMC may be a result of immune dysfunction.

• PBMC CREB dysfunction may affect neuronal CREB, worsening cognitive 

decline in AD.
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Figure 1. 
Hypothesis for the mechanism by which CREB signaling defects in the periphery might 

affect CREB in the brain in AD. Following dysregulation of the immune system that 

accompanies AD, CREB signaling in PBMC is disrupted. This deficit may be imparted to 

the brain through mediators such as cytokines, neurotrophic factors, or hormones. Deficits in 

CREB signaling in the brain may accelerate cognitive decline in AD, and may in turn 

influence CREB signaling in the periphery through similar mediators, resulting in a cycle of 

CREB dysfunction and further cognitive decline.
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Figure 2. 
The components of CREB-based signaling, a process that results in expression of CRE-

driven genes thought to be important for the formation of memory. Egr-1, c-fos, brain 

derived neurotrophic factor (bdnf) and tumor necrosis factor alpha (TNFα) are examples of 

CRE-driven genes.
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Figure 3. 
Hypothesis detailing possible mechanisms by which CREB signaling in PBMC affect CREB 

signaling in neurons. Deficits in CREB may cause dysfunction in the production of and 

response to interleukins, neurotrophic factors, catecholamines, or microRNAs. These factors 

may traffic across the compromised blood brain barrier and signal through neuronal 

receptors on vulnerable neurons, thus negatively affecting CREB activation and CRE-based 

transcription, important for learning and memory.
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Table 1.

Role of CREB in PBMC.

Cell Type Role of CREB

T cells • Proliferation and survival.
•Production of IL-2, IFN-γ, and IL-4 by CD4+ T cells.
•Regulation of Th17 and Treg differentiation via TGFβ and IL-6.
•Production of IL-17 by Th17 cells.

B cells • Proliferation and survival.

NK cells • Mediates response to IL-2.

Macrophages • Production of IL-10.

Dendritic cells •Maturation.
•Production of IL-10.
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