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Abstract

Mapping the structural and functional connectivity of the brain is a major focus of systems 

neuroscience research and will help identify causally important changes in neural circuitry 

responsible for behavioral dysfunction. Several methods for examining brain activity in humans 

have been extended to rodent and monkey models where molecular and genetic manipulations 

exist for linking to human disease. In this review paper, which is part of a special edition focused 

on bridging brain connectivity information across species and scale, we address mapping brain 

activity and neural connectivity in rodents using optogenetics in conjunction with either functional 

magnetic resonance imaging (Opto-fMRI) or optical intrinsic signal imaging (Opto-OISI). We 

chose to focus on these techniques because they are capable of reporting spontaneous or evoked 

hemodynamic activity most-closely linked to human neuroimaging studies. We discuss the 

capabilities and limitations of blood-based imaging methods, usage of optogenetic techniques to 

map neural systems in rodent models, and other powerful mapping techniques for examining 

neural connectivity over different spatial and temporal scales. We also discuss implementing 

strategies for mapping brain connectivity in humans with both basic and clinical applications, and 

conclude with how cross-species mapping studies can be utilized to influence preclinical imaging 

studies and clinical practices alike.
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Introduction

Representation of function within the brain classically has been understood in terms of 

focality. For example, expressive language function has been attributed to the left inferior 

frontal cortex because focal damage to this part of the brain (Broca’s area) commonly results 

in expressive language deficits(1). However, it is increasingly recognized that performance 
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deficits are best understood in terms of functional systems distributed over multiple parts of 

the brain(2). These functional systems are efficiently studied using “resting state” functional 

magnetic resonance imaging (fMRI), i.e., fMRI acquired without imposed tasks(3, 4). The 

topographies revealed by such analyses are equivalently known as either resting state 

networks (RSNs)(5), or intrinsic connectivity networks(6). The physiology underlying RSNs 

remains incompletely understood. While anatomical connectivity (white matter(7–15)) 

explains many features of functional connectivity(16), attempts to model whole-brain 

functional connectivity on the basis of connectional anatomy (all known white matter tracts) 

have been only partially successful(10, 17). Thus, anatomical and functional connectivity are 

related, but not in a simple one-to-one fashion. We shall shortly introduce a third type of 

connectivity, effective connectivity, which exhibits its own relations to the other connectivity 

measures. Studying these relations (brain connectomics) and dissecting the complex neural 

circuitry responsible for brain function (normal or abnormal) has emerged as a major focus 

of systems neuroscience research(18).

Classically, anatomic connectivity is studied by ex-vivo tracing of white matter tracts in 

brain slices(19). Today, structural connectivity can be non-invasively estimated in-vivo using 

diffusion tensor imaging(8) in combination with computational methods for reconstructing 

major fiber tracts(7). The basis of resting state functional connectivity (RS-FC) is that 

spontaneous fluctuations of blood oxygen level dependent (BOLD) signals, measured with 

either fMRI(20) or optical techniques(21), are temporally correlated within RSNs. RSNs 

commonly are mapped by extracting signals from regions-of-interest (see below) or 

computed using spatial independent component analysis(5). Both methods yield reliable and 

broadly similar results provided that the data are relatively uncorrupted by artifact and 

acquired over a sufficiently long time(22). The functional significance of RSNs derives from 

the observation that they topographically correspond to known sensory, motor, and 

“cognitive” functional systems (23, 24). Compared to task-based measures, RS-FC analyses 

have provided an efficient method for mapping the whole brain, and can be performed in 

patients incapable of performing tasks(25). Changes in RS-FC have been reported in a 

variety of neuro-psychiatric disorders(26) including Alzheimer’s disease(27), 

depression(28), schizophrenia(29), Parkinson’s disease(30) and stroke(31).

BOLD-fMRI is the dominant modality for measuring RS-FC in humans, and is becoming 

increasingly more adopted for examining the brain’s structure-function relationship in 

animals(9, 32, 33), including mice(10, 34). Importantly, whole-brain functional imaging in 

mice reveals large-scale functional network architecture corresponding to known murine 

structural connectivity patterns (34, 35). Moreover, basic functional connectional topology is 

conserved across mice, rats, primates, and humans(36, 37). Thus, bridge measurements can 

be made across animal models to enrich findings in human populations. Given the power of 

mice to aid in our understanding of human disease, longitudinal mapping techniques that 

probe brain circuitry more directly could profoundly illuminate pathology-related changes in 

brain organization.

Effective connectivity (EC) is distinct from, but related to, both anatomical and functional 

connectivity. EC measures the influence (direct or indirect) that one brain region exerts on 

another(38). The crucial distinction between RS-FC vs. EC is that RS-FC characterizes 
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shared spontaneous (ongoing, intrinsic) signals. By definition, pairwise RS-FC is symmetric 

and uninformative regarding the directionality of propagated signals. Axonal propagation in 

living animals is physiologically uni-directional (from cell body to axon terminal). But, this 

directionality cannot be recovered either by histological tract tracing or DTI-based 

tractography(39). In contrast, EC reports how activity in an identified part of the brain 

affects other regions. Thus, measures of EC are not necessarily symmetric. In other words, 

(and neglecting ethical considerations), analyzing RS-FC is analogous to modeling social 

networks on Facebook by observation of friend relations; studying EC would be analogous 

to sending provocative material to known Facebook users and analyzing to whom the 

material spreads.

A frequently used non-invasive mode of studying EC in humans is measuring the influence 

of task-induced fMRI responses on the BOLD signal in other parts of the brain(40). 

Transcranial magnetic stimulation (TMS), the other major non-invasive technique for 

studying EC(41), is discussed at the end of this review. fMRI and TMS aside, the study of 

EC generally involves invasive techniques, e.g., direct cortical stimulation in patients 

undergoing surgical evaluation of intractable epilepsy (see(42, for recent reviews). The 

responses evoked by such stimuli (cortico-cortical evoked potentials; CCEPs) map out 

functionally connected regions on the surface of the brain. CCEP EC exhibits 

correspondence with anatomical connectivity as determined by DTI-based tractography(44). 

Recording electrophysiological responses to injected current has a long history in animal 

experimentation(11). More recently, the mode of stimulation and/or the means of recording 

the response have been replaced with more modern techniques such as calcium fluorescence 

imaging(12) and BOLD fMRI(45). As discussed below, combining optogenetic targeting 

with wide-field functional neuroimaging represents an even more powerful strategy for 

examining structure-function relationships in the mammalian brain.

In this review, we examine recently developed methods for EC mapping in animals in 

combination with optogenetics. We focus on techniques employing hemoglobin as the 

imaging contrast for linking with human fMRI findings. We use the general term 

“optogenetic effective connectivity (Opto-EC) mapping” to refer to these strategies for 

consistency with prior definitions in the literature(38, 46). We examine the spatiotemporal 

capabilities of hemodynamic mapping, as well as other mesoscopic mapping techniques that 

probe brain activity more directly. Finally, we discuss implementing strategies for mapping 

EC in the human brain using TMS for both basic and clinical applications, with attention to 

how cross-species mapping studies can be utilized to influence preclinical imaging studies 

and clinical practice.

Examining brain circuits with optogenetics

Optogenetic methods have revolutionized neuroscience by allowing researchers to control 

genetically-defined cell populations through optical stimulation of light-gated, opsin-

expressing neurons(47). The most frequently used protein in optogenetics is 

channelrhodopsin-2 (ChR2), a non-selective cation channel that opens when illuminated 

with blue light(48) causing the targeted neuron to depolarize. Light-induced 

hyperpolarization is also possible though illumination of inhibitory opsins (e.g., 
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archaerhodopsin or halorhodopsin) with yellow light(49). Opsin expression can be achieved 

through a variety of techniques including viral vector injection for retrograde or anterograde 

labeling(50), in utero electroporation(51), and transgenic approaches(52). The optogenetic 

toolbox is constantly evolving(26, 53). Red-shifted opsin variants(54) have been developed 

to allow for deeper tissue penetration or combinatorial excitation or depolarization of 

different populations of neurons(55). Other developments include the engineering of opsins 

that exhibit faster kinetics(56) to evoke ultra-fast firing frequencies in fast-spiking 

neurons(57), or “step function” opsins that cause long-term hyper- or hypo-excitability with 

a single light pulse but revert to prestimulus membrane potentials after a second pulse of 

light(58). Although the vast majority of optogenetic-based circuit mapping studies have been 

performed in the rodent, use of these techniques has been extended into non-human 

primates(59, 60).

Several optogenetic strategies have been implemented to examine neural connectivity over a 

range of temporal and spatial scales. At the micron scale, optogenetic stimulation in 

conjunction with multiple whole cell recording is able to map synaptic connections of 

individual cells. Functional connectivity within a microcircuit can be mapped using ChR2-

assisted circuit mapping(51). For this method, a single neuron is used as a recording site 

while multiple regions are stimulated. This method can be used to map local circuitry within 

a cortical column, for example in somatosensory barrel cortex(61), or over longer distances 

spanning several millimeters(62). Maps of specific motor representations can be determined 

using ChR2-assisted, light-based motor mapping(63). Here, the site of photostimulation is 

controlled using mirrors, while motor outputs are recorded for quantifying limb(64–66) or 

whisker(67) movements. This technique can be applied longitudinally making it an attractive 

method for tracking cortical reorganization following injury(65). Systems-level connectivity 

(mm to cm) can be mapped using optogenetics in conjunction with wide-field mapping of 

brain activity. Voltage sensitive dye imaging(68, 69), calcium imaging(70, 71), and 

hemodynamic imaging(72–74) have all been successfully applied to measuring Opto-EC in 

the brain.

Chemogenetic technologies represent another powerful platform for probing genetically-

targeted, neuro-anatomical circuits. The most widely used method, designer receptors 

exclusively activated by designer drugs (DREADDs), has been successful in mapping the 

influence of local circuit activity on global functional network organization across multiple 

species including mice(75), rats(33) and non-human primates(76). Due to space limitations, 

chemogenetics are not discussed in detail here. The interested reader is directed to(77) for 

review.

Hemodynamic mapping of brain circuitry

BOLD-fMRI and optical intrinsic signal imaging (OISI) have been used extensively to 

indirectly examine neural activity in the mammalian brain. Understanding how underlying 

electrophysiological activity, either in single or multiple cell populations, relates to the local 

hemodynamic response is essential for understanding the spatiotemporal capabilities of 

hemodynamic mapping. Please see Supplementary Material for an expanded discussion on 
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using optogenetics to study neurovascular coupling and spatial resolution limits of 

hemodynamic mapping.

Activity-based mapping of brain circuitry requires examination of stimulus-evoked or 

spontaneous activity in the brain. We and others have developed methods for mapping local 

and distant EC using photostimulus-evoked activity with hemodynamic readout in rodents 

using either Opto-fMRI(73, 74, 78) or Opto-OISI(72, 79–82). For example, in transgenic 

Thy1-ChR2 mice, photostimulation of left motor cortex (Fig. 1A, blue ROI) results in local 

hemodynamic responses in oxygenated (HbO), deoxygenated (HbR), and total hemoglobin 

(HbT) at stimulated site measured with multispectral OISI (Fig. 1B). In the absence of an 

overt stimulus, intrinsic activity can also be measured (Fig. 1C). While each contrast can be 

used for mapping, HbO exhibits the largest signal changes, while HbT exhibits the highest 

contrast-to-noise(72), and is more closely linked to underlying neural activity(83). Single-

wavelength OISI takes advantage of the differential absorption profiles of HbO and HbR to 

either collect measurements where HbO and HbR absorb light equally (so measurements are 

sensitive to changes in blood volume(13)) or at wavelengths where one contrast dominates 

(for collecting measurements sensitive to oxygenation(81, 84, 85)).

The most straightforward mapping method examines induced activity at a particular time 

after stimulation. Following photostimulation of left motor cortex, a map of peak activity 

(Fig. 1D) reveals a response surrounding the site of stimulation. Additionally, activity in left 

barrel and right motor cortices suggests that these regions are functionally-connected to the 

site interrogated. We can evaluate these connections using zero-lag correlation between 

activity in left motor and all other brain regions, to produce a left motor Opto-EC map (Fig. 

1E). While similar topographically to the map of peak response, connections between left 

motor and left barrel are more pronounced. A different picture is observed when examining 

spontaneous fluctuations (Fig. 1C). Performing the same analysis of intrinsic activity shows 

a symmetric map covering large portions of motor cortex and lateral somatosensory cortex 

(Fig. 1F). Implementing these strategies for all sites interrogated yields a set of Opto-EC and 

RS-FC maps over the cortex (Fig. 2).

Patterns of Opto-EC are distinct from RS-FC maps

Several differences between RS-FC and Opto-EC maps are apparent. Stimulation of some 

regions, e.g., primary and secondary motor, and primary barrel cortex, generates distant 

responses that are not present in the corresponding RS-FC map (Fig. 2). Other major 

differences include the degree to which homotopic regions share coordinated activity. 

Bilaterally-symmetric RS-FC is very well documented in multiple species on the basis of 

fMRI and optical techniques(9, 13, 14, 20, 21, 86). A profound lack of homotopic EC is 

observed in barrel, visual, and posterior parietal regions (Fig. 2). These Opto-EC vs. RS-FC 

differences may provide insights into the nature of spontaneous activity. Synchronous 

activity in homotopic cortical regions, as reflected in RS-FC maps, may reflect 

monosynaptic, transcallosal connections or coordination by subcortical structures. RS-FC in 

the visual cortex of monkeys most likely involves polysynaptic pathways(9), and indirect 

cortico-cortical structural connectivity predicts interhemispheric RS-FC between human 
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visual cortices(87). Additionally, the thalamus can regulate cortical excitability(88), and may 

do so selectively so that homotopic regions are excitable at the same time(15, 89, 90).

Opto-EC matches axonal projection connectivity more closely than RS-FC.

Given the differences between Opto-EC and RS-FC patterns, it is reasonable to hypothesize 

that one method reflects more directly underlying anatomical connectivity. We recently 

compared Opto-EC to patterns of axonal projection connectivity (APC)(72) collected from 

the Allen Mouse Brain Connectivity Atlas(91). For most sites evaluated, the similarities 

between the APC images and the Opto-EC maps were significantly higher compared to the 

RS-FC and APC maps (Fig. 3A). The highest overlap between Opto-EC and APC occurred 

in sensorimotor cortices (where the RS-FC patterns overlapped least). Interestingly, 

hemodynamic measures of Opto-EC within sensorimotor cortices appear to reflect the 

known input-output organization of these regions (Motor and Barrel regions in Figs. 2, 3A). 

In the rodent, whisker-based tactile sensation and sensorimotor integration are mediated by a 

connection loop between somatosensory barrel and motor cortices(92). We observe 

appreciable connection strength asymmetry between the primary motor cortex (M1) and the 

lateral barrel region of somatosensory cortex (S1BL) agreeing with previous studies 

reporting directionality within this system using invasive anatomical tracing(92) and other 

local(51, 93) and global(64, 69) in vivo ChR2-based methods measuring neural activity 

more directly. The similarity between Opto-EC and APC suggests that Opto-EC patterns 

tend to reflect pairwise connectivity between neurons, much like electrical stimulation of the 

cortex(94) while RS-FC appears to largely reflect polysynaptic pathways.

Global Opto-EC mapping to probe brain anatomy and function

The recent integration of optogenetics with fMRI and OISI has allowed for examining the 

effects of precise optogenetic manipulations on global brain activity. The first Opto-fMRI 

study delivered light to motor cortex as well thalamic targets to reveal BOLD responses 

resulting from local excitatory neural activity(74)(Fig. 3B). Reciprocal stimulation of the 

anterior thalamic nucleus resulted in bilateral motor responses while stimulation of the 

posterior thalamic nucleus resulted in ipsilateral somatosensory responses. These findings 

demonstrate different cortical projections of thalamic nuclei, in line with neural tracing 

studies, but also a thalamic role in shaping coherent spontaneous activity across 

hemispheres(15).

Changes in infraslow (<0.1Hz) spontaneous activity (e.g., as reflected in patterns of RS-FC) 

facilitate and modulate a diverse set of motor, sensory, and cognitive processes. However, 

the neural basis of RS-FC remains unknown. Most studies have only correlated measures of 

neural activity with hemodynamics instead of directly probing the effects of modulated, 

region-specific electrical activity on global RS-FC. With its dense reciprocal APC to and 

from the cortex, the hippocampus is believed to mediate numerous cognitive functions and 

sensory processing(95). Further, cortical slow oscillations(1Hz), which are phase-locked 

with cellular activity in the dentate gyrus(96), resemble the spatiotemporal characteristics of 

infraslow activity in RSNs. Thus, low-frequency activity in hippocampal–cortical pathways 

could contribute to global RS-FC to integrate sensory information. Chan and colleagues 
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examined large-scale effects of spatiotemporal-specific propagation of downstream 

hippocampal activity on global RS-FC(90). In that study, stimulation of excitatory neurons 

in the dorsal dentate gyrus at low frequency(1Hz), but not high frequency(40Hz), evoked 

robust cortical and subcortical brain-wide responses (Fig. 3C). Low-frequency stimulation 

enhanced interhemispheric hippocampal and cortical RS-FC. LFP recordings revealed an 

increase in slow oscillations in the hippocampus and visual cortex, interhemispheric visual 

RS-FC, and hippocampal– cortical RS-FC. Together, these results highlight the role of low-

frequency activity propagating along the hippocampal–cortical pathway, and its contribution 

to interhemispheric cortical RS-FC.

Opto-EC mapping can also identify large-scale brain networks corresponding to specific 

behavioral and electrophysiological markers. For example, the thalamus plays a crucial role 

in coordinating brain signaling responsible for cognition and normal waking behavior(97). 

The central thalamus and intralaminar nuclei are postulated to regulate arousal, attention, 

and goal-oriented behavior(98). Using Opto-fMRI in conjunction with electrophysiology, 

Liu et al., examined the thalamic-driven global brain networks responsible for switching 

across brain states(99) with activity corresponding to electrophysiological metrics of arousal 

(e.g., spindle-like oscillations). In a separate study, stimulation of excitatory cells in 

intermediate hippocampus caused widespread BOLD signaling at high frequencies and 

predicted seizure-like after-discharges in EEG recordings and behavioral output(100).

EC Mapping in humans

Non-invasive strategies for mapping brain connectivity in the human brain have primarily 

employed TMS, which offers a less painful alternative to current injection through the 

scalp(101). The basic principle underlying TMS is that rapidly switched current though a 

coil placed over the scalp induces an electric potential around the coil which stimulates the 

brain. Repetitive TMS (rTMS) refers to pulse train stimulation at frequencies in the range of 

1–50Hz. Pulse trains of duration on the order of few seconds often are delivered over 

minutes with the objective of inducting temporary changes in cortical excitability. Whether 

rTMS is inhibitory or excitatory has been thought to depend on pulse frequency (<1Hz: 

inhibitory; >5Hz: excitatory)(102). However the sign of observed effects does not always 

follow this rule(41, 103). Theta-burst TMS (brief pulse trains [3 pulses at 50Hz], 

rhythmically delivered at theta frequencies [5Hz]) over tens of minutes, is frequently used to 

induce plasticity(104).

Basic physiological investigations in animals have established that several seconds of rTMS 

initially increases cerebral blood flow (CBF) immediately under the coil; the initial response 

lasts on the order of a minute after which blood flow becomes depressed(105). Similar 

physiologic “activation” responses have been observed with [14C]-deoxyglucose 

autoradiography(106) and measurement of regional CBF using [15O]H2O positron emission 

tomography (PET)(107). In humans, increases in CBF have been observed using arterial 

spin labeling MRI(108) and near infrared spectroscopy (NIRS)(109). Importantly, these 

physiological responses do not reflect enhanced neural function. Single-unit discharge under 

the coil might variably increase or decrease following rTMS(110) while neural responses to 

natural stimuli generally are disrupted(105). This effect commonly is referred to as a “virtual 
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lesion”(111). For example, occipital rTMS disrupts RS-FC within the visual system and 

degrades performance on a visual discrimination task(112). A particularly informative 

example of the virtual lesion effect was observed in an experiment in which 10Hz occipital 

rTMS impaired Braille reading in lifelong blind individuals, thereby demonstrating that a 

part of the brain normally used for vision had been reconfigured to analyze haptic (tactile) 

information(113). A recent meta-analysis of 29 studies confirmed that continuous theta-burst 

rTMS reliably impairs executive function(114). However, exceptions to this general rule 

exist. In normal volunteers, 20Hz parietal rTMS (daily 2s bursts every 30s × 20min × 5days) 

increased FC within the hippocampal-parietal memory system and significantly improved 

associative memory performance(115).

To study EC, TMS is combined with additional techniques including EEG(116), 

magnetoencephalography(117), PET(118), NIRS(119), or fMRI(120). The variety of such 

“multimodal” TMS experiments is thoroughly covered in recent reviews(41, 121). 

Combining TMS with EEG arguably is methodologically most similar to the above-

reviewed Opto-EC studies in rodents. Thus, single-pulse TMS delivered to left motor cortex 

reliably evokes electrophysiological responses that evolve over ~400ms to involve 

functionally-related parts of the brain(122). Most experiments combining fMRI with TMS 

stimulate with pulse trains (i.e., rTMS) and measure BOLD responses both under the coil as 

well as in functionally-related parts of the brain remote from the stimulated site(123, 124). 

The response may depend on whether the remote region is engaged by a concurrently 

administered behavioral task. For example, 10Hz right parietal rTMS (delivered alone) 

depresses CBF in left primary sensory cortex; however, in the presence of right median 

nerve shocks, CBF in left S1 is enhanced. Moreover, 10Hz right parietal rTMS enhances 

detection of near-threshold right median nerve stimuli(125). Similar “state-dependent” 

modulations of EC between dorsal premotor cortex and motor cortex have been 

demonstrated with motor tasks(126).

A wide variety of neurologic and psychiatric disorders have implemented TMS 

therapy(127). The rational basis for the therapeutic effect is specific to condition. Unilateral 

stroke might destroy the part of the brain controlling motor function on the opposite side of 

the body. It follows that weakness contralateral to the stroke is attributable to loss of 

function. However, interference from the intact hemisphere, which often is over-active, also 

is a factor. Thus, inhibitory(1Hz) TMS over the intact hemisphere as well as 

excitatory(10Hz) stimulation over the lesioned hemisphere both may improve motor 

function of the paretic hand(128). In Parkinson disease, the physiological abnormality 

responsible for rigidity and bradykinesia (inability to initiate action) is persistent, 

abnormally hypersynchronous beta(15–30Hz) activity throughout the motor system (cortex, 

basal ganglia, thalamus). High frequency stimulation of the subthalamic nucleus via 

implanted electrodes often restores mobility by disrupting the pathological 

hypersynchrony(129). High frequency rTMS of motor cortex offers a non-invasive (but less 

permanent) alternative that could work via the same mechanism(130).
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From Man to Mouse to Man: Iterating between preclinical and clinical 

findings

Depression is the condition most often treated by rTMS. Converging neuroanatomical and 

post-mortem histological evidence points to VMPFC as a specific locus of dysfunction in 

depression(131). rTMS offers a non-invasive alternative to DBS, but the challenge is that 

VMPFC is a deep structure not directly accessible to TMS. However, experimental evidence 

indicates that rTMS can be optimized by targeting a specific region in dorsolateral prefrontal 

cortex (DLPFC) known to be maximally anticorrelated with VMPFC in normal 

individuals(132). This result represents a case in which RS-FC mapping in normal subjects 

has informed the clinical therapy of depression. Clinical efficacy may be further improved 

by targeting the specific DLPFC region maximally anticorrelated with VMPFC individually 

identified in each patient using information gleaned from RS-FC mapping(133).

Further dissection of PFC circuitry via EC mapping in animal models could also help 

improve the specificity of targeted therapy. Depression is linked to several neural pathways, 

and distinct neuromodulatory systems and receptors(53). In animal models of depression, 

the medial prefrontal cortex (mPFC) is the most typically examined, and has been dissected 

anatomically and functionally using optogenetics. For example, selective activation or 

suppression of VMPFC circuits in rodents has established the causal relationship between 

mPFC connectivity and depression-like behaviors(134, 135). Mesolimbic dopamine circuitry 

is also widely studied in models of depression(136). A key component of this circuitry are 

dopamine neurons in the ventral tegmental area (VTA) that project to the limbic regions, 

such as the nucleus accumbens, amygdala and the PFC(137). This mesolimbic system is 

thought to be functionally-distinct from dopamine-innervated basal ganglia regions. 

However, Lohani and colleagues(138) demonstrate that phasic stimulation of VTA dopamine 

neurons increased BOLD signaling in known VTA-innervated regions, but also in regions 

that receive little or no VTA dopaminergic input (thalamus, hippocampus and dorsal 

striatum)(138). Thus, Opto-EC mapping is capable of identifying novel circuits within RSNs 

for probing questions about causal changes in circuit communication responsible for 

behavioral dysfunction. Compared to other diseases the myriad symptoms that define 

clinical depression cannot all be accurately modeled in animals. One strategy for linking 

clinical findings in patients with experimental work (and vice versa) would be to focus on 

human behavioral symptoms having measurable correlates in animal models.

Summary and Conclusion

We have reviewed several related but distinct forms of mapping brain connectivity: 

anatomical connectivity (white matter tracts), effective connectivity (how activity in one part 

of brain affects function elsewhere) and “functional” connectivity (correlated infraslow 

spontaneous activity) (Figure 4). Owing to space limitations, we have omitted discussion of 

many important topics, for example, that infraslow spontaneous activity, as imaged with 

hemoglobin-dependent signals, propagates over centimeter-scale distances at velocities far 

slower than axonal propagation of action potentials(139). The physiology underlying this 

phenomenon currently is not understood.
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Much of the presently-reviewed findings were obtained in the mouse but very likely apply to 

humans as basic principles of brain connectomics are conserved across a wide range of 

species(37). We have focused on recently-developed methods capable of specifically 

stimulating excitatory(69, 72, 73, or inhibitory(74, 79) neurons. New technologies for 

examining responses include calcium signaling within neurons(139–142), or 

astrocytes(143). Advances in genetically-encoded, fluorescent protein voltage indicators 

continues to progress(144, 145); this technology may eliminate some of the problems 

associated with voltage-sensitive dye signaling (indiscriminant labeling, cytotoxicity) and 

could allow for wide-field, systems-level all-optical electrophysiology(146, 147). These 

methods, perhaps in combination with red-shifted opsins, will undoubtedly reveal temporal 

processes and other aspects of neural interactions important for sustaining normal brain 

function.

We concluded this review with brief overview of human rTMS with an emphasis on 

treatment of depression. As discussed above, multiple lines of evidence derived from animal 

experimentation support rTMS as a treatment for depression. However, notwithstanding its 

widespread use, the efficacy of rTMS as a treatment for depression has not been 

established(148). A recent meta-analysis of 61 published studies suggests that a significant 

fraction of positive clinical responses is attributable the placebo effect(149). Thus, there 

remains a gap between the rich body of accumulated connectomics knowledge and practical 

clinical application. This is not cause for discouragement as basic science eventually leads to 

practical benefits.
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Figure 1. Hemodynamic mapping of brain activity.
A) Dorsal view of the exposed, intact, mouse skull and regions of interest located in left 

motor (blue), left barrel (green), and right motor (red) cortex for demonstrating Opto-EC and 

RS-FC mapping strategies. B) Left plot: In transgenic Thy1-ChR2 mice, photostimulation of 

left motor cortex (473nm laser light, 0.5 mW, 5 ms pulses delivered at 10Hz for 5 seconds) 

results in local hemodynamic responses in oxygenated (HbO, red), deoxygenated (HbR, 

blue), and total hemoglobin (HbT, black). A single contrast is chosen for further examination 

of brain connectivity. In this example, we choose HbT as it is most closely related to 

underlying neural activity and exhibits the highest contrast to noise. Right plot: In left motor 

cortex, photostimulus evoked activity (blue trace) simultaneously evolves with distant 

hemodynamic activity in left barrel (green trace) and contralateral right motor cortex (red 

trace). C) Left plot: In the absence of any overt stimulus, spontaneous fluctuations of all 3 

contrasts can also be measured in the same region. Right plot: Co-fluctuations in the same 3 

regions are also observed under resting-state conditions. Notice, however, that spontaneous 

activity in left (blue) and right (red) motor cortex are approximately in phase while 

fluctuations in barrel cortex (green) are distinctly less coherent. D) Approximately 5 seconds 

after photostimulation, a map of peak HbT activity reveals wide spread activity in cortical 

regions surrounding the site of stimulation (blue dot). Additionally, activity in barrel cortex 

as well as evoked responses in the homotopic contralateral hemisphere suggests that these 

satellite regions are functionally-connected to the site interrogated. E) Zero-lag correlation 

between the region stimulated and all other brain regions produces an Opto-EC map (based 

on Thy1 excitatory stimulation) for left motor cortex. While topographically similar to the 

map of peak response in D, the connections with right motor and left barrel are more 

pronounced. The time courses in left/right motor and left barrel are all approximately in 
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phase, but of different amplitudes; zero-lag correlation analysis is only sensitive to signal 

timing and immune to amplitude differences (within noise limits). F) Performing the same 

zero-lag correlation analysis with spontaneous HbT fluctuations in left motor cortex 

produces a resting state functional connectivity map for the blue region. Distinct 

topographical differences exist between the RS-FC map and the Opto-EC map. Unlike the 

Opto-EC map, the RS-FC map is symmetric about midline, and covers large portions of 

motor cortex and lateral somatosensory cortex. RS-FC between left motor and left barrel is 

notably absent. Maps in panels D, E, and F are thresholded at a Fisher z(r) value of 0.3. See 

reference (72) for more methodological details.
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Figure 2: Cortical patterns of Opto-EC and RS-FC
Opto-EC: Maps of Thy1-based, optogenetically defined effective connectivity in 5 mice 

calculated by zero-lag correlation of the evoked time course at the stimulated site and 

activity over the rest of the brain during over a 25 second epoch. RS-FC: Resting state 

functional connectivity maps in 8 mice calculated by zero-lag correlation of spontaneous 

time courses at the coordinates of stimulated sites and the rest of the brain (20–30 min/

mouse) during a separate imaging session. All connectivity images were created using total 

hemoglobin as contrast. While both maps share common features, the RS-FC maps are both 

qualitatively and quantitatively different from their Opto-EC counterparts. For example, 

secondary motor cortex demonstrates ipsilateral EC with barrel cortex that is not present in 

the RS-FC map, and RS-FC maps are largely bilaterally symmetric. Further details can be 

found in (72). Data and figures modified from (72).
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Figure 3: Global Opto-EC mapping to probe brain anatomy and function
A) Maps of Thy1-based Opto-EC and RS-FC are compared to axonal projection 

connectivity (APC) images from the Allen Mouse Brian Connectivity Atlas. APC images 

were acquired using the source search feature within the Mouse Connectivity Data Portal 

and projected onto the cortical surface using the cortical map signal viewer, co-registered to 

OISI data and normalized by maximum fluorescence intensity. Generally, Thy1-based, 

Opto-EC maps report monosynaptic cortical connectivity structure, but can be collected in 

awake, behaving animals. See reference (72) for more details. B) Nonlocal mapping of cells 

defined by location and genetic identity. Top left: Viral injection (AAV5-CaMKIIα::ChR2-

EYFP) and optical stimulation in primary motor cortex results in local (Motor, image 1) and 

distant (thalamus, image 2) BOLD responses. Fluorescence/bright-field images show ChR2–

EYFP expression in motor and thalamic regions while confocal images show that expression 

is limited to axons. Figures modified from (74). C) Hippocampal–cortical pathways 

contribute to global RS-FC in the rodent. Viral injection of ChR2::CaMKIIα in dorsal 

dentate gyrus (dDG) excitatory neurons. Arrows below brain image indicate approximate 

locations of Opto-EC activation maps numbered 1 (posterior) through 8 (anterior). Histology 

image shows mCherry fluorescence from viral expression in dorsal hippocampus. Brain-

wide activation maps of visually-related regions during low-frequency optogenetic 

stimulation of dDG excitatory neurons. Top row: Averaged activation maps from 1Hz 

photostimuli delivered to dDG show robust positive BOLD responses detected in bilateral 
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V1, V2, LGN, and SC, as well as Cg. Middle row: High-frequency optogenetic stimulation 

(40Hz) of dDG excitatory neurons in dorsal hippocampus does not evoke brain-wide cortical 

and subcortical activation in V1, V2, LGN, and SC. Bottom row: Regions of interest (ROIs): 

Cg, cingulate cortex; LGN, lateral geniculate nucleus; SC, superior colliculus; V1, primary 

visual cortex; V2, secondary visual cortex. Figures modified from (90). In all images, white 

dot with black outline indicates stimulation site.
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Figure 4: 
Tools for mapping brain connectomics. Mapping anatomical, or white matter, connections of 

the brain can be performed with ex vivo histological tract tracing(10, 19), or in vivo using 

diffusion tensor imaging (7, 8, 39) or manganese-enhanced MRI(150). Mapping the 

functional organization of the brain can be performed in vivo by invoking ecological 

(physiologically normal) stimuli as functional localizers (38, 40), or via synthetic (non-

physiological) stimuli via invasive (12, 42, 45), non-invasive(41, 101, 102, 104), or genetics-

based (33, 48, 50, 52, 72–76) strategies. In the absence of any overt task, ongoing 

spontaneous or intrinsic brain activity can be evaluated through electrophysiology(15, 62, 

92), ROI-based (14, 21, 23, 25, 27, 86) or ICA-based(5, 24, 27) analyses, as well as through 

evaluating the relative timing differences in regional activity propagation (temporal lag 

analysis) (86, 139). Abbreviations: Mn2+-MRI: manganese enhanced magnetic resonance 

imaging; DBS: deep brain stimulation; TMS: transcranial magnetic stimulation; TDCS: 

transcranial direct current stimulation; TENS: transcutaneous electrical nerve stimulation; 

ROI: region of interest; Ca2+: Calcium; ICA independent component analysis; BOLD: 

Blood oxygen level dependent; FMRI: Functional magnetic resonance imaging.
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