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Introduction

Atherosclerosis is a chronic inflammatory disease of the arterial wall in which 

apolipoprotein B containing lipoproteins and immune responses contribute to disease 

initiation, progression and clinical complications.1 The accumulation of lipid-laden 

macrophages with “foamy” appearance is one hallmark feature of atherosclerotic lesions.2 

Lesional macrophages arise from recruitment of circulating monocytes and local 

proliferation.2 A central question in the field is how lipid loading alters macrophage 

function, particularly their pro-inflammatory actions that may drive plaque instability and 

clinical atherosclerotic cardiovascular disease (CVD).

Non-foamy rather than foamy plaque macrophages are pro-Inflammatory in 

atherosclerosis

In the current issue, using bulk and single-cell RNA-seq (scRNA-seq), Kim et al.3 report the 

important observation that non-foamy rather than foamy macrophages have pro-

inflammatory characteristics in atherosclerosis of murine models.

The authors developed a flow cytometry-based approach to distinguish foam cells from other 

cells in the aortic wall using higher granularity (SSChi) and positivity for BODIPY493/503, 
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a fluorescent lipid probe that stains cytosolic neutral lipids. In Ldlr−/− mice fed a Western 

diet for 12 weeks, leukocyte-derived (CD45+) foam cells accounted for ~81% of total foam 

cells, and ~97% of these CD45+ foam cells were CD11b+CD64+ macrophages. This 

confirms established literature that macrophages are the major source of plaque foam cells3 

while also supporting more recent literature that non-leukocytes, particularly vascular 

smooth muscle cells, can form lesion foam cells.4 The number of SSChiBODIPYhi foam 

cells were correlated with the severity of atherosclerosis and were reduced in atherosclerosis 

regression models.3

Transcriptome analysis of foamy macrophages showed a striking lower expression of 

inflammatory genes and higher expression of genes related to cholesterol uptake, processing, 

and efflux compared with non-foamy macrophages, which expressed high levels of 

inflammatory genes, such as Il1b, Nfkbia, and Tlf2.3 scRNA-seq of aortic CD45+ leukocytes 

in male Ldlr−/− mice fed a Western diet for 12 weeks identified 11 clusters with 8 

macrophage clusters. The top differentially expressed genes enriched in foamy macrophages 

were mostly found in cluster 4, whereas many of those from non-foamy macrophages were 

specifically expressed in cluster 1. Pathway analysis supported that cluster 1 macrophages 

showed increased expression of genes in inflammation and toll-like receptor signaling 

pathways. In addition, clusters 0, 3 and 5 expressed high levels of Lyve1, a feature of 

resident-like macrophages. Cluster 8 showed highly enriched cell cycle-related genes, 

suggesting proliferating macrophages. The work confirms recent evidence5, 6 of diverse 

leukocyte sub-populations in mouse atherosclerosis and highlighted non-foamy 

macrophages as abundant inflammatory cells in progressing atherosclerosis.

Do non-foamy macrophages drive atherosclerosis progression and clinical 

complications?

The success of CANTOS, a recent clinical trial of anti-IL-1β antibody in high-risk patients 

on optimal lipid lowering therapy,7 as well as human genetic studies of inflammatory clonal 

hematopoiesis,8, 9 reaffirm the inflammatory hypothesis of atherosclerotic CVD. The work 

of Kim et al.3 challenge the field to have a more open view of lesion macrophage 

phenotypes and roles in atherosclerosis. Although challenging dogma, the finding of reduced 

inflammation in foamy macrophages is not entirely novel, and confirm recent work by the 

Glass group showing that generation of foamy macrophages by cholesterol loading in vitro 
and in vivo may suppress inflammatory status of peritoneal macrophages via activation of 

the liver X receptor.10 Yet, much remains unknown from these single cell association data 

and extensive experimental and clinical follow-up is required.

First, why do non-foamy macrophages apparently remain not lipid-loaded in atherosclerosis 

progression? Do the lesion non-foamy and foamy macrophages have distinct spatial 

distribution with different degree of lipoprotein retention? Or do the non-foamy 

macrophages intrinsically possess lower lipid uptake capacity? Second, are non-foamy 

macrophages causal drivers of atherosclerosis initiation and progression independent of 

foam cell formation or are they in fact cells in transition to foam cells? Third and conversely, 

are foam cells less toxic than dogma suggests or indeed are they protective? Or does an 
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apparent less inflammatory gene expression profile mask their actions in complex lesion 

formation to drive plaque instability and clinical CVD complications?11 Fourth, do these 

cells diminish during treatment and resolution of atherosclerosis or do distinct functional 

macrophage types emerge to promote regression? Fifth, how do these murine lesion 

macrophage subpopulations map to human plaques?

Perhaps the most intriguing questions relate to the origin, drivers, dynamics, and human 

translation of distinct macrophage subpopulations in lesions. Plaque microenvironment 

factors, such as lipids and cytokines, hypoxia, apoptotic and necrotic cells, and matrix can 

shape macrophage identities.12 It is plausible also that circulating and recruited monocyte 

subsets, and the macrophages derived from them, have intrinsic properties with distinct roles 

in atherogenesis. Indeed, hypercholesterolemic mice demonstrate monocytosis primarily 

attributable to an increase in the more inflammatory Ly6Chi monocyte subset, and these 

make up the majority of cells recruited to atherosclerotic plaques.13, 14 These questions can 

be probed in rodent models but critically require both independent discovery within the 

human risk context and validation of mouse findings in humans. Key questions include the 

relationship of subpopulations to CVD-related inflammatory myeloid cells in human lesions 

that are driven by clonal hematopoiesis and age-related somatic mutations in TET2 and 

other genes?8, 9 From a therapeutic perspective, understanding which of these macrophages 

subpopulations are modulated by targeting IL-1β will facilitate clinical translation of the 

CANTOS trial findings.7 Kinetic profiling to map the temporal and spatial trajectories of all 

human circulating and lesion monocyte and macrophage subsets and understanding how 

known CVD risk factors, including genetic predisposition, affect their plasticity and survival 

will provide new insights into mechanisms of human atherosclerotic CVD.

Strengths and limitations of scRNA-seq in understanding atherosclerosis

Three independent studies3, 5, 6 published recently in Circulation Research use scRNA-seq 

to examine CD45+ aortic leukocytes subpopulations and their transcriptome signatures in 

mouse model of atherosclerosis (Table 1). Winkels et al.5 and Cochain et al.6 profiled 

leukocytes in healthy and atherosclerotic aortas from chow-fed and Western diet/high fat 

diet-fed mice, while Kim et al.3 focused on plaque leukocytes in Western diet-fed mice. 

Although all three studies agree in major leukocyte populations identified and have 

successfully discovered and validated novel subpopulations,15 the cell type clusters reported 

have important differences (Table 1). Winkels et al.5 and Cochain et al.6 have identified 

multiple T cell subpopulations. Kim et al.3 showed macrophages with the largest cell 

number and the most diverse subpopulations. These differences may be attributable to the 

mouse strain, disease model and timing, type of diet, tissue sampling and digestion as well 

as analytic framework. Foremost however, this may simply reflect the nascent state of single 

cell profiling in atherosclerosis, in particular a lack of sensitivity to detect lower frequency 

populations.

In summary, Kim et al.3 and others5, 6 are driving a conceptual shift towards defining the 

roles of diverse plaque leukocytes, which have previously underappreciated heterogeneity. 

Coupled to quickly evolving experimental and computational protocols, and applications to 

human lesions, single-cell profiling has the potential to transform our understanding of 
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plaque biology, reveal causal cell types, their key master regulators and effectors, and thus 

novel therapeutic targets for human atherosclerosis and its clinical complications.15
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Table 1.

Methods and findings of scRNA-seq analysis of CD45+ aortic leukocytes in atherosclerotic mice model in 

three independent studies.

 Kim et al.3 Winkels et al.5 Cochain et al.6

Mice Ldlr−/− (8 wks male) Apoe−/− (8 wks female) Ldlr−/− (6-8 wks male)

Diet Western Diet (Test Diet, AIN-76A) Chow or Western diet 
(Envigo, TD.88137)

Chow or high-fat diet (Altromin, 15% 
milk fat, 1.25% cholesterol)

Duration 12 wks 12 wks 11 wks

Enzyme Mix Ca2+ Mg2+ PBS
+ Collagenase I (675 U/mL)
+ Col XI (187.5 U/mL)
+ Dnase I (90 U/mL)
+ Hyaluronidase (90 U/mL)

HBSS
+ Collagenase I (450 U/mL)
+ Collagenase XI (250 U/mL)
+ Dnase I (120 U/mL)

RPMI
+ Collagenase I (450 U/mL)
+ Collagenase XI (125 U/mL)
+ Hyaluronidase (60 U/mL)

Incubation Time 37 °C, 70 min 37 °C, 60 min 37 °C, 40 min

Platform 10X Genomics 10X Genomics Drop-seq

Analysis Cell Ranger, SEURAT

# of CD45+ Cells 
Analyzed After QC 
Filtering

3,781 (Western diet) 909 (chow)
2,077 (Western diet)

372 (chow)
854 (Western diet)

Clusters 11 11 13

Macrophages: 8
DCs: 2
T cells: 1

T cells: 5
B cells: 2
Monocytes: 2
Macrophages: 1
NK cells: 1

T cells: 4
Macrophages: 3
B cells: 1
DCs: 1
Granulocytes: 1
Monocytes: 1
NK cells: 1
Mixed cells/mast cells: 1

scRNA-seqReplication Total foam cells (SSChiBODIPYhi) 
from Apoe−/− mice fed a high-fat 
diet for 27 wks

CD45+ leukocytes from Ldlr
−/− (8 wks male) fed a high 
cholesterol diet for 12 wks

CD45+ leukocytes from Apoe−/− (8 
wks female) fed Western diet (Envigo, 
TD.88137) for 12 wks

Validation FACS, histology, and RNA-seq for 
foamy and non-foamy 
macrophages

Mass Cytometry and FACS 
for 3 B-cell subsets

Immunohistochemistry for 3 
macrophage subsets (inflammatory, 
resident-like, and TREM2hi)

Human Translation In situ hybridization of Il1b mRNA 
and KI-67 staining in human 
lesional macrophages

Enumerate leukocyte 
frequencies in 126 human 
plaques by a genetic 
deconvolution strategy

Immunohistochemistry of human 
lesions
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