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Abstract

Clinical, biochemical and molecular biology studies have identified lysosome-encapsulated 

cellular proteases as critical risk factors for cancer progression. Cathepsins represent a group of 

such proteases aimed at maintenance of cellular homeostasis. Nevertheless, recent reports suggest 

that Cathepsin B executes other cellular programs such as controlling tumor growth, migration, 

invasion, angiogenesis, and metastases development. In fact, elevated levels of Cathepsins are 

found under different pathological conditions including inflammation, infection, 

neurodegenerative disease, and cancer. Furthermore, the discovery of Cathepsin B secretion and 

function as an extracellular matrix protein has broadened our appreciation for the impact of 

Cathepsin B on cancer progression. Underneath a façade of an intracellular protease with limited 

therapeutic potential hides a central role of cathepsins in extracellular functions. Moreover, this 

role is incredibly diverse from one condition to the next – from driving caspase-dependent 

apoptosis to facilitating tumor neovascularization and metastasis. Here we discuss the role of 

Cathepsin B in the oncogenic process and perspective the use of Cathepsin B for diagnostic and 

therapeutic applications.
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1. Introduction

In the last decade, cancer has evolved as one of the leading causes of death worldwide. The 

ability of cancer cells to maintain an internal homeostasis correlates with tumor 

aggressiveness and represents an essential characteristic of a neoplasm. Multiple pieces of 

evidence highlight the importance of lysosomes in cellular homeostasis [1, 2] and in 

developing cellular reaction[3, 4]. The fundamental role of these membrane-bound 

organelles is the disposal and recycling of degraded macromolecules, along with digestion of 

alien structures that enter the cell via phagocytosis [5]. Nevertheless, several studies 

established that under conditions of cellular stress the lysosome is involved in cellular 

adaptation, nutrient sensing [6], drug resistance[7, 8], immune response[9] and cell 

death[10]. Lysosomes contain more than 60 hydrolytic enzymes which include proteases, 

lipases, hydrolases, nucleases, glycosidases, phospholipases, phosphatases, and sulfatases 

[11].

Tumor homeostasis is a multidimensional process that is regulated by cellular proteins, 

including cathepsin family of proteases, protein-protein interactions, alternative splicing[12] 

and expression of miRNAs. Among the proteases, Cathepsin B is of most interest due to its 

central role in pathological processes. Cathepsin B is a critical element of lysosome cascade. 

It is a cysteine protease that is involved in the regulation of metalloproteinases[13, 14], 

intracellular communications, autophagy induction, and immune resistance. Moreover, the 

role of Cathepsin B in cell survival and the mechanisms of its execution are vastly diverse 

from one condition to the next – from driving caspase-dependent apoptosis to facilitating 

tumor neovascularization and metastasis. Herein, we review recent studies which investigate 

the role of Cathepsin B in pathological processes with a focus on cancer.

2. Understanding the functions of Cathepsin B through the studies of its 

structure

Cathepsin B is a member of a cysteine protease family. It acts through 3 isoforms: main 

transcript, main transcript lacking exon 2 or main transcript lacking exon 2 and 3 (Table 1). 

In a common opinion, the cytosomal localization of Cathepsin B dictates its main functions 

such as the turnover of cellular proteins[15]. However, other functions may include 

regulation of angiogenesis[16, 17], invasion[16, 18], tumor proliferation[18] and immune 

resistance[19], neurogenesis[20] cellular differentiation[21, 22], tumor response to hypoxia 

[23, 24]. Furthermore, different Cathepsin B isoforms have differing subcellular 

localizations which may determine their distinct functions and independent regulation 

mechanisms[12, 25, 26].

Musil et al. created a model of the three-dimensional structure of Cathepsin B and 

established that the proteasomal function of Cathepsins requires the presence of specific 

structural features of the enzyme. In this structure, more than a third of amino acid residues 

are identical to the construction of protein papain, except for the covalently closed circular 

region between Cys108 and Cys119 residues (“occluding loop”)[27]. Cathepsin B is first 

expressed as a 44kDa inactive precursor which then undergoes maturation to produce a 33 

kDa lysosome enzyme later converted to a final active form composed of two (24 and 5 kDa) 
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subunits. The earliest studies demonstrated cathepsins to be most active in acidic conditions, 

and also to be released in an active form at low pH of the pericellular environment [28, 29]. 

Other reports described the pH-dependent autoactivation of the zymogen pro-Cathepsin B, 

also showing that such pH-dependency could be alleviated with the introduction of 

glycosaminoglycans, explaining the wider window of optimal pH for Cathepsin B activity in 
vivo [30, 31]. Furthermore, the catalytic activity of Cathepsin B is dependent on the 

conformation of the “occluding loop”[32].

3. Cathepsin B in neurological disease: mechanism of action

It is thought that active Cathepsin B is a carboxypeptidase, cleaving dipeptides from the C-

terminus of protein substrates [15]. Such activity of Cathepsin B may regulate the rate of cell 

proliferation [33]. In pathological states where neurogenesis is impaired, and the rate of cell 

proliferation is decreased, such as Alzheimer’s disease [34] and Huntington’s disease[35], 

Cathepsin B plays a protective role by degrading excessive amounts of misfolded protein 

inside the cell [26, 36]. In humans, the levels of Cathepsin B correlate with hippocampal-

dependent memory functions and can be increased by physical exercise, while a Cathepsin B 

knock-down mice do not benefit from physical activity in terms of hippocampal 

neurogenesis and spatial memory [20]. On the other hand, the decrease in the rate of 

neurogenesis in AD can be secondary to the accumulation of the criticalAD proteins, which 

can be induced by inhibition of Cathepsin B and the consequent the lysosomal dysfunction 

[37].

It is also established that cells can secrete proteolytic enzymes as a means of execution of 

endocrine and nervous functions [38]. Specifically, the product of Cathepsin B transcript 

was found in the extracellular matrix (Table 1), suggesting enzyme release from active 

(proliferating) or passive (dead) cells, especially the cells growing under acidic pericellular 

conditions [11]. Extracellular release of lysosome-based enzyme Cathepsin B has been 

implicated in the breakdown of the connective tissue of the extracellular matrix (ECM) [39] 

and shedding integrins [18] and angiogenesis factors which reduce tumor progression[40]. 

On the other hand, experimental evidence has implicated Cathepsin B in apoptosis 

regulation. In fact, the mitochondria-based caspase 9 and caspase 3 activation after 

lysosomal destabilization and Cathepsin B release into the cytoplasm exemplify pro-

apoptotic function of Cathepsin B [41]. The release of Cytochrome C (Cyt C) from 

mitochondria and its accumulation in the cytoplasm increases the affinity of procaspase 

effector Apaf-1 to ATP, which recruits procaspase-9 and initiates caspase 3 activation to 

induce apoptosis [42, 43]. Cathepsin B can also function to induce apoptosis independently 

of caspase activation [44]. Separating caspase-dependent and caspase-independent cell death 

made it difficult to rationalize the biological significance of Cathepsin B for therapy, 

especially taking into consideration the more recent publications. Specifically, Alhajala et al. 
reported that radioresistant pediatric glioma exhibit a high level of MMP12, MMP19 and 

Cathepsin B [45], conferring dependency of glioma stress response on cellular proteases. 

Moreover, data from our investigation[46] and study performed by Hsu et al. suggest that 

targeting artificial autophagy[47] with either autophagy inducer, autophagy inhibitor or their 

combination may argument the anti-glioma effect of oncolytic adenovirus and/or 

temozolomide. These therapeutic combinations represent an advantageous approach that 
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aims to convert the aborted autophagy to apoptosis via mitochondria damage or cathepsin B 

release.

4. Interaction of Cathepsin B with cellular proteins: link to carcinogenesis

The expression of Cathepsin B is elevated in many, but not all, cancers. In a screen of 501 

randomly collected thyroid cancer human specimens, high expression of Cathepsin B 

promoted patient survival (Log Rank p=5.76e-4) (www.proteinatlas.org). Furthermore, in 

glioblastoma patients, high expression of Cathepsin B negatively correlated with the stage of 

the tumor (TCGA and Rembrandt Dataset). Conversely, in 406 patients with urothelial 

cancer, high expression of Cathepsin B negatively impacted patient survival (Log Rank, 

p=9.2e-4).

Khan et al. demonstrated a negative correlation of Cathepsin B expression and laminin 

(ECM protein) in gastric[48] and colorectal carcinoma[49], suggesting the involvement of 

Cathepsin B in the remodeling of ECM. Examinations of the regulation of Cathepsin B by 

matrix proteins found that collagen I, through its interaction with α1β1 and α2β1 integrins, 

stimulated secretion of proCathepsin B by human breast fibroblasts. It was suggested that 

the effect may be executed at the post-transcriptional level because no change in mRNA 

level was found. It was also suggested that interaction of the fibroblasts with collagen I 

could increase translation or stabilize proCathepsin B protein [50].

Skeletal muscle differentiation was also shown to be linked to the levels of expression and 

excretion of Cathepsin B[51]. Small et al. demonstrated that when smooth muscle cells shift 

into a nonproliferative (contractile) state after termination of vascular reconstruction, 

expression of complement C1s, Cathepsin B, and cellular repressor of E1A-activated genes 

increased, as well as expression of Wilms’ tumor 1-associating protein [52]. The 

forementioned evidence suggests the role of Cathepsin B in cellular differentiation that may 

have implications in cancer progression.

The signaling cascades upstream of Cathepsin B were also worked out by previous studies. 

Glogowska et al. demonstrated that CTRP8 (C1q-tumor necrosis factor-related protein 8) 

and RLN2 (relaxin isoform) hormone induce the production and secretion of Cathepsin B in 

glioblastoma cells, resulting in laminin degradation [53] and glioblastoma dissemination. 

Notably, the same group demonstrated the role of EGFcyt (Epidermal Growth Factor 

cytoplasmic domain) as an inducer of lysosomal procathB expression [54]. Recent 

mechanistic studies revealed a few novel regulators of Cathepsin B that facilitate either the 

pro-oncogenic function of Cathepsin B or its pro-apoptotic function. One of the regulators is 

metastasis-associated protein (MTA1) which inhibits Cathepsin B expression and is 

negatively correlated with E-Cadherin, critical for bone metastases progression [55]. Two 

other reports reveal that TNF-alpha enables the Bid-dependent lysosomal permeabilization, 

followed by the release of Cathepsin B into the cytosol, which facilitates mitochondrial 

cytochrome c release and apoptosis[56].

The role of Cathepsin B-induced signaling in the promotion of tumorigenicity was also 

extensively studied. In fact, Yanamandra et al. and later Gupta et al. discovered that 
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upregulation of Cathepsin B promotes angiogenesis via induction of VEGF-C and MMP-9 

[17, 57]. On the contrary, in glioma, downregulation of uPAR in combination with Cathepsin 

B inhibits CD151 and α3β1-integrin-mediated adhesion and invasion [58]. Later, Malla et 
al. suggest that downregulation of uPAR and Cathepsin B in glioma facilitates apoptosis 

through increased translocation of calcineurin from mitochondria to cytosol, decreased 

phosphorylation of BAD and increased interaction of BAD with Bcl-2 [59]. It is not 

surprising that Cathepsin B and uPAR downregulation work synergistically as 

anticarcinogenic mechanisms. This combination reduces p-ERK and c-Myc, which increases 

levels of E2F1 and FOXO3a, upregulating p27 expression in glioma cells [60]. The 

discovery of the interaction between Cathepsin B, MAPK, BAD and ERK[61] helped clarify 

the downstream targets of Cathepsin B and opened a new venue to design pharmacological 

combinatorial approaches to target Cathepsin B.

The feedback loop between Cathepsin B, MMP9 (metalloproteinase 9) and VEGF (vascular 

endothelial growth factor) highlight the role of the CTSB gene in tumor angiogenesis. On 

the one hand, expression of proangiogenic VEGF-A promotes the production of cathepsins 

including type B[62] by glioma cells to digest basal membrane[63] and stimulate endothelial 

cells to release the matrix-degrading enzymes. This enables glioma cells to form capillary 

sprouts via MMP9-regulated migration and proliferation. On the other hand, in 

neuroendocrine mouse tumors, levels of Cathepsin B and MMP9 are negatively correlated 

[64]. An earlier study on human glioblastoma cells showed that simultaneous inhibition of 

Cathepsin B and MMP-9 via RNA interference reduced tumor invasion, growth, and 

angiogenesis [16]. Similar results were produced when MMP-9, uPAR and Cathepsin B 

were inhibited in prostate cancer cells [65]. Ponnala et al. showed that silencing MMP-9 in 
vivo in combination with either uPAR or Cathepsin B resulted in suppression of aerobic 

glycolysis in glioma cells and switch to oxidative phosphorylation (OXPHOS) through 

inhibition of Akt, ultimately leading to the production of ROS and accumulation of 

cytochrome C in the cytosol [66]. Although, as evidence from recent publication suggests 

that OXPHOS is mostly intact in cancer cells [67], the formation of OXPHOS complex may 

preclude metabolic transformation of the cells from oxidative to glycolytic metabolism[68]. 

It was shown that fibronectin degradation by Cathepsin B allows the tumor cells to invade 

into the blood and lymphatic vessels of bladder carcinoma [69]. A similar conclusion may 

be drawn from the suppression of angiogenesis in glioblastomas lacking Cathepsin B. 

Inhibition of Cathepsin B via RNA interference reduces VEGF release from cancer cells 

which prevent the development of microvessels [17]. Mai et al. and then Kong et al. 
suggested that Cathepsin B degradation of tenascin-C surrounding neovessels could 

facilitate neovascular extension resulting in the progression of gliomas[70, 71]. These 

findings present downregulation of Cathepsin B as a useful approach to target tumor 

neovascularization.

5. Role of Cathepsin B modulation in anti-cancer therapy

Stress stimulated secretion of Cathepsin B from the lysosomes, and its consequent 

cytoplasmic localization suggest a chain of events which may lead to toxicity. Time-

dependent production of reactive oxygen species compromises the lysosomal integrity and is 

required for Cathepsin B and L activation and release [72]. Taking into consideration that the 

Mijanović et al. Page 5

Cancer Lett. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ROS may initiate cytoprotective and cytotoxic autophagy, it is reasonable to expect the 

involvement of Cathepsin B in both types of reaction depending on the stimulus. The main 

question is how to promote the Cathepsin-dependent cytotoxic autophagy and prevent the 

cytoprotective autophagy in cancer cells. For instance, Zhang et al. were able to inhibit the 

growth of non-small cell lung cancer in vivo via treatment with CA-5f (autophagosome-

lysosome fusion inhibitor). Such treatment leads to an increase in ROS production, 

apoptosis, but no changes in the levels of Cathepsin B and D [73]. Another set of studies 

implicate Cathepsin B in the mechanisms of execution of cytotoxic effects of multiple anti-

cancer drugs. Cathepsin B completely or partially prevents toxicity of drugs such as HDAC 

[74], ERBB1/2/4 inhibitor neratinib [75], nilotinib [76], acid ceramidasa [77], 

Thymoquinone [78], Tyrosine kinase inhibitors (TKI) such as sunitinib, and pazopanib[79]. 

Han et al. showed that SAHA promotes cytotoxic autophagy via activation of Cathepsin B. 

Interestingly, a block of breast cancer cells treated with SAHA in the presence of siRNA 

against Cathepsin B or Cystatin C reduces apoptosis and promotes cell viability, also 

suggesting an intrinsic role of Cathepsin B in the SAHA-induced cytotoxicity[80] and 

establishing a link between Cathepsin B expression and cell survival. Mechanistically, it can 

be explained that increasing of lysosome membrane permeability and release of Cathepsin B 

may trigger late stages of autophagy which can be critical for drug toxicity. Regardless, all 

those possibilities need to be further investigated.

On the other hand, autophagy is an essential cytoprotective system that is rapidly activated in 

response to various stimuli. In fact, Hong et al. revealed an increase in autophagy-related 

proteins Cathepsin B along with (ATG) 3, ATG7 and Rab7 during hepatic ischemia and 

perfusion [81]. In the same study, the necroptosis inhibitor Nec-1 attenuated those changes 

suggesting that Cathepsin B may be implicated in necroptotic cell death. Furthermore, 

Obatoclax (Bcl-2 family inhibitor) toxicity in oesophageal cancer is mediated by blockage 

of autophagic flux, evidenced by the concomitant accumulation of LC3-II and p62, and 

downregulation of lysosomal Cathepsins B, D, and L[82]. In the same study, Cathepsin 

knockdown induced cytotoxicity, suggesting compromised lysosomal function as a 

mechanism mediating the effect of Obatoclax on the progression of oesophageal cancer [82]. 

It is also significant to assess whether cytoprotective autophagy requires expression of 

Tumor Necrosis Factor Receptor-Associated Protein-1 (TRAP1), a homolog of 

mitochondrial-specific HSP90 [83]. This study observed decreased viability of NSCLC cells 

upon inhibition of autophagy, but the stimulation of autophagy above the endogenous levels 

had a protective effect only in TRAP-1 depleted cells.

Although functional test data suggests a prosurvival function for Cathepsin B, it remains 

unknown how and when cytoprotective autophagy become cytotoxic and what is the 

molecular mechanism of that transformation. For instance, inhibition of PERK was shown to 

decrease the autophagic degradation of eLF2α and promoted cell survival. Cathepsin B 

inhibitor CA074 also prevented IF2alpha from degradation, suggesting that Cathepsin B-

mediated cytotoxic autophagy is PERK-dependent [84]. It is also unclear how malignant 

cells escape the cytotoxic autophagy. A recent report by Ning et al. identified a decrease in 

the levels of Cathepsin B along with other autophagic proteins in PTEN-knockdown 

Trastuzumab-resistant breast cancer cells [85].
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Another possibility for Cathepsin B to regulate autophagy is an opportunity to collaborate 

with other Cathepsin molecules of a different type. We speculate that each type of cells 

death is progressing through the involvement of several Cathepsins which together act as 

cytoprotective or cytotoxic triggers inside cells. For example, Liu et al. noted that the release 

of Cathepsin B and apoptosis induction occurs in the presence of Cathepsin D [86]. Multiple 

reports demonstrate that release of Cathepsin B alone in combination with an increase in 

expression of Cathepsin D [87, 88] and Cathepsin L [89] sensitize cancer cells to 

chemotherapeutic drugs via caspase-dependent and caspase-independent cell death.

6. Cathepsin B is a target for therapy and diagnostics

An increasing number of studies highlight the role of autophagy and autophagy-related 

proteins in a broad range of physiological and pathological processes. The investigations of 

the molecular mechanisms of Cathepsin B regulation have attracted a lot of attention since 

this protein plays a pivotal role in autophagy-related events. Nowadays, Cathepsin B has 

become a cornerstone of novel therapeutic strategies.

Tumor progression is a sequence of choreographed actions of transcriptional regulators, 

heavily influenced by cellular stress. Apart from transcriptional regulators, the activity of 

Cathepsin B is also regulated by endogenous inhibitors. Currently, four different inhibitors 

have been identified in the cystatin superfamily – stefins, kininogens, thyropins, and 

serpins[90]. Their function is to oversee the processes of biosynthesis and trafficking of 

Cathepsin B to lysosomes, as well as (auto-)proteolytic cleavage of pro-peptides (Fig. 1). 

Despite the potential known effect of the inhibitors on Cathepsin B, several studies reported 

on the metastasis suppressor function of the Cathepsin B inhibitors [91] in breast cancer 

[92], colorectal cancer [93], pancreatic ductal adenocarcinoma [94], etc. Despite the clear 

anti-tumor effect, each inhibitor has different efficacy against Cathepsin B.

In recent years, the efforts of pharmacological research have been focused on targeting 

Cathepsin B specifically. For instance, the chemically designed Cathepsin B inhibitor 

ankyrin repeat protein DARP demonstrated more significant benefits for anti-cancer therapy 

and diagnostics. As shown by Kramer et al., application of DARP in 8h6 blocked Cathepsin 

B activity ex vivo and was useful to monitor tumor-associated protein inhibition using non-

invasive in vivo imaging [95]. Another report demonstrated that inhibition of vacuolar H+-

ATPases (V-ATPases) with concanamycin A decreased Cathepsin B activity in cell lysates of 

metastatic breast cancer cells [96]. Liow et al. and Chow et al. recently found that Cathepsin 

B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) 

induces apoptosis at low concentrations and necrosis at higher concentrations in leukemic T 

cells via oxidative stress [97]. Most recently, Tang et al. reported a new autophagy inhibitor 

cepharanthine (CEP) with an anti-cancer effect on non-small lung cancer cells mediated by 

dacomitinib (DAC) via blockage of autophagosome-lysosome fusion and inhibition of 

lysosomal Cathepsin B and D maturation [98]. The full list of Cathepsin B inhibitor is 

presented at Tab.1.

An increased level of Cathepsin B is already present in the lysosome, but it is nevertheless 

rapidly induced under various stimuli and leads to the production of prostaglandins, with 
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subsequent inflammation via ATG7-dependent mechanism. Thus, it is believed that targeting 

of Cathepsin B via RNA interference may show a greater impact on Cathepsin B activity 

than chemical inhibitors due to lack of specificity. In fact, RNA interference oligonucleotide 

shRNA-CTSB#2 showed the most efficient inhibition of Cathepsin B at both mRNA and 

protein levels and resulted in suppressing endometrial cancer growth and development in 
vivo [33].

Another approach which experimentally provided benefits for targeting lysosome is the 

application of cationic liposomes. Cationic liposomes induce lysosome membrane 

permeabilization and inhibit late-stage autophagic flux that results in the cytoplasmic release 

of Cathepsin B, mitochondrial dysfunction and production of reactive oxygen species 

followed by cell necrosis [99].

7. Conclusions

In the last few decades, we are witnessing an exceptional stride in deciphering the 

perplexing biology of cathepsins in the normal and pathological environment. Owing to new 

techniques in genomics and proteomics, our knowledge of new functions and new substrates 

for each member of this group of proteins grows progressively [100]. Development of 

bioinformatics allows us to explore possible interactions between Cathepsin B and potential 

inhibitors in silico [101]. Non-invasive in vivo imaging of cathepsins has potential in 

becoming a novel standard in diagnostics [95]. Despite the hope of using a chemical 

inhibitor of Cathepsin B, the possible application of designed drugs in clinics may be 

limited. First, we believe that the specificity of chemical inhibitors to Cathepsin B is a severe 

constraint for therapeutic use. In fact, the high expression of Cathepsin B in normal cells, as 

well as the promiscuous expression of Cathepsin B in tumor cells raise questions related to 

safety and specificity. Secondly, due to the multifaceted regulation of Cathepsin B signaling, 

chemical inhibition may stimulate alternative routes to restore the Cathepsin B levels (Tab. 

2). That possibility raises concerns about modifications in the resistant cancer cell 

populations, leading to the formation of cells with unknown feedback loops or activation of 

other cathepsins. Nevertheless, a better understanding of the cathepsins biology of humans 

will empower new generations of scientists to find the best treatments to a broad spectrum of 

diseases involving cathepsins.
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Highlights:

• Cathepsins represent a group of cysteine proteases

• Cathepsins maintain homeostais in normal and pathological states of the cell

• Cathepsin B role in anticancer therapy is diverse

• Modulation of Cathepsin B regulates autophagy
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Figure 1. 
Figure 1. Lifecycle of cathepsin B. Inactive forms of enzymes, after post-translation 

modifications at endoplasmatic reticulum (ER) are, via Golgi complex (GC), are directed to 

lysosomes (L), cytosol or extracellular matrix. With location there function may differ, but 

main role stays to insure homeostasis and survival of the cell. Homeostasis may be corrupt 

due to stress cell was exposed to (infections, inflammations, chronic diseases, etc.) To insure 

their goal, they are living lysosomes within macrovesicles, exosomes or oncosomes. All of 

these cathepsin B also can be delivered by the messengers of intercellular communication -

extracellular vesicles vesicles have purpose to provide optimal conditions for proteolytic 

activity of cathepsin B (e.g. pH) induce migration, invasion and if autophagy doesn`t 

succeed, cathepsin B activate apoptosis, trying to control damage.
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Table 1:

Main isoforms of Cathepsin B and their function

Wild type or splice 
variant

Tumor/health tissue Function Localization

Main transcript (13 
exons),

-COS cells(green monkey adherent fibroblasts[1]),
-human cultured articular chondrocytes and polyclonal T/
C-28a2

chondrocyte cell line[2],

-human rheumatoid synovial tissue[3];

-human colon adenocarcinoma ( tumor and mucosa[4])

-human breast adenocarcinoma[5]

-human melanoma[5]

Cellular metabolism[6] Lysosome[8]

Main transcript (11 
exons lacking exons 
2+3),

Enzyme, Cell death[7], 

Eukaryotic translation[1]

Mitochondria[9] 

Cytoplasm[10] or nuclei[1]

Main transcript(12 
exons) lacking exon 
2 Extracellular space[8, 9]
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