Skip to main content
. Author manuscript; available in PMC: 2020 May 1.
Published in final edited form as: Cancer Lett. 2019 Feb 20;449:207–214. doi: 10.1016/j.canlet.2019.02.035

Table 1:

Main isoforms of Cathepsin B and their function

Wild type or splice variant Tumor/health tissue Function Localization
Main transcript (13 exons), -COS cells(green monkey adherent fibroblasts[1]),
-human cultured articular chondrocytes and polyclonal T/C-28a2
chondrocyte cell line[2],
-human rheumatoid synovial tissue[3];
-human colon adenocarcinoma ( tumor and mucosa[4])
-human breast adenocarcinoma[5]
-human melanoma[5]
Cellular metabolism[6] Lysosome[8]
Main transcript (11 exons lacking exons 2+3), Enzyme, Cell death[7], Eukaryotic translation[1] Mitochondria[9] Cytoplasm[10] or nuclei[1]
Main transcript(12 exons) lacking exon 2 Extracellular space[8, 9]

References:

[1]

S. Mehtani, Q. Gong, J. Panella, S. Subbiah, D.M. Peffley, A. Frankfater, In vivo expression of an alternatively spliced human tumor message that encodes a truncated form of cathepsin B. Subcellular distribution of the truncated enzyme in COS cells, J Biol Chem, 273 (1998) 13236–13244.

[2]

R. Zwicky, K. Muntener, M.B. Goldring, A. Baici, Cathepsin B expression and down-regulation by gene silencing and antisense DNA in human chondrocytes, Biochem J, 367 (2002) 209–217.

[3]

R. Lemaire, R.M. Flipo, H. Migaud, C. Fontaine, G. Huet, E. Dacquembronne, R. Lafyatis, Alternative splicing of the 5’ region of cathepsin B pre-messenger RNA in rheumatoid synovial tissue, Arthritis Rheum, 40 (1997) 1540–1542.

[4]

C. Hizel, M. Ferrara, H. Cure, D. Pezet, P. Dechelotte, J. Chipponi, P. Rio, Y.J. Bignon, D. Bernard-Gallon, Evaluation of the 5’ spliced form of human cathepsin B mRNA in colorectal mucosa and tumors, Oncol Rep, 5 (1998) 31–34.

[5]

Q. Gong, S.J. Chan, A.S. Bajkowski, D.F. Steiner, A. Frankfater, Characterization of the cathepsin B gene and multiple mRNAs in human tissues: evidence for alternative splicing of cathepsin B pre-mRNA, DNA Cell Biol, 12 (1993) 299–309.

[6]

S. Yan, B.F. Sloane, Molecular regulation of human cathepsin B: implication in pathologies, Biol Chem, 384 (2003) 845–854.

[7]

F. Bestvater, C. Dallner, E. Spiess, The C-terminal subunit of artificially truncated human cathepsin B mediates its nuclear targeting and contributes to cell viability, BMC Cell Biol, 6 (2005) 16.

[8]

A. Baici, K. Muntener, A. Willimann, R. Zwicky, Regulation of human cathepsin B by alternative mRNA splicing: homeostasis, fatal errors and cell death, Biol Chem, 387 (2006) 1017–1021.

[9]

E. Olivotto, R. Vitellozzi, P. Fernandez, E. Falcieri, M. Battistelli, S. Burattini, A. Facchini, F. Flamigni, S. Santi, A. Facchini, R.M. Borzi, Chondrocyte hypertrophy and apoptosis induced by GROalpha require three-dimensional interaction with the extracellular matrix and a co-receptor role of chondroitin sulfate and are associated with the mitochondrial splicing variant of cathepsin B, J Cell Physiol, 210 (2007) 417–427.

[10]

K. Muntener, R. Zwicky, G. Csucs, A. Baici, The alternative use of exons 2 and 3 in cathepsin B mRNA controls enzyme trafficking and triggers nuclear fragmentation in human cells, Histochem Cell Biol, 119 (2003) 93–101.