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Pseudouridine is the most prevalent RNA modification and has
been found in both eukaryotes and prokaryotes. Currently,
pseudouridine has been demonstrated in several kinds of
RNAs, such as small nuclear RNA, rRNA, tRNA, mRNA, and
small nucleolar RNA. Therefore, its significance to academic
research and drug development is understandable. Through
biochemical experiments, the pseudouridine site identification
has produced good outcomes, but these lab exploratory
methods and biochemical processes are expensive and time
consuming. Therefore, it is important to introduce efficient
methods for identification of pseudouridine sites. In this study,
an intelligent method for pseudouridine sites using the deep-
learning approach was developed. The proposed prediction
model is called iPseU-CNN (identifying pseudouridine by
convolutional neural networks). The existing methods used
handcrafted features and machine-learning approaches to
identify pseudouridine sites. However, the proposed predictor
extracts the features of the pseudouridine sites automatically
using a convolution neural network model. The iPseU-CNN
model yields better outcomes than the current state-of-the-art
models in all evaluation parameters. It is thus highly projected
that the iPseU-CNN predictor will become a helpful tool for
academic research on pseudouridine site prediction of RNA,
as well as in drug discovery.

INTRODUCTION

Pseudouridine (W) is a common RNA modification that has been
found in both eukaryotes and prokaryotes." Currently, ¥ has been
demonstrated in various categories of RNAs.” The W synthase enzyme
catalyzes W, the isomer of uridine, by removing uridine residue base
from its sugar followed by the isomer of uridine, rotating it 180° along
the N3-C6 axis, and ultimately, again linking the base’s 5-carbon to the
1'-carbon of the sugar, as shown in Figure 1.” Currently, ¥ modifica-
tion is considered to be an important process in the molecular mecha-
nism, including stabilization of the tRNA structure,” and is important
for gene regulation machinery, i.e., in the spliceosome. The presence of
W modifications in regions involved with RNA-protein or RNA-RNA
interaction enhances the reaction and assembly of the spliceosome that
is responsible for producing a functional mRNA, i.e., in AU/AC intron
splicing.” Furthermore, incorporation of W into mRNA may inhibit
the RNA-elicited innate immune response and enhance the translation
efficiency of that mRNA.® Although many researchers have unveiled

the role of ¥ modification in most RNA systems, its biological func-
tions and action mechanisms have yet to be identified. Therefore, it is
important to highlight the ¥ modification sites in the transcriptome
that govern the related biological principle.

Although some lab exploratory techniques have been introduced to
identify W sites, they are costly and labor intensive.”” Because of
the increasing availability of genomics and proteomics samples pro-
duced in the post-genomics era, it is necessary to develop robust,
fast, low-cost computational models to predict W sites on the RNA
sequence. In previous works, several machine-learning-based compu-
tational methods or statistical-learning techniques have been intro-
duced to identify W sites.'”'* Li et al."” introduced a computational
method, PPUS, for the identification of ¥-synthase (PUS)-specific
W sites in Saccharomyces cerevisiae and Homo sapiens. The method
used the support vector machine (SVM) for classification and nucleo-
tides around W as the features. Similarly, the identifying RNA W
(iRNA-PseU) method was introduced by Chen et al.,"* for the identi-
fication of W sites in Mus musculus, S. cerevisiae, and H. sapiens. This
method combines the occurrence frequency density distributions of
the nucleotides and their chemical properties into pseudo K-tuple
nucleotide composition (PseKNC). Most recently, the ¥ identifica-
tion (PseUT) model was developed by He et al.'” for identification of
W sites from RNA samples in M. musculus, S. cerevisiae, and
H. sapiens. This model used five types of feature-extraction technique,
including dinucleotide composition (DC), nucleotide composition
(NC), position-specific dinucleotide propensity (PSDP), position-spe-
cific nucleotide propensity (PSNP), and pseudodinucleotide composi-
tion (PseDNC). Then, a sequential forward-feature-selection strategy
was used to select a relevant feature combination and a support vector

. . 16,17
machine as a classifier. ™’

More recently, PseKNC has been effectively and widely used in the
predation of several RNA/DNA regulatory elements, such as the
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Figure 1. lllustration of the Pseudouridine Modification
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nucleosome-positioning sequence, RNA modification sites,
DNA recombination spots,z’}’24 translation initiation site,”’ pro-
moter,”® and origin of replication.””*® Although the above studies
have illustrated that PseKNC is one of the most often used feature-
extraction techniques to formulate RNA/DNA sequences, all of
them used type-I PseKNC, which mixes various physicochemical
properties. Because various properties may play various roles, the
type-II PseKNC could handle these variances and improve the
description of sequences. Recently, type II PseKNC was used in
various DNA element identification and achieved good results.””
On the other hand, the main focus of our work was use of a deep-
learning technique for automatically extracting the important fea-
tures directly from the sequence itself for classification.

The performance of the above predictors and methods can be further
improved by proposing other robust machine-learning or deep-
learning methods. The existing methods use hand-designed input
features based on domain knowledge. However, the proposed system
can automatically learn the features from RNA sequences by using a
deep-learning technique. Deep learning has produced better out-
comes in natural language processing,’’ information retrieval,’”
speech recognition,” and image recognition.”*® Recently, a large
number of genomics methods and techniques have been introduced
based on deep-learning mechanisms—for example, CNNclust,”
BiRen,*® iDeepS,” RNA branch point prediction,“m alternative
splicing site prediction,*' and iRNA-PseKNC(2methyl).**

We introduce an efficient computational architecture for prediction
of W sites, using machine-learning and deep-learning approaches.
In machine learning, two simple feature-extraction techniques were
used as baselines—n-gram and multivariate mutual information
(MMI)—and SVM was used as the classifier. In deep learning, we
used a convolution neural network (CNN) model. As shown in the
result and discussion sections, the deep-learning method produced
better outcomes than the machine-learning ones. The proposed
prediction iPseU-CNN (identifying ¥ by convolutional neural net-
works) model is based on a CNN. It is an efficient and simple archi-
tecture for W site prediction and is evaluated on three various training
benchmark datasets and two independent testing benchmark data-
sets. The proposed model achieves a more efficient outcome than
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Table 1. The Success Rates of iPseU-CNN and the Baseline Methods with
the Training Datasets

Training

Dataset Methods ~ Accuracy (%)  Sensitivity (%)  Specificity (%) MCC
n-gram 60.00 51.51 68.48 0.20

H_990 MMI 58.78 47.47 70.10 0.18
CNN 66.68 65.00 68.78 0.34
n-gram 62.73 64.64 60.82 0.25

S_628 MMI 60.19 67.51 52.86 0.20
CNN 68.15 66.36 70.45 0.37
n-gram 62.71 65.04 60.38 0.25

M_944 MMI 58.26 63.13 53.38 0.16
CNN 71.81 74.79 69.11 0.44

the current state-of-the-art methods published recently in the litera-
ture. To the best of our knowledge, the proposed iPseU-CNN predic-
tion model is the first model, automatically capture important
features from RNA sequences using CNN for identification of W sites.

RESULTS AND DISCUSSION

In recent studies, four statistical parameters, Matthews’s correlation
coefficient (MCC), sensitivity (Sen), specificity (Sp), and accuracy
(Acc), have been used to define the effectiveness and performance of
the computational methods.”>*” These parameters are expressed as:

(TN x TP) — (FN x FP)

MCC=
\/(FP +TP)(FP+TN)(FN +TN)(TN +FP)
(Equation 1)
Sen=__1P (Equation 2)
en= s N quation
TN .
Sp= TNLFP (Equation 3)
TP+ TN
Acc= Al (Equation 4)

TP + TN+ FN+ FP

In this work, we implemented two simple machine-learning baselines.
These methods are based on using n-gram and MMI for feature extrac-
tion and SVM as a classifier. The n-gram and MMI feature-extraction
techniques are simple and are used widely in many applications. Table
1 shows the success rate of n-gram, MM]I, and the proposed iPseU-
CNN. It can be seen that the n-gram-based method outperformed the
MMI-based one in the H. sapiens (H)_990, S. cerevisiae (S)_628, and
M. musculus (M)_944 datasets. However, the CNN-based method mark-
edly outperformed both machine-learning-based techniques. More spe-
cifically, iPseU-CNN improved accuracy by 6.68%, sensitivity by 13.49%,
and MCC by 0.14 in the H_990 dataset. On the other hand, iPseU-CNN
improved the performance of the S_628 dataset by 5.42%, 9.63%, and
0.12 in terms of accuracy, specificity, and MCC, respectively. Further-
more, iPseU-CNN improved the performance of the M_944 dataset by
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Table 2. The Success Rates of iPseU-CNN and the Baseline Methods with
Two Independent Testing Datasets

Testing

Dataset  Methods  Accuracy (%)  Sensitivity (%)  Specificity (%) MCC
n-gram 67.00 57.00 78.00 0.35

H_200 MMI 63.50 58.00 69.00 0.27
CNN 69.00 77.72 60.81 0.40
n-gram 70.50 70.00 71.00 0.41

S_200 MMI 69.50 72.00 67.00 0.39
CNN 73.50 68.76 77.82 0.47

9.1%, 9.75%, 8.73%, and 0.19 in terms of accuracy, sensitivity, specificity,
and MCC, respectively. Thus, it is clear that the proposed iPseU-CNN
predictor outperforms the baseline machine-learning methods.

The prediction outcomes of the iPseU-CNN model were measured on
two independent datasets, i.e., S_200 and H_200, and are illustrated
in Table 2. We showed experimentally that the success rate of our
iPseU-CNN model based on deep learning was better than that of the
machine-learning baseline methods. More specifically, iPseU-CNN
method improved the accuracy, sensitivity, and MCC on H_200 dataset
by 2%, 19.72%, and 0.05, respectively. On the other hand, the success
rates of the S_200 dataset were improved by 3%, 6.82%, and 0.06 in
terms of accuracy, specificity, and MCC, respectively.

It is clear that that the CNN-based approach outperforms the ma-
chine-learning-based approaches with a big margin in the different
evaluation metrics as shown in Tables 1 and 2 and Figure 2.

Finally, the prediction performance comparison of the iPseU-CNN
model with the existing methods, such as iRNA-PseU' and PseUL "’
is shown in Table 3. iRNA-PseU'* combines the occurrence fre-

En-gram ®WMMI miPseU-CNN

0.9

quency density distributions of the nucleotides and their chemical
properties into PseKNC for feature extraction to identify W sites.
PseUI" uses five feature-extraction techniques to identify W sites.

The results in Table 3 show that the iPseU-CNN model improved all
evaluation metrics for the H_990 dataset by 2.44%, 0.15%, 5.14%, and
0.06 in terms of accuracy, sensitivity, specificity, and MCC, respectively.

In addition, iPseU-CNN improved all evaluation metrics for the S_628
dataset by 1.71%, 3.02%, 2.93%, and 0.07 in terms of specificity, sensi-
tivity, accuracy, and MCG, respectively, and it improved accuracy and
MCQC for the M_944 dataset by 1.37% and 0.03, respectively.

Furthermore, the performance of iPseU-CNN on independent data-
sets has been compared with those of iRNA-Pse and PseUl, as given
in Table 4. It can be observed that the iPseU-CNN model improved all
evaluation metrics for the S_200 dataset by 5.82%, 3.76%, 5%, and 0.1
in terms of specificity, sensitivity, accuracy, and MCC, respectively,
and it improved accuracy, sensitivity and MCC for the H_200 dataset
by 3.5%, 14.72%, and 0.09, respectively.

It is clear that the CNN-based approach outperforms the current pre-
dictors in different evaluation metrics, as displayed in Tables 3 and 4
and Figure 3.

Recently, the main direction of bioinformatics applications is in pre-
paring databases*®*’ and establishing efficient web servers.”>>’
Therefore, our future work is to improve the performance and build
a user-friendly web server for our developed tools.

To conclude, we developed a deep-learning mechanism to identify W
sites from RNA samples—namely, iPseU-CNN. Machine-learning
and deep-learning mechanisms were used; however, the performance
of the deep-learning approach outperformed the machine-learning

Figure 2. The Success Rates of the iPseU-CNN and
Baseline Methods

0.8

0.7

(
s || | |
0.5
0.4 -

0.3 -

0.1 +

Accuracy

Accuracy §

Accuracy
Specificity
Specificity
Specificity

Accuracy
Specificity

[:\: Sensitivity
v Sensitivity
[E Sensitivity
T Sensitivity

o
o
o
w
Yy
Sy
N
o
o

Accuracy
Specificity

© Sensitivity

N
o
o

Molecular Therapy: Nucleic Acids Vol. 16 June 2019 465


http://www.moleculartherapy.org

Molecular Therapy: Nucleic Acids

Table 3. The Success Rates of iPseU-CNN and State-of-the-Art Methods
with the Training Datasets

Table 4. The Success Rates of the iPseU-CNN and State-of-the-Art
Methods with Two Independent Testing Datasets

Training Testing

Dataset  Models Accuracy (%)  Sensitivity (%)  Specificity (%) MCC Dataset Models Accuracy (%)  Sensitivity (%)  Specificity (%) MCC
iPseU-CNN  66.68 65.00 68.78 0.34 iPseU-CNN  69.00 77.72 60.81 0.40

H_990 PseUl 64.24 64.85 63.64 0.28 H_200 PseUl 65.50 63.00 68.00 0.31
iRNA-PseU  60.40 61.01 59.80 0.21 RNA-PseU  61.50 58.00 65.00 0.23
iPseU-CNN  68.15 66.36 70.45 0.37 iPseU-CNN  73.50 68.76 77.82 0.47

S_628 PseUl 65.13 62.74 67.52 0.30 $_200  PseUlI 68.50 65.00 72.00 0.37
iRNA-PseU  64.49 64.65 64.33 0.29 iRNA-PseU  60.00 63.00 57.00 0.20
iPseU-CNN  71.81 74.79 69.11 0.44

M_944  PseUl 70.44 79.87 70.34 0.41
iRNA-PseU  69.07 7331 64.83 0.38 n-gram

ones. We applied n-gram and MMI to extract the features in the
machine-learning approach and SVM for classification. The deep-learn-
ing approach used a CNN model. The iPseU-CNN model automatically
learned the features from RNA sequences compared with previous
works that employ handcrafted features for classification. The proposed
iPseU-CNN prediction model is the first model to full automatically cap-
ture important feature from RNA sequences using CNNs for identifica-
tion of W sites. The success rate indicates that the proposed prediction
model is more stable and accurate than the current methods in terms
of evaluation parameters. It is highly expected that the iPseU-CNN pre-
diction model may be helpful in drug-related applications and academia.

MATERIALS AND METHODS
We introduce the proposed model and benchmark datasets used for
training and testing.

The Proposed Model
We introduce an efficient computational architecture for prediction
of W sites using machine-learning and deep-learning approaches.

In machine-learning approaches, we used two different feature
spaces, MMI and n—gram,’r’l‘52 to extract the numerical features
from RNA samples and SVM as an operation engine. Second, a

K2 = {AA, AC, AU, AG, CC, CU, CG, UU, UG, GG}

K3 = {AAA, AAC, AAU, AAG, ACC, ACU, ACG, AUU, AUG, AGG,

In this feature-extraction technique, n-gram is expressed as (v;, ¢;),
where v; represents the feature and ¢; represents the total number
of this feature in the protein or DNA/RNA sample.”” For instance,
in the case of 3-g, v represents the three-nucleotide combination set
and c represents the total number of combination occurrences inside
the complete sequence. In this work, we constructed a feature vector
containing from 1-g to 3-g. The n-gram can be mathematically ex-
pressed as:
S= 8§ USUS;
(NJU NN UNN N

= {A,C,U,G,AA,AC,AG, ....GG,AAA, ......GGG}

(Equation 5)

where S represents the combination list of nucleotides, S, S,
and S;, with the 4 4% and 4 features, respectively, and
Ni,N;,Nie {A, C, G, U} generates an 84-dimensional vector.

MMI

In prior work,”*>” MMI has been widely adopted in protein samples
to extract features. In the same manner, the nucleotide samples in
RNA/DNA can be represented using the MMI feature-extraction
technique. In this method, the RNA/DNA samples are represented
by 2-tuple and 3-tuple as follows:

(Equation 6)

CCc, CCu, CCG, Cuu, CUG, CGG, UUU, UUG, UGG, GGG}

deep-learning approach uses CNNs to identify W sites from RNA/
DNA samples directly. The CNN model automatically captures the
key features from the input samples during training.

Machine-Learning Approach
We selected simple feature-extraction methods to work as baselines
for comparison with the proposed deep-learning method.

466 Molecular Therapy: Nucleic Acids Vol. 16 June 2019

There is no relationship with the order of the nucleotides for the MMI
in a tuple. The K2 has 10 elements and K3 has 20 elements.

The 2-tuple mutual information (MI) for the nucleotide pair in K2
can be defined as below:

f(My, M)

1(MiMy) =f(My, Mo)ln 2oy

(Equation 7)
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Figure 3. The Success Rates of the iPseU-CNN and
State-of-the-Art Methods
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The 3-tuple MI for the nucleotide pair in K3 can be defined as
below:

_ nf(Mth) f(My, M3) nf(Mth)
TMMME) = f (M Mol S S ney Y Fom) ™ k)
FOMy, My, My) | F (M, My, M)

f(M, M) f(M,, M3)

(Equation 8)

where f(M;) is a fraction of each nucleotide in the sequence and f (M;,
M;j)and f(M;, M;, M;)are the occurrence frequency of 2-tuple and 3-
tuple, respectively.

SVM

SVM is a learning tool for regression, classification, and pattern
recognition. It has achieved more efficient results than other
machine-learning methods or techniques.”””*™*° In the current
study, the LIBSVM package was used for implementing the SVM
model, in which the radial basis function (RBF) was used as the
kernel function. The kernel of RBF includes two parameters,
g and ¢, that are set to 5.5 and 0.0035, respectively. The concrete
values of these parameters are determined through the optimiza-
tion procedure called a grid-search algorithm on the benchmark
dataset.”'"*

Deep-Learning Approach

We used a CNN to predict ¥ sites from RNA/DNA samples, and dur-
ing training, it automatically searched the key features in the input
samples. The CNN model took a single RNA sequence as an input
(n = 21 for the M_944 and H_900 datasets and n = 31 for the
S_628 dataset) and produced a real value. The input is represented
by a one-hot vector with four channels A, C, G, and U. Its length de-

pends on the value of n. For more details, A is
denoted by (1 0 0 0), C is denoted by (0 1
00), G is denoted by (0 0 1 0), and U is denoted
by (0 0 0 1). Figure 4 illustrates the architecture
of the proposed CNN model.

A one-step process in deep learning is repre-
sented by a layer that could be a convolution
layer, a pooling layer, a normalization layer,
a ReLU layer, a dropout layer, a loss layer,
or a fully connected layer. The grid-search
method was used for selecting the best-
performing hyper-parameters. The tuned pa-
rameters are the number of filters, number
of convolution layers, size of the filters, the
strides, and the dropout probability. For the
proposed CNN model, the list of tuned hyper-parameters is shown
in Table 5.

v Sensitivity

The best parameters were selected based on validation loss. The sig-
moid function outputs normalized class probabilities for a given
input. The convolution layer is mathematically represented and
computed as

5-1 N-1
Conv(R) - =ReLU ( Z Z W{nRj+ w,) (Equation 9)
s=0 n=0

where R represents the input of the RNA sample, f denotes the index
of the filter, and j denotes the index of the output position. Each filter
W is an S x N weight matrix of size S channels of N. The rectified
linear function (ReLU) is expressed as:

zif z>0
RelU(z) = { 0ifz<0

The output layer is transformed to [0, 1] by a sigmoid function that is
used for W sites predictions.

(Equation 10)

1
1+e7”

Sigmoid(y) = (Equation 11)
In this study, the Keras framework was used to implement the
iPseU-CNN model.”® The Adam optimizer with a learning rate
of 0.001 was used, epochs were set to 50, and the batch size was
set to 10.

Benchmark Datasets

In this study, three different benchmark datasets—M_944, S_628, and
H_990—were used for training, where M, S, and H denoted
M. musculus, S. cerevisiae, and H. sapiens, respectively, and each
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dataset contained 944, 628, and 990 samples, respectively. These
three benchmark datasets of pseudouridylation sites were taken
from the additional materials of Chen et al.'*, who also introduced
two various independent testing datasets for S. cerevisiae and
H. sapiens denoted S_200 and H_200, respectively. The H_990,
M_944, and S_628 datasets consisted of 495, 472, and 314 positive
subsets of RNA samples, and every RNA sample had a uridine at
the center position that could be pseudouridylated. Similarly,
H_990, M_944, and S_628 datasets contained 495, 472, and 314
negative subsets of RNA samples, and each RNA sample had a uri-
dine at the center position, but it could not be pseudouridylated. The
RNA sample of these three datasets can be mathematically formu-
lated as:

Sg(U) = N,EN,(g,l)...UNl ...N5+ 1N5 (Equation 12)

where S;(U)represents the RNA sample, the center U denotes uri-
dine, N_; denotes the upstream and N; denotes the downstream of
the central uridine for all £-th elements.

In H_990 and M_944 datasets, the length of each RNA sample was 21
nt, whereas in the S_628 dataset, the length of each RNA samples was
31 nt. Specifically, the value of § was 15 and the length of the RNA

Table 5. The Ranges of the Tuned Hyper-Parameters

Hyper-Parameter Range
Convolution layers [1,2]
Filters [5,7,9]
Filter size [3,5,7]
Stride [1,2]
Dropout [0.25, 0.50]

468 Molecular Therapy: Nucleic Acids Vol. 16 June 2019

sample was 1 + 2 x 15 for the S_628 dataset. On the other hand,
the value of £ is 10 and the length of the RNA samples was 1 + 2 x
10 for the M_944 and H_900 datasets.

Cross-Validation

The error rate used in the machine- and deep-learning methods to
evaluate the performance of the operation engine. In this regard,
the dataset was divided into different mutually exclusive folds. In
this work, we used a k-fold cross-validation test where a particular da-
taset can be divided into k-fold for cross-validation.”"***"" In this
type of validation test, for the testing purpose, 1-fold was reserved,
whereas for training a particular model, the remaining k — I folds
were used. This is a k-time recursive process where every fold is tested
once.”>%
four performance parameters.

We applied a 5-fold cross-validation test to measure the
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