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Abstract

Recent genome-wide association studies (GWAS) of height and body mass index (BMI) in ∼250 000 European participants
have led to the discovery of ∼700 and ∼100 nearly independent single nucleotide polymorphisms (SNPs) associated with
these traits, respectively. Here we combine summary statistics from those two studies with GWAS of height and BMI
performed in ∼450 000 UK Biobank participants of European ancestry. Overall, our combined GWAS meta-analysis reaches
N ∼700 000 individuals and substantially increases the number of GWAS signals associated with these traits. We identified
3290 and 941 near-independent SNPs associated with height and BMI, respectively (at a revised genome-wide significance
threshold of P < 1 × 10−8), including 1185 height-associated SNPs and 751 BMI-associated SNPs located within loci not
previously identified by these two GWAS. The near-independent genome-wide significant SNPs explain ∼24.6% of the
variance of height and ∼6.0% of the variance of BMI in an independent sample from the Health and Retirement Study (HRS).
Correlations between polygenic scores based upon these SNPs with actual height and BMI in HRS participants were ∼0.44
and ∼0.22, respectively. From analyses of integrating GWAS and expression quantitative trait loci (eQTL) data by
summary-data-based Mendelian randomization, we identified an enrichment of eQTLs among lead height and BMI signals,
prioritizing 610 and 138 genes, respectively. Our study demonstrates that, as previously predicted, increasing GWAS sample
sizes continues to deliver, by the discovery of new loci, increasing prediction accuracy and providing additional data to
achieve deeper insight into complex trait biology. All summary statistics are made available for follow-up studies.
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Introduction
Over the past 15 years, genome-wide association studies (GWAS)
have been increasingly successful in unveiling many aspects
of the genetic architectures of complex traits and diseases
(1–6). GWAS have led to the discovery of tens of thousands
of polymorphisms [single nucleotide polymorphisms (SNPs)
in general] associated with interindividual differences in
quantitative traits or disease susceptibility. They have also been
used to generate experimentally testable hypotheses and predict
traits and disease risk (7,8). One of the early challenges faced by
GWAS has been to bridge the gap between the amount of trait
variance explained by genome-wide significant (GWS) loci (h2

GWS)
compared to estimates of heritabilities from pedigree-based
studies (h2

Ped). The reasons explaining the gap between h2
GWS

and h2
Ped, also termed as missing heritability, are now better

understood. Contributions from Yang et al. (9–11) and others
(12) have helped clarifying the distinction between what can
potentially be explained by all SNPs (aka SNP heritability, h2

SNP)
and what remains out of the reach of SNP array-based GWAS,
for instance causal variants that are not tagged by genotyped
or imputed SNPs. It is worth noting that untagged variants are
often rare or even unique to single nuclear families. Therefore,
their effects might remain statistically undetectable, despite still
contributing to the difference between h2

Ped and h2
SNP. Overall,

clarifying the differences between h2
GWS, h2

SNP and h2
Ped has been a

major advance in the field and has helped providing theoretical
guarantees that increasing GWAS sample sizes would continue
to yield more discoveries, as long as the difference between h2

GWS

and h2
SNP persists.

To date, the largest published GWAS of height (5) and body
mass index (BMI) (6) in ∼250 000 participants on average have
uncovered 697 and 97 near-independent SNPs associated with
these traits and explaining ∼15% and ∼3% of trait variance,
respectively. Compared to h2

SNP estimates of height and BMI, i.e.
∼50% and ∼30%, respectively (9–11), this indicates an enormous
potential for discoveries expected simply from increasing
sample sizes. However, the required sample size to explain
all SNP heritability by identified individual GWS loci is not
known because it depends on the joint distribution of allele
frequency and effect size at causal variants. Here we perform
a meta-analysis of previous GWAS of the Genetic Investigation
of ANthropometric Traits (GIANT) consortium studies with new
GWAS of height and BMI in ∼450 000 participants of the UK
Biobank (UKB). In total, our sample size reaches ∼700 000, which
is unprecedented for GWAS of these traits. The present study is
part of a larger effort led by the GIANT consortium, expected in
the near future to yield one the largest GWAS ever conducted
(N between 1.5 and 2 million). We describe below our findings
in terms of number of GWAS signals, variance explained and
prediction accuracy and also conduct analyses to prioritize
genes for follow-up investigations. The summary statistics of
these two meta-analyses (height and BMI) are made available
(URLs).

Results
GWAS of height and BMI identify 3290 and 941
associated SNPs, respectively

We first performed a GWAS of height and BMI in 456 426 UKB
participants of European ancestry (Materials and Methods). We
tested associations of 16 652 994 genotyped and imputed SNPs
(Materials and Methods) with both traits using a linear mixed
model to account for relatedness between participants and pop-

ulation stratification. Analyses were performed with BOLT-LMM
v2.3 (13,14) using a set of 711 933 HapMap 3 (HM3) SNPs to
model the polygenic component to control for relatedness and
population stratification (Materials and Methods). After fitting
age, sex (inferred from SNP data) (15), 10 genotypic principal
components (PCs), recruitment centre and genotyping batches
as fixed effects, phenotypes were residualized (separately for
males and females) and inverse-normally transformed before
analysis. A parallel analysis of 451 099 individuals and using
a slightly different set of parameters for sample selection and
adjustment revealed very similar results (Materials and Meth-
ods), and so we proceeded with the larger sample of 456 426 UKB
participants. We then performed fixed-effect inverse-variance
weighted meta-analysis of UKB results with publicly available
GWAS summary statistics of height (5) (GIANTheight) and BMI (6)
(GIANTBMI) using the software METAL (16). In total, our meta-
analysis involves ∼2.4 million HapMap 2 (HM2) SNPs with avail-
able summary statistics in GIANTheight or GIANTBMI, N = 693 529
participants on average for height and N = 681 275 participants
on average for BMI. Figure 1 shows Manhattan plots for both
meta-analyses. We found in both traits a marked deviation of
the distribution of P-values from the uniform null distribution
(height: λGC = 3.6; BMI: λGC = 2.7), suggesting polygenicity and
possibly population stratification. The mean of association chi-
square statistics is ∼8.8 for height and ∼3.9 for BMI, consistent
with a randomly chosen SNP, on average, being associated with
height at P < 0.003 and with BMI at P < 0.047. We performed link-
age disequilibrium (LD) score regression (LDSC) (17,18) to quan-
tify the contribution of population stratification to our results.
We found that LDSC intercept (ILDSC) was inflated for both height
(ILDSC = 1.48, Standard Error (s.e.) 0.1) and BMI (ILDSC = 1.03,
s.e. 0.02), suggesting a significant contribution of population
stratification. However, although classically used, this statis-
tic may not accurately reflect the contribution of population
stratification as it can rise above 1 with increased sample size
and heritability (14). In contrast, the attenuation ratio statistic
RPS = (ILDSC − 1)/(mean of association chi-square statistics − 1),
which does not have these limitations, was shown to yield a
better quantification of population stratification14. We found for
height and BMI that RPS equals 0.06 (s.e. 0.01) and 0.01 (s.e. 0.01),
respectively, which implies that polygenicity is the main driver
of the observed inflation of test statistics. We also used the LDSC
methodology to estimate the genetic correlation between sum-
mary statistics from GIANTheight and that from UKB, as well as
between summary statistics from GIANTBMI and that from UKB.
We found a genetic correlation (rg) of 0.96 (s.e. 0.01) for height
and of 0.95 (s.e. 0.01) for BMI, highlighting a strong genetic homo-
geneity between UKB and previous meta-analyses, and thus con-
firming the validity of using a fixed-effect meta-analysis. Also,
this analysis implied significant overlap of ∼59 000 participants
between UKB and GIANTheight (bivariate LDSC intercept: 0.17;
s.e. 0.05), but not between UKB and GIANTBMI (bivariate LDSC
intercept: 0.01; s.e. 0.01). The latter observation is surprising
given that the vast majority of cohorts included in GIANTheight

are also included in GIANTBMI. Analogous to the univariate case,
we show through theory and simulations that large sample sizes
and heritabilities can inflate the bivariate LDSC intercept, even in
the absence of sample overlap (Supplementary Note 1; Figs. S1–
S2). Although sample overlap between UKB and GIANT’s cohorts
from the UK (∼14 cohorts, with a maximum sample size of
∼27 000) remains likely, UK studies were recruited over many
decades and ages and the number of individuals overlapping is
more likely to be in the 100s, given our bivariate LDSC analysis
that also suggests that it is small and likely has minimal effect

https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy271#supplementary-data
https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy271#supplementary-data
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Figure 1. Manhattan plot showing association χ2statistics of association between SNPs and height (A) or BMI (B).

Table 1. Summary of results from the meta-analysis of GWAS of height and BMI in N ∼700 000 individuals of European ancestry and from
downstream analyses such as gene-based association tests or SMR

Summary of results Meta-analysis of height
(mean N ∼693 529)

Meta-analysis of BMI
(mean N ∼681 275)

Number of near-independent genome-wide significant SNPs
(GWS; COJO P < 10−8)

3290 941

Number of main/secondary associations 2388/902 656/285
Number of loci identified 712 536
Number of new loci∗ 512 484
Number of genes identified through SMR analysis 610 138
Number of methylation sites identified through SMR analysis 775 276
Prediction accuracy (r2) in HRS from GWS SNPs 19.7% 5.0%
Prediction accuracy (r2) in HRS from SNPs at P < 0.001 24.4% 10.2%
Variance explained in HRS from GWS SNPs 24.6% 6.0%
Variance explained in HRS from SNPs at P < 0.001 34.7% 13.8%

Prediction accuracy (squared correlation r2, between genetic predictors and traits) and variance explained (estimated using GCTA software) is assessed in 8552 unrelated
participants of the HRS. ∗New loci refer to loci not identified in (5) and (6). COJO analysis performed using GCTA software (version >1.9).

on our inference. We therefore conclude that sample overlap is
negligible between UKB and GIANTheight, as it is between UKB and
GIANTBMI.

Using an approximate conditional and joint multiple-SNP
(COJO) analysis implemented in Genome-wide Complex Traits
Analysis software (GCTA) (19) that takes into account LD between
SNPs at a given locus, we identified 3290 and 941 SNPs (COJO
P < 1 × 10−8; Table 1) associated with height and BMI, respec-
tively. This more conservative significance threshold was chosen
from the recommendations of a previous study (20) that showed
that type I error was not properly controlled at the classical
5 × 10−8 threshold when using SNPs imputed to the Haplotype
Reference Consortium (HRC) or 1000 genomes imputation ref-
erence panels. In theory, given that our study focused on ∼2.4
million HM2 SNPs, the classical 5 × 10−8 threshold would still be
valid. However, to ensure comparability with other studies based
on 1000 genomes or HRC imputed SNPs, we believe that the latter
significance threshold is justified in our study. Compared to
GIANTheight and GIANTBMI, our findings represent a ∼5 and ∼10-
fold increase of the number of GWAS signals associated with
height and BMI, respectively. Note that the latter comparison is
based upon numbers of GWS detected using the same 1 × 10−8

significance threshold. The 3290 height-associated SNPs consist
of 2388 primary associations and 902 secondary signals, i.e. GWS

in GCTA-COJO analysis only. These 3290 SNPs clustered in 712
genomic loci [locus is defined as in (5) as one or multiple jointly
associated SNPs located within a 1-Mb window], including 512
loci not previously detected in GIANTheight. For BMI, the 941 SNPs
identified consist of 656 primary associations and 285 secondary
signals, clustered in 536 genomic loci including 484 loci not
previously detected in GIANTBMI. We found that the average
number of height and BMI associated SNPs per locus is 4.6 and
1.7, respectively, but also observed a large variability of that
number (standard deviation: ∼6 SNPs/locus for height loci and
∼2 SNPs/locus for BMI loci). We found one locus on chromosome
12q23.2 (chr12:102 229 631–103 278 745; genome build hg19)
that concentrates up to 19 jointly significant signals for height
within ∼1.05 Mb. That locus contains the IGF1 gene that was
previously identified in GIANTheight. Note however that only two
independent associations within that locus were reported at that
time, indicating that larger GWAS improves the characterization
of the allelic heterogeneity of genomic loci.

We assessed the replicability of these associations by
estimating the regression slope (RS) of SNP effect size estimated
in an independent sample onto the SNP effect sizes (corrected
for winner’s curse effects) (21,22) from our meta-analyses, using
8552 unrelated individuals from the Health and Retirement
Study (HRS). A similar approach to quantify replicability has
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Figure 2. Regression of SNPs effect estimated from the meta-analysis of GWAS of height in UKB and GWAS of height from (5) (A) and GWAS of BMI in UKB and GWAS

of BMI from (6) (B) onto SNP effects on height and BMI estimated in HRS.

been applied in (23). We found significant RS estimates for height
(0.90; jackknife s.e. 0.02) and BMI (0.91; jackknife s.e. 0.04), both
close to one and therefore suggesting a high level of replicability
of our findings (Fig. 2). We note however that the RS estimates for
height were significantly (P < 0.05) smaller than 1. Beyond lack
of replication, many reasons can explain why this slope can be
smaller than 1. One of these reasons is ‘winner’s curse’ effects,
which we already accounted for here using (21) correction
(Materials and Methods). More generally, under an infinitesimal
genetic architecture, the expectation of RS, hereafter denoted
E[RS], is a function of the discovery sample size (N), the heritabil-
ity of the trait (h2) and the number of variants underlying the trait
(M): E[RS] = h2/( h2 + M/N), as derived in Supplementary Note 2.
We show in that note that it is only when N is infinite that
a slope of 1 is to be expected. Another reason, although less
likely given the strict significance threshold used in this study,
would be the presence of false positive associations in our list
of GWS SNPs. We show in Supplementary Note 2 that if a slope
of ∼1 is to be expected, therefore ∼10% (i.e. hundreds) of false
positive associations within our lists of GWS SNPs would have
created the observed slope of ∼0.9. The latter assumption is
highly unlikely given the chosen significant threshold.

In addition, we used another method by Qi et al. (24) to
quantify the correlation rb of true SNP effects between two
studies, while correcting for estimation errors in both studies
(Materials and Methods). We underline here one difference with
the previous method, which is that estimation errors in the
replication study are also corrected. When applying this method
to our discovery and replication studies, we found a correlation
rb ∼ 0.99 (jackknife s.e. 0.03) for height and rb ∼ 1.00 (jackknife
s.e. 0.06) for BMI (Fig. S3). The latter result therefore reinforces
the replicability of our findings.

Predictive power of polygenic scores

We estimated in HRS participants using the Genetic relationship
based REstricted Maximum Likelihood (GREML) approach
implemented in GCTA (9,10,19) that near-independent GWS
SNPs explain 24.6% (s.e. 1.3%) and 6.0% (s.e. 0.8%) of the variance

of height and BMI, respectively, adjusting for 20 PCs for both
traits. This represents a ∼1.9- and ∼3.2-fold improvement in
comparison with previous meta-analyses (Fig. 3A and B) and
∼1/2nd and ∼1/4th of the SNP-based heritability of height
(h2

SNP = 48.3%; s.e. 3.7%) and BMI (h2
SNP = 22.4%; s.e. 3.7%) estimated

in 10 000 randomly sampled UKB participants. The latter h2
SNP

estimates, which are fairly consistent with previous studies
(9–11), were calculated using common HM3 SNPs (minor allele
frequency >1%). Note also that, to ensure a fair comparison, the
improvement folds reported here are obtained after re-analysing
summary statistics from GIANTheight and GIANTBMI using
the same P < 10−8 revised significance threshold. Therefore,
the numbers and proportions of trait variance explained by
GWS from these studies are smaller than previously reported
(GIANTheight: ∼12.8% in this study versus ∼15% previously
reported; GIANTBMI:∼1.8% in this study versus ∼3% previously
reported). For each HRS participant, we also calculated genetic
predictors of height and BMI from near-independent GWS SNPs
as the sum of trait increasing alleles at these loci, weighted by
their estimated effect sizes. We found the squared correlation
(r2) between predicted height and actual height (corrected for
mean and variance sex differences) to be ∼19.7% and between
predicted BMI and actual BMI (corrected for mean and variance
sex differences) to be ∼5.0% (Fig. 3C and D). We performed
additional prediction analyses using SNPs with significance
P-values larger than 10−8. We performed GCTA-COJO analyses
for height and BMI and analysed SNPs with significance
P-value below 10−3, 10−4, 10−5, 10−6, 10−7 and 10−8. We therefore
calculated six genetic predictors for each trait and quantified
in HRS participants the fraction of trait variance explained by
SNPs contributing to these predictors as well as their predictive
capacity (Fig. 3). As reported in Wood et al. (5), we found that
including SNPs beyond GWS increases prediction accuracy and
variance explained (Fig. 3) in both traits. For height, the variance
explained increased from ∼24.6% using 3290 near-independent
GWS SNPs to ∼34.7% (s.e. 1.9%) using ∼15 000 near-independent
SNPs with P < 0.001. The prediction r2 (squared-correlation)
also increased from ∼19.7% to ∼24.4%. For BMI, the variance
explained using 6781 SNPs selected in the COJO analysis at

https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy271#supplementary-data
https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy271#supplementary-data
https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy271#supplementary-data
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Figure 3. Variance explained and prediction accuracy (squared correlation between trait value and its predictor from SNPs) calculated from six nested sets of

near-independent SNPs selected at different significance threshold. Variance explained and prediction accuracy is calculated in 8552 unrelated participants of the

HRS cohort.

P < 0.001 is ∼13.9% (s.e. 1.5%) and the corresponding prediction
r2 is ∼10.2% which is twice the prediction accuracy obtained
using GWS loci only.

Gene prioritization

We next attempted to identify genes whose expression levels
could potentially mediate the association between SNPs
and height or between SNPs and BMI. For this purpose, we
performed a summary-data-based Mendelian randomization
(SMR) analysis (25). This method aims at testing the association
between gene expression (in a particular tissue) and a trait using
the top associated expression quantitative trait loci (eQTL) as
a genetic instrument. For this analysis, which only requires
GWAS summary statistics, we used the publicly available GTEx-
v7 database containing eQTLs for multiple genes in multiple
tissues (26). We identified 610 and 138 (Table 1) unique genes
that genetic control suggestively overlaps (PSMR < 5 × 10−8) that
of height or BMI, respectively. Significant SMR test indicates
evidence of pleiotropy (i.e. the expression of a gene and that of a
trait are influenced by the same causal variant at the gene locus)
but also the possibility that SNPs controlling gene expression are
in LD with those associated with the traits. These two situations
can be disentangled using the HEterogeneity In Dependent
Instrument (HEIDI) test implemented in the SMR software. The
number of genes reported above corresponds to genes already
filtered on statistical evidence supporting pleiotropy rather
than linkage between variants controlling gene expression and
variants controlling height or BMI (PHEIDI > 0.05). We found that
>95% (597/610 = ∼98% for height and 133/138 = ∼96% for BMI) of
height- and BMI-associated genes identified via the SMR analysis
show consistent direction of effects across multiple tissues. As
an example, we found that higher expression of PIGP across

23 tissues is associated with increased height and that higher
expression of HSD17B12 across 22 tissues is associated with
decreased BMI. Similarly, we found that higher expression of
STAG3L1 in 33 tissues is associated with decreased BMI. We
then quantified the enrichment of genes identified via SMR
and HEIDI tests into biological pathways. Altogether, we found
that height-associated genes are significantly enriched among
genes contributing to skeletal growth, cartilage and connective
tissue development, while BMI-associated genes are mostly
enriched among genes involved in neurogenesis and more
generally involved in the development of the central nervous
system. These last results therefore confirm findings from (5)
and (6), which previously implicated the same pathways and
highlighted their connections with height and BMI.

Mediation through epigenetic mechanisms

We performed another SMR and HEIDI analysis to now prioritize
CpG dinucleotides at which methylation levels might mediate
the association between SNPs and height or BMI. For this
analysis, we used publicly available methylation QTL from
the study (27) in peripheral blood. We identified 775 and 276
(Table 1) deoxyribonucleic acid (DNA) methylation sites showing
pleiotropic associations with height and BMI, respectively.
Among all CpG sites identified, we found that increased DNA
methylation at cg19825988 (within the ZBTB38 gene) shows the
strongest positive association with height (∼0.4 SD for 100%
methylation; pSMR = 3.5 × 10−9). The ZBTB38 gene, located within
a previously identified GWAS locus (GIANTheight), encodes a zinc
finger transcriptional activator that binds methylated DNA.
This gene was also detected in our first SMR analysis (using
gene expression) described above. For BMI, the largest effect of
DNA methylation was observed at cg03755535 (within the first
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Table 2. Number, percentage of variance explained and accuracy of genetic predictors from SNPs found associated (P < 10−8) with height or
BMI in a random sample of 250 000 unrelated participants of the UKB

Height BMI

Random sample
from UKB

Wood et al. (5) Random sample
from UKB

Locke et al. (6)

Number of near-independent
genome-wide significant SNPs
(GWS; COJO P < 10−8)

850 594 160 82

Variance explained by GWS 14.0% 12.8% 2.3% 1.8%
Prediction accuracy (r2) 14.0% 10.9% 2.5% 1.8%

For comparison, similar statistics are reported from GWAS hits identified in (5) and (6). Prediction accuracy (squared correlation r2, between genetic predictors and
traits) and variance explained (estimated using GCTA software) is assessed in 8552 unrelated participants of the HRS.

exon of the CAMKV gene); where increased DNA methylation
correlates with decreased BMI (−0.12 SD for 100% methylation;
pSMR = 4.8 × 10−8). This gene was not detected in our first SMR
analysis but is located within a previously identified GWAS locus.

As mentioned above, one possible interpretation of SMR
results is that gene expression or methylation could act
as mediators of SNPs effects. Beyond statistical evidence,
such an interpretation may not be intuitive for a trait like
height, which is measured in mature participants often many
decades after their body height had stabilized. We emphasize
however that interindividual differences in adult height result
from cumulative effects occurring at different stages of the
development. Therefore, although our study uses stabilized
height, the SNP effects that we estimated would represent a
combination of early developmental and post-pubertal effects.
We acknowledge nonetheless that additional data supporting
the stability over time of the genetic control on these genes
and epigenetic marks would be required to strengthen our
interpretation, although previous studies (18) have shown a
significant genetic correlation between birth length and weight
and adult height.

Discussion
We have presented here the results of the meta-analysis of a
single large study, the UKB, with previously published GWAS
of height and BMI. We found that the number of genomic loci
associated with height and BMI is disproportionately increased
compared to previously published GWAS and that this increase
correlates with increased trait variance explained and improved
accuracy of genetic predictors from SNPs at these loci. In addi-
tion, we have shown that large GWAS enhance the power of
integrative analyses such as pathway enrichment and SMR to
unveil relevant genes to be prioritized for further functional
studies.

Our analyses revealed a number of challenges to address
when dealing with very large GWAS. One of these challenges
relates to conclusions from LDSC, a method now routinely used
for quality control (detection of confounding effects) and infer-
ence of genetic parameters like heritability and genetic corre-
lation. Following the recent study by (14), which pointed out a
number of caveats relative to the interpretation of the univariate
LDSC intercept as an indicator of confounding due to popula-
tion stratification or other artefacts, we have shown here that
caution must also be applied when interpreting the intercept
of the bivariate LDSC. These two problems, which are directly
related to each other, both illustrate how the effect of very subtle
population stratification can be dramatically magnified when
sample sizes are large. We recall here the surprising observation
that, despite considering the same sets of cohorts, the conclu-

sions about sample overlap from bivariate LDSC intercept were
radically different between GWAS of height and GWAS of BMI.
Similar to the univariate case, we recommend the use of an
attenuation ratio statistic to measure how much of the inflation
in the bivariate LDSC intercept is explained by correlated popu-
lation stratification or sample overlap.

Another challenge faced in this study relates to the over-
correction of population stratification. In general, setting up
expectations with respect to how many GWAS signals can be
reasonably detected or how much variance can be explained
from SNPs identified in a GWAS of a given sample has always
been a difficult question. In particular, the detection of ‘too
many’ GWAS signals has often been a concern in the GWAS
literature and seen as an indication of potentially uncorrected
population stratification. With very large datasets like UKB, some
of these questions can be now addressed. We observed that
the number of variants and fraction of variance explained by
GWAS hits identified from random subsets of UKB of the same
size as GIANTheight or GIANTBMI was larger than that discovered
in those studies (Table 2). Multiple reasons could explain these
differences, as for example genetic and phenotypic heterogene-
ity between cohorts included in these two meta-analyses (28).
Nonetheless, we argue that methods classically used to correct
for the effects of population stratification may have removed a
substantial amount of the signal to be detected. To further illus-
trate this point, we re-analysed the data from (6). Our new anal-
ysis consisted of deflating the genomic control (GC) corrected
standard errors of estimated SNP effects with a factor equal
to the square root of the LDSC intercept. This transformation
constrains the LDSC intercept to be 1 but is less conservative
than the double GC correction (i.e. GC correction in each cohort
included in the meta-analys is, and GC correction applied to
the outcome of the meta-analysis) used in (6). We found in
this secondary analysis that the number of GWAS signals (at
P < 10−8) increased from 77 to 210 (∼3-fold increase), the variance
explained increased from ∼1.8% to ∼2.8% and the prediction
accuracy of genetic predictors using those SNPs from ∼1.8% to
∼2.4% (Fig. S4). This observation demonstrates that a correction
based on LDSC intercept performs better than GC correction but
still remains imperfect, since we know that LDSC intercept also
increases with sample size. Overall, although we acknowledge
that GC and LDSC corrections are effective in controlling the
inflation of false positives induced by population structure, our
study highlights that these methods tend to overcorrect popula-
tion stratification when sample size is large, which subsequently
reduces statistical power to detect associations. New methods
must therefore be developed in order to maximize the potential
of discovery of forthcoming GWAS of ever-larger sample sizes.

In summary, our study confirms the potential for new
discoveries of large GWAS, highlights critical methodological

https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy271#supplementary-data
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issues emerging at such a large scale and announces a
gargantuan number of new discoveries for the next iteration
of meta-analyses of the GIANT consortium based on sample
sizes in the order of 1 million and more.

Materials and Methods
UKB analyses

Sample selection. We analysed data from 488 377 genotyped
participants of the UKB. We restricted the analysis to 456 426
participants of European ancestry. Ancestry was inferred using
a two-stage approach. The first step consisted of projecting
each study participant onto the first two genotypic PCs
calculated from HM3 SNPs genotyped in 2504 participants of
1000 genomes project (29). We then used five superpopulations
(European, African, East-Asian, South-Asian and Admixed) as
reference and assigned each participant to the closest popula-
tion. Distance was defined as the posterior probability under a
bivariate Gaussian distribution of each participant to belong to
one of the five superpopulations. This method generalizes the
k-means method and takes into account the orientation of the
reference cluster to improve the clustering. Vectors of means
and 2 × 2 variance–covariance matrices were calculated for each
superpopulation, using a uniform prior.

SNP selection. We analysed SNPs imputed to the HRC imputa-
tion reference panel (30) with an imputation quality score above
0.3. For each UKB participant, we hard-called genotypes with
posterior probability larger than 0.9 and kept SNPs with call rate
>0.95, minor allele frequency >0.0001 and P-value for Hardy–
Weinberg test larger than 10−6. In total, we analysed 16 653 239
SNPs. For the meta-analysis, we considered a subset of ∼2.3
millions (out of 16 653 239) SNPs showing consistent alleles with
UKB and HRS (used as LD reference) as well as consistent allele
frequency (maximum difference <0.15 for minor and major
allele).

Association testing. We ran a GWAS of height and BMI in 456 426
UKB participants using linear mixed model association testing
implemented in BOLT-LMM v2.3 (13,14) software assuming an
infinitesimal model. We used 711 933 HM3 SNPs (LD pruned for
SNPs with r2 > 0.9) as model SNPs in our analysis. Height and
BMI were adjusted for age, sex, recruitment centre, genotyping
batches and 10 PCs calculated from 132 102 out of the 147 604
genotyped SNPs pre-selected by the UKB quality control team
(15) for PC analysis. The difference is explained by the quality
control of SNPs (minor allele frequency >0.01, genotype call rate
>95% and Hardy–Weinberg test P-value > 10−6) applied to a
different set of samples as compared to (15). PCs were calculated
using the flashPCA software (31). In a parallel effort, to provide a
sensitivity analysis, using slightly different parameters for sam-
ple selection and adjustment, we selected 451 099 individuals
of European genetic ancestry as described in (32). This parallel
analysis used dosage and not hard-called genotypes. Analyses
performed on this second set of UKB participants revealed highly
concordant findings compared to the set of 456 426 partici-
pants. We therefore reported here results from the larger set of
individuals.

Replication

We used genotypes imputed to the 1000 genomes reference
panel and phenotypes (height and BMI) from 8552 unrelated

(Genetic Relationship Matrix (GRM)<0.05) participants of the
HRS to assess the replicability of SNPs found to be associated
with height and BMI. We also used these data to assess the
variance explained by different sets of SNPs as well as the out-
of-sample prediction accuracy of genetic predictors using these
sets of SNPs. Analyses were restricted to 2 484 330 HM2 SNPs with
an imputation quality score >0.3, a minor allele frequency >0.01
and a P-value from Hardy–Weinberg equilibrium test >10−6.

Given that replication of individual SNP is not feasible
because of the limited sample size of our replication cohort,
we assessed the overall replicability of SNP-traits associations
using the regression slope of estimated SNP effects from the
replication study onto estimated SNP effect sizes from the
discovery study. Values of the replication slope of ∼1 indicate
good replicability of GWAS findings, although we show in
Supplementary Note 2 that the expectation of the replication
slope depends on the discovery sample size, the heritability of
the trait and the number of variants underlying the trait. SNPs
brought forward for replication are subjected to the winner’s
curse effect, and their effect sizes are biased (21,22). We therefore
used the correction proposed by Zhong and Prentice (2010)
before estimating the replication slope. We also used another
method by Qi et al. (24) to quantify the consistency between
estimated SNP effect sizes in discovery versus replication study.
Assuming that each estimate can be discomposed as the sum of
a true effect + an estimation error term, this method attempts to
quantify the correlation rb of true effects between two studies,
while correcting for estimation errors in both studies. In this
study, we estimated rb using the following equation [similar
to Eq. (3) in (24), assuming no overlap between discovery and
replication study]:

r̂b =
ĉov

(

̂bd,̂br

)

√

[

v̂ar
(

̂bd

)

− SE2
d

] [

v̂ar
(

̂br

)

− SE2
r

]

, (1)

where ĉov
(

̂bd,̂br

)

is the observed sample covariance between

estimates of SNP effects from discovery (̂bd) and replication (̂br)

studies, v̂ar
(

̂bd

)

and v̂ar
(

̂br

)

are the observed sample variances

of estimates of SNPs effects in discovery and replication study,

respectively, and SE2
d and SE2

r are average squared estimated
standard errors of estimates of SNPs effects in discovery and
replication study, respectively. We derived a more detailed ver-
sion of Eq. (1) in Supplementary Note 3. We estimated standard
errors of r̂b using leave-one-SNP-out jackknife.

Summary statistics QC and meta-analyses

Summary statistics of GWAS of height and BMI from Wood et al.
(5) and Locke et al. (6) studies were downloaded from the fol-
lowing website: https://portals.broadinstitute.org/collaboration/
giant/index.php/GIANT_consortium_data_files. Before meta-
analysis with UKB, we filtered out SNPs which reported pairs
of alleles did not match the pairs of alleles in the HRS and
UKB and also which had reported allele frequency too different
(absolute difference >0.15) from that calculated using unrelated
participants of HRS. Fixed-effect inverse variance weighted
meta-analysis was performed using the software METAL (16).

LDSC

We performed LDSC to quantify the level of confounding in
GWAS due to population stratification as well as quantifying

https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy271#supplementary-data
https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy271#supplementary-data
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
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the sample overlap between cohorts involved in previous meta-
analyses and the UKB. Analyses were performed using the LDSC
software v1.0.0 (https://github.com/bulik/ldsc). We used default
parameters but did not apply any threshold on the maximum
association chi-square statistics of SNPs included in the analy-
ses. We used LD scores from European participants of the 1000
genomes project that can be downloaded from the LDSC website.

SMR and HEIDI analyses

SMR and HEIDI tests were implemented in the SMR software
(http://cnsgenomics.com/software/smr/). SMR analyses were
performed using default parameters but specifying a window
of 2 Mb up- and downstream genes (expression probes) to
include relevant cis-eQTL (instrument) for those genes. The
same approach was applied for detecting CpG methylation
sites associated with height or BMI. SMR analyses were
based on eQTLs from publicly available databases from
GTEx-v7 (26) and McRae et al. (2017) (27). Both sets of eQTL
in SMR format can be downloaded from the SMR website:
http://cnsgenomics.com/software/smr/.

Data download

GWAS summary statistics can be downloaded from the GIANT
consortium website: https://portals.broadinstitute.org/collabora
tion/giant/index.php/GIANT_consortium_data_files and from
the Program in Complex Trait Genomics website: http://cnsgeno
mics.com/data.html.

Supplementary Material
Supplementary Material is available at HMG online.
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