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 Introduction 

 Tooth crowns are exposed lumps of mineralized tissue 
that represent the only break in the integument of the 
body. Their function is to break down food particles. 
However, in the process of doing this, they themselves 
can easily be damaged. The outermost dental crown tis-
sue is called enamel. The cause of its loss can be either 
chemical or mechanical. Since enamel is >90% hydroxy-
apatite by volume, it is vulnerable to chemical attack from 
acids, dissolving readily when the oral pH falls below 5.5. 
The erosion of enamel has become a serious problem in 
modern human populations  [1–7] , being attributed 
mainly to the consumption of acidic carbonated soda 
drinks  [8] . However, gastric regurgitation  [9]  is also of 
increasing importance as a cause, particularly as the inci-
dence of gastro-oesophageal reflux in the population in-
creases with an increasing trend towards obesity  [10] . 
However, the focus of this review is on mechanical dam-
age to the enamel. This can be extensive and takes several 
forms ( fig. 1 ), which are classified below in terms of the 
extent of the damage to enamel thickness.

  Macrofractures start within the enamel, initiating 
close to the enamel-dentine junction. These fractures 
then pass outwards towards the tooth surface. At a mini-
mum, a lamella (a through-enamel crack) results ( fig. 1 ), 
but extensions of these fractures can result in the loss of 
large slabs of enamel either underneath the contact point 
around cusps or near the cervical margin of a crown 
( fig. 1 ).
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 Abstract 

 A review is presented of the mechanical damage suffered by 
tooth crowns. This has been the subject of much recent re-
search, resulting in a need to revise some of the thinking 
about the mechanisms involved. Damage is classified here 
by scale into macro-, meso- and microfracture. The focus is 
on the outer enamel coat because this is the contact tissue 
and where most fractures start. Enamel properties appear to 
be tailored to maximize hardness, but also to prevent frac-
ture. The latter is achieved by the deployment of develop-
mental flaws called enamel tufts. Macrofractures usually ap-
pear to initiate as extensions of tufts on the undersurface of 
the enamel adjacent to the enamel-dentine junction and ex-
tend from there into the enamel. Cracks that pass from the 
tooth surface tend to be deflected by an enamel region of 
high toughness; if they find the surface again, a chip (meso-
fracture) is produced. The real protection of the enamel-den-
tine junction here is the layer of decussating inner enamel. 
Finally, a novel analysis of mechanical wear (microfracture) 
suggests that the local toughness of the enamel is very im-
portant to its ability to resist tissue loss. Enamel and dentine 
have contrasting behaviours. Seen on a large scale, dentine 
is isotropic (behaving similarly in all directions) while enam-
el is anisotropic, but vice versa on a very small scale. These 
patterns have implications for anyone studying the fracture 
behaviour of teeth.  © 2014 S. Karger AG, Basel 
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  Mesofractures start at the tooth surface from an inden-
tation close to an enamel edge. A crack starts from the 
undersurface of the indented enamel growing down-
wards into the tissue. However, the crack is then diverted 
outwards towards a nearby surface. In the process, a chip 
of enamel, much smaller than a slab, is removed ( fig. 1 ).

  Microfractures result from indentations from very 
small particles on the enamel surface, leading to the loss 
of small fragments, i.e. to wear ( fig. 1 ).   Probably the best-
known type of wear in humans is caused by grinding the 
teeth during sleep, an activity called ‘bruxism’  [7] . Some 
clinicians believe that this causes loss of more enamel 
than chemical erosion, but this opinion depends on geog-
raphy: European clinicians are apparently less inclined to 
believe this than those based in North America  [11] .

  Does the Loss of Tooth Function Matter? 

 For virtually all mammals tooth loss does matter be-
cause they depend on a functioning dentition in order to 
eat efficiently. Tooth fractures jeopardize this activity 
and indications are that accumulating damage is critical 
to survival. The lifespan of one of the smallest short-
tailed shrews, weighing 15–20 g, is limited by wear in the 
wild. Wild-caught animals generally only live for one 
breeding season, after which their teeth are heavily worn 
down to the gums. In contrast, young animals will live 

for three breeding seasons in captivity with much less 
wear  [12] . At the other end of the scale is the African el-
ephant, weighing 2,700–5,500 kg. Elephants bring their 
cheek molars into the mouth serially, only having one 
active molar tooth in each jaw quadrant at a time. Old 
individuals with very worn last molars either die or seek 
out vegetation that does not require chewing to swallow 
 [13] . Data for mammals of intermediate size as diverse as 
primates  [14]  and marsupials  [15–17]  also support the 
importance of intact teeth. As an example of the effect of 
wear on mammalian populations, some of Pahl’s  [16]  
data on ringtail possums are shown in  figure 2 , where it 
is clear that individuals with very worn dentitions, of 
whatever age, are disproportionately lost from the popu-
lation.

  Evidence for the effect of larger-scale crown fractures, 
such as wholesale cuspal fractures  [18–21] ,   enamel chip-
ping  [22–25]  and the splitting of tooth crowns in half  [25] , 
are less well known, but there is no doubt that ingestion 
and mastication are impaired. The effect is not the same 
on modern human populations because of ubiquitous 
pre-ingestive processing and cooking of foods. These 
processes are of considerable antiquity  [26–28] , making 
foods easy to eat even when teeth are severely worn. How-
ever, before any of these types of fracture can be described 
and analysed, a short description of both the structure 
and mechanical properties of the tissue is needed.
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(MICRO) Split crown
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  Fig. 1.  Normal tooth structure (right-hand 
labels) exhibits a thin highly mineralized 
enamel layer that surfaces the tooth crown. 
The backbone of the tooth is formed by a 
tubular bone-like tissue called dentine. A 
central soft-tissue pulp provides nutritive 
support for cells that deposit additional 
dentine internally, thus reducing pulp di-
mensions. The tooth root is covered by ce-
ment (often called cementum). This is al-
so bone-like and bonds the collagen fibres 
of the periodontal ligament to the tooth. 
Types of mechanical damage to the enamel 
(left-hand labels) include split crowns, ab-
fractions, through-enamel faults called la-
mellae, chipping and wear. ‘Macro’, ‘meso’ 
and ‘micro’ refer to the fracture scale, 
i.e. the extent of enamel thickness involve-
ment. 
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  Enamel Structure 

 Enamel forms a highly mineralized thin outer coat on 
the crown surface ( fig.  1 ,  3 ). It consists mostly of hy-
droxyapatite crystals embedded in a matrix of protein 
and water. Each crystal is between 0.1 and 1 mm in 
length with cross-sectional dimensions of 30–70 nm 
 [29] . The crystals are thus much bigger than those in 
other mineralized tissues, such as dentine and bone, and 
they occupy over 90% of the tissue volume. A few thou-
sand crystals are bundled together into elongated struc-
tures called prisms, each 3–5 μm in diameter. Prisms 
extend almost all the way from the enamel-dentine junc-
tion to the tooth surface. The gap between crystals with-
in a prism is only 1–2 nm, but between prisms there are 
much larger 100-nm crystal-free gaps ( fig. 3 a), occupied 
by low molecular weight proteins and water  [30] . In the 
inner enamel, prisms follow a sinuous path ( fig. 3 b). Ad-
jacent prisms in the longitudinal plane are successively 
slightly out of phase with each other  [31] . The successive 
phase change leads to the appearance of small parcels of 
prisms crossing each other, a characteristic called decus-
sation ( fig. 3 c). In humans, the inner 60–80% of enamel 

thickness consists of decussating prisms. However, the 
prisms straighten in the outer enamel, passing in parallel 
to the tooth surface ( fig. 3 b). This type of enamel is often 
called ‘radial enamel’ to contrast it with ‘decussating 
enamel’.

  In addition to prisms, there are a number of minor 
structures in enamel that were previously thought to be 
trivial, but which are now known to be of major impor-
tance. Foremost among these are enamel tufts ( fig. 3 b). 
These hypocalcified strands, formed during develop-
ment, resemble widened prism sheaths and extend from 
the enamel-dentine junction about one third of the way 
into the enamel  [32, 33] . Previously thought to be a curi-
osity, they are now implicated as a key protective mecha-
nism of the tooth crown.

  A précis of the development of the tissue is important 
for understanding some of its features. When the tissue is 
first formed, the crystallites are thin and large proteins 
that form the scaffolding of the tissue, and which initiate 
crystallization, occupy the bulk of the tissue. However, 
after the enamel thickness is completely formed, the cells 
that secrete the tissue (ameloblasts) convert into cells that 
somewhat resemble those lining the small intestine. They 
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  Fig. 2.  Males in a population of ringtail possums range mostly from 1 to 5 years of age (inset). The main histogram shows wear stages 
of an upper second molar tooth in terms of the degree of dentinal exposure (black) on its working surface as the covering enamel is lost. 
Older males tend to have more wear, but this is not inevitable. Virtually no males have extreme wear (last stage to the right). 
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start to produce digestive enzymes (matrix metallopro-
teinases) that break the protein scaffolding down into 
fragments  [34] . The ameloblasts then draw most of these 
protein pieces, and also much of the water, out from the 
tissue. This removal allows the crystals to expand in 
breadth into newly created space. In behaving like this, 
ameloblasts act at a distance of up to 2 mm and their ef-
fectiveness must thus be a function of a diffusion gradi-
ent. This appears to set up a parallel gradient in the ma-
ture tissue in chemical composition  [35–39]  that is also 
mirrored in some mechanical properties, as described be-
low.

  Enamel Mechanical Properties 

 The elastic modulus  E  of enamel is its resistance to 
elastic deformation. This is measured in force per unit 
area (newtons per metre squared: Nm –2 ). The SI abbre-
viation for this unit is the pascal (Pa) with 1 Pa = 1 Nm –2 . 
However, this is such a small unit that gigapascals 
(1 GPa = 10 9  Nm –2 ) are required to reduce the number of 
digits in describing most materials. Mature human enam-
el is very stiff with an  E  varying between 70 and 110 GPa 
 [40] . The hardness  H  of enamel is its resistance to plastic 
(permanent) deformation. It is again measured in force 

Prism cores
(H = 3–6 GPa)

Dentinal tubule
(H = zero)

Dentine

Intertubular dentine
(H = 0.6 GPa)

Intratubular dentine
(H = 2–2.5 GPa)

Prisms in
cross-section

Prisms
(longitudinal)

Path of enamel
prism

0.1-μm wide
prism ‘sheath’

a b

c d

  Fig. 3.  Enamel structure contrasted with dentine. The hardness  H 
 of structures is indicated where known; data from Cuy et al.  [40]  
and Lucas  [90] .  a  The microstructure of enamel showing prism 
cross-sections containing crystal bundles surrounded by a crystal-
free ‘sheath’. Scale bar 5 μm.  b  The enamel coat in transverse sec-
tion showing the wave of prisms in the inner enamel and their 
straightening near the tooth surface. Arrows show tufts. Scale bar 

200 μm.  c  Longitudinal sections of inner enamel show bands of 
prisms in cross-section next to bands cut longitudinally due to de-
cussation. Scale bar 5 μm.  d  A fractured surface of dentine shows 
a tubule (that in life would contain fluid and a cell process) sur-
rounded by hard intratubular dentine. Thus, dentine is heteroge-
neous on a scale at which enamel is reasonably homogeneous.  
 Scale bar 3 μm. 
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per unit area (newtons per metre squared: Nm –2 ). Human 
enamel is very hard with  H  = 3–6 GPa ( fig. 2 a)  [40] . Both 
the elastic modulus and hardness are linearly gradated, 
with the lowest values near the enamel-dentine junction 
and the highest at the tooth surface  [40–43] . The proper-
ties of the enamel of other mammals vary slightly, but a 
gradient of hardness and elastic modulus is again usually 
present  [44–47] . There are unlikely to be big surprises in 
enamels yet to be examined because both modulus and 
hardness are subject to a ‘rule of mixtures’ wherein the 
composite tissue is constrained by the stiffest, hardest 
component of which it is made  [48, 49] . The upper limits 
for human enamel fall close to those reported for pure 
hydroxyapatite  [50] .

  The major mechanical benefit of composite materials 
constructed from several components, such as enamel, 
lies not in its stiffness or hardness, but in its fracture 
toughness, which is the ability of an object to resist the 
growth of cracks  [51] . The toughness of enamel is not 
graded in the manner of the elastic modulus and hardness 
because, unlike these properties, it is not bound by limits 
set by its components. Instead, it benefits from a syner-
gism between these components that produce high tough-

ness in the composite, compared to components that, in 
isolation, will break very easily. There are two ways to 
measure toughness, which are easily interconverted. Here 
we refer to it as ‘fracture toughness’, which is the effect 
that a crack of unit length has on the intensity of stress in 
a loaded object. This intensity depends on the square root 
of crack length and thus has units of MNm –2  m 0.5  or MPa 
m 0.5 . It is symbolized here as  K  c . This quantity varies in 
enamel not in the form of a gentle gradient, but as a func-
tion of enamel structure. For very small cracks of the or-
der of size of a few prism diameters ( fig. 4 a), structure 
does not matter and the toughness of enamel is uniform-
ly low  [52] , resembling that of glass  [53] . For larger cracks, 
everything depends on whether they can track along 
prism sheaths without deviating or whether they encoun-
ter decussation  [54] , in which case the toughness becomes 
elevated ( fig. 4  b, c). Toughness appears to be more ele-
vated when cracks are run from outside in, i.e. the crack 
starts at the tooth surface and projects towards the den-
tine ( fig. 4 b), than when cracks are directed from the in-
side to outside ( fig. 4 c)  [55] . The ‘inside-out’ crack typi-
cally becomes unstable in a test because the crack is being 
opened directly. However, in life, such cracks would be 
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  Fig. 4.  The varying toughness of enamel reported for small and 
large scale tests as compared to soda lime glass, a classic brittle ma-
terial    [53] . The horizontal axis denotes the position of a crack with 
respect to the tooth surface (which is ‘0’ on this axis) and the junc-
tion with dentine (innermost enamel is ‘1.0’).    a  When a pyramidal 
indenter is pressed onto enamel (producing the diamond-shaped 
indent shown in surface view), small cracks can extend from its 
corners. Toughness is always low. Data from Bajaj et al.  [52] .  

b ,  c  To run longer cracks, enamel ‘tablets’ (yellow squares) can be 
encased within large blocks of material (green boxes) that can be 
notched into the enamel and then gripped. Cracks can then be 
opened in the enamel. When cracks are run from the outer enam-
el to inside ( b ), toughness increases sharply. Data redrawn from 
Bajaj and Arola  [54]  and Yahyazadehfar et al.  [55] . Symbols repre-
sent data for individual teeth.   
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loaded not in direct tension but in compression. Crack 
opening then depends on tension being developed indi-
rectly at right angles to the load. Under these circum-
stances, ‘inside-out’ cracks in enamel have been shown to 
be completely stable  [56–59] .

  A comparison of the properties of enamel and dentine 
is important in understanding how the whole crown be-
haves. At the scale of a few prism diameters or less, enam-
el is effectively isotropic. This makes experimentation on 
the microfractures that lead to wear entirely tractable. 
However, on this same scale, dentine is very anisotropic, 
containing large cylindrical holes surrounded by relative-
ly stiff, hard intratubular (or peritubular) dentine. Be-
tween tubules, the intertubular dentine is of much lower 
elastic modulus and hardness ( fig.  3 d)  [60] . Studies of 
dentinal wear at the level of the actual mechanical events 
would thus be extremely difficult. However, at any larger 
scale, the situation is reversed. Enamel is then very aniso-
tropic, showing the gradient of elastic modulus and hard-
ness, coupled with a strong influence of structure on 
toughness. In contrast, most of the primary dentine – that 
formed with the tooth and which abuts the enamel – is 
relatively homogeneous, with the exception of a thin strip 
of ‘mantle dentine’ directly under the enamel, which is 
slightly softer and less stiff  [61–63] . The toughness of 
dentine varies little for long cracks, hovering between 1.6 

and 3 MPa m 0.5 , but decreasing with dentinal age, pre-
sumably because of the gradual accumulation of intratu-
bular dentine  [64–67] . As a consequence of its large-scale 
uniformity, large cracks in dentine have no real preferred 
orientation dictated by dentinal structure. In contrast, the 
structure of enamel has a major directing effect  [68] .

  The Importance of Scale 

 The main ‘scaling factor’ that affects enamel damage is 
nothing intrinsic to the tissue itself, but is a consequence 
of the effect of the size of particles that contact its external 
surface  [69] . A small particle, of hardness >2.5 times that 
of enamel  [70–72] , has its effect principally on the tooth 
surface, indenting/sliding against it at very low forces, 
causing either plastic deformation or fracture of the enam-
el ( fig. 5 a). In contrast, contact with a much larger particle 
of the same hard material causes the enamel to bend. If the 
enamel cracks, then it will do so on its deep surface 
( fig. 5 b). Lastly, a contact with a large particle of low hard-
ness, <2.5 times that of enamel, can still damage it. Bend-
ing of the enamel under the contact is not likely to produce 
cracking though, because deformation of the particle will 
produce a large contact area and a large volume under hy-
drostatic compression that will suppress fracture. There-

Enamel
Dentine

a b

c

  Fig. 5.  The damage that enamel sustains due to contacts with hard 
objects (direction and size of force given by the arrows) depends 
on scale.        a  A small particle that is much harder than enamel tends 
to indent its surface, producing microfracture (‘wear’) if the par-
ticle slides.  b  A large hard particle is more likely to produce a crack 

on the undersurface of the enamel directly under the contact (a 
‘radial’ macrofracture) due to enamel flexure.  c  A softer large par-
ticle deforms between teeth. It can still damage the enamel via 
bending forces, but only away from the contact area, thus forming 
a ‘margin’ macrofracture.               
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fore, when sufficient strain energy is available for fractures 
to be initiated, they are likely to start well away from the 
zone of contact where tension can be expressed ( fig. 5 c). 
We now discuss the type of fractures seen in teeth with 
respect to the mechanical behaviour of the tissues.

  Macrofracture 

 Large-scale damage to a tooth crown is completely in-
compatible with its continued use. The most common 
form of such fracture is a through-enamel crack called a 
lamella ( fig. 1 ). Lamellae are absent from newly erupted 
teeth, but accumulate during life. Although such lamellae 
were long thought to start at the enamel surface and prog-
ress as ‘outside-in’ cracks  [73] , experimental evidence 
now suggests that instead they grow from inside to out-
side as extensions of enamel tufts  [57, 58] . There is a for-
est of tufts all around the enamel-dentine junction ready 
to pick this strain energy up  [74, 75] . These cracks grow 
slowly, requiring a sharply increasing force to extend  [57, 
58] . The relationship between crack extension and force 

is known, with a dependence on enamel toughness and 
thickness, but additionally on the square root of tooth 
size. The presence of lamellae can be used to establish a 
history of force use on a tooth  [76] .

  In themselves, lamellae are relatively innocuous. How-
ever, the major issue with these types of crack is a poten-
tially catastrophic fracture, which results in the loss of 
large slabs of enamel, either part of a cusp (against a hard 
particle;  fig. 5 b) or part of the margin of a tooth (against 
a softer particle;  fig. 5 c). Margin fractures are often called 
‘abfractions’ in the human dental literature  [77] . They de-
pend on tooth dimensions in a different manner to that 
which affects cuspal (radial) cracks ( fig. 6 ). This is because 
they stem from tensile stresses known as ‘hoop’ stresses 
 [59] . These stresses gain their name from the design of 
barrels, where metal hoops around the circumference 
stop internal cracks in the barrels from propagating out-
wards. Human teeth are very vulnerable to such margin 
cracks because they lack any protection in the region 
where the tooth crown meets the root ( fig. 1 ). This mar-
ginal region is buttressed in many mammals, but not in 
humans  [69, 78] .

Wear potential
depends on Kc and relative H

Split crown?

Enamel thickness d

Tooth crown size R

Chip formation

Toughening of
composites

Radial enamel

Crack driving force

1st crack

1st crack deflects

2nd crack initiates

Interface

Decussating enamel

Force to drive a crack

Chip ∝ Kc 
, R 

1.5

Radial ∝ Kc 
, R 

0.5, d

Margin ∝ Kc 
, R, d 

0.5

  Fig. 6.  The dependence of different scales of fracture events on 
enamel properties and tooth crown dimensions. Relationships 
have been firmly established for radial, margin and chipping frac-
tures. Note that the degree of dependence on crown dimensions 
varies. These relationships were established by Lee et al.    [76]  and 
Lucas et al.  [86] . The upper box shows the usual path of a chip 
(small arrows show its growth path), following a prism sheath in 
the outer radial enamel, being deflected by decussation and then 

seeking the shortest path to a surface again along a sheath. The 
lower box shows the typical toughening mechanism of composites. 
A force drives a primary crack. That crack meets an interface of 
low stiffness and deflects. The force cannot easily push the prima-
ry crack further, but if the force builds, a secondary crack can initi-
ate on the other side of the interface, leaving a ‘bridge’ between the 
two that will eventually fail, causing fragmentation.                     
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  Mesofracture 

 The chipping of enamel ( fig.  1 ) is very common in 
mammals in general  [22–25] , being particularly frequent 
in certain archaic and modern human populations  [79–
81] . It is also often seen by dentists in a clinical setting, 
where it is mostly viewed as an aesthetic issue  [82] . Yet, a 
general theory of chipping resistance in materials has 
only recently started to be developed  [83] . Provided the 
complexities of resistance to fracture seen in human 
enamel are ignored, and the tissue is treated as respond-
ing elastically with little toughness, then a remarkably 
simple treatment of chipping resistance in ceramic mate-
rials can be applied to enamel  [84] . Evidence suggests that 
a crack starts at the surface at a contact close to an edge as 
what are termed ‘median’ vents  [84] . As it extends down-
wards, energetic considerations favour the crack turning 
towards the edge, so releasing a chip of tissue. The analy-
sis of chipping resembles those for macrofractures that 
start from deep in the enamel, but with a differing depen-
dence on tooth dimensions ( fig. 6 ). Again, chipping gives 
evidence of the force that produced it  [24] .

  A crack that starts on the tooth surface and grows from 
outside inwards would encounter increasing resistance as 
it does so because inner decussating enamel would ob-
struct its progress ( fig. 4 b). Thus, part of the explanation 
for the number of chips on human teeth, and the relative 
rarity of cracks that have grown from outside inwards to 
reach the enamel-dentine junction, is that the inner de-
cussating enamel is there to protect the integrity of the 
tooth ( fig. 6 ). A mesofracture is preferable to a split crown 
that could result if the crack continued its original path 
and passed into the dentine.

  Microfracture 

 Microfracture refers to the mechanical wear of the 
tooth surface whereby small amounts of material are lost 
from the crown surface. These events accumulate over 
time to be seen by the naked eye as macroscopic wear 
( fig. 1 ). Dentists distinguish tissue lost from tooth-tooth 
contacts, which they call attrition, from abrasion, which is 
damage produced by small foreign objects that enter the 
mouth  [85] . Here, we use terms that refer to the processes 
involved. ‘Abrasion’ involves the removal of tissue from a 
surface either as a ribbon that curls away from the surface 
(as in the wear of metals) or as a chip. It leaves marks that 
are sharp V-shaped grooves ( fig. 7 ). Only small particles 
that are >2.5 times as hard as enamel can do this. Particles 

that are less hard can only produce plastic deformation of 
the enamel surface. This is called ‘rubbing’. Material can 
be moved on the surface, forming a groove surrounded by 
a mound of tissue, but no material is immediately lost. 
Such mounds are not seen with abrasion ( fig. 7 ).

  Recent evidence suggests that abrasion can take place 
at forces of 1 mN or less  [86] , which is negligible consid-
ering that maximum bite forces in modern humans can 
reach 1 kN, six orders of magnitude higher  [24] . Clearly, 
if conditions are right, large amounts of wear can take 
place by abrasion. Several factors help to prevent this. 
Firstly, abrasion depends on the presence of ingested par-
ticles that are much harder than enamel. It also depends 
on sliding contacts because this is much more important 
in producing wear than static contacts. No food tissue 
eaten by any mammal is as hard as enamel, but grit and 
dust particles that enter the mouth ingested with food can 
be much harder  [86] . Luckily, unless these particles are 
sufficiently sharp, this will not result in abrasive wear  [83, 
87, 88] . The criterion for ‘sufficient sharpness’ is actually 
set by enamel toughness. Most airborne particles are ac-
tually quite smooth-surfaced, and the only way to gener-
ate sufficient sharpness is if the particles are broken in the 
mouth. This produces an audible noise and, luckily, 
mechanoreceptors in the periodontal ligament of the 
tooth ( fig. 1 ) are present to pick up the sub-newtonian 
loads at which dust and grit particles break, so alerting an 
individual to damage  [89] . Very soft particles of whatever 
size do little mechanical damage to an enamel surface, but 
there exists an in-between category of particle that is 
roughly as hard as enamel. Such particles can rub the 

  Fig. 7.  A three-dimensional AFM (atomic force microscopic) im-
age of an enamel surface, each side 16.5 μm in length, showing two 
large V-shaped marks (arrows) produced experimentally by con-
tact with a single piece of quartz. This particle has made two 
scratches because of its irregular shape. Note that there are no 
raised mounds around the scratches. This is typical of abrasion.                           
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tooth surface, indenting it and doing damage very similar 
to that which teeth do to each other  [86] . Such damage, 
however, is a plastic indentation without any immediate 
resulting tissue loss, so strictly it is not wear when consid-
ered as a single event.

  Overview of Mechanical Damage to Enamel 

 For the first time, several of the patterns of damage to 
a tooth crown can be expressed quantitatively in terms of 
the force that produces them ( fig. 6 ). The extent to which 
properties and crown dimensions affect this force de-
pends on the type of fracture. Margin and radial cracks, 
despite their similar origin near the enamel-dentine junc-
tion ( fig.  5 b, c), depend on the local thickness of the 
enamel and on crown dimensions, but with differing ex-
ponents ( fig. 6 ). While it is difficult to express resistance 
to mechanical wear in the same detail, it is clear that 
enamel hardness (compared to that being contacted) and 
toughness are the critical properties that resist damage.

  The discovery that a standard pattern of cracking in 
enamel runs ‘inside-out’ has many implications for re-
searchers investigating the protection of a tooth, un-
known even a few years ago  [90] . Currently, much re-
search is focused on how the enamel-dentine junction is 
protected from fractures that cross from the enamel into 
the dentine  [63, 91–96] . It might be ironic if most of the 
protection came from the fact that the general direction 
of cracks is from close to the enamel-dentine junction, 
travelling in the opposite direction to that which would 
fracture into dentine. The role of the mantle dentine may 
be to encourage the enamel to flex, and thus to strain the 
tufts ( fig. 5 b, c). The tufts extend only when forces are 
high enough  [97] , thus protecting the dentinal core by 
directing cracks in the opposite direction. Such cracks 
that do pass from the exterior inwards may well be de-
flected by decussating enamel; of course, this may sacri-
fice a chip of enamel, but it saves the tooth ( fig. 6 ).

  The factors that control the splitting of tooth crowns 
in half are less well known. One theory proposes that the 
relation for chipping (equation in  fig. 6  and top inset) ap-
plies also to splitting  [25] , with the difference that the lat-
ter is a consequence of a more central position for crack 
initiation on the crown  [24] . Recent developments have 
extended some of this theory to variation in crown height 
 [98]  and to include the presence of multiple cusps  [99] .

  Judging from experiments  [52, 54, 55] , the cracking of 
enamel in macrofractures is likely to follow the typical 
toughening pattern of composites shown in  figure 6  (bot-

tom inset). A primary crack traverses a homogeneous re-
gion of the material, e.g. a prism core. It then reaches an 
interface, which we could identify in enamel as the prism 
sheath. Here, the crack deflects because the stiffness of the 
small-protein gel in the sheath is so low that strain energy 
cannot be built up to advance it; thus, it opens for a short 
distance along the interface  [100] . If the force continues to 
build, then a secondary crack may initiate on the other side 
of the sheath in the next prism core. The toughening comes 
from the fact that the force to start this secondary crack is 
far higher than that which started the primary one, with 
the ratio depending on the width of the interface  [101] . 
The gap between the two cracks then remains as a bridging 
ligament that restricts the opening of the whole fracture as 
it advances. This pattern is repeated across successive in-
terfaces until, in the end, the ligaments fail with eventual 
union of the whole crack and the loss of material. This 
mechanism can amplify toughness in an extraordinary 
manner, sometimes to be several thousand times higher 
than the toughness of isolated components. The organiza-
tion of biological composite tissues is designed to promote 
the effectiveness of these mechanisms. Teeth do not ‘want’ 
to be fractured, and virtually no biological tissue ‘wants’ to 
end up being broken down by the teeth as food. Thus, a 
composite structure is common to most biological tissues.

  Conclusion 

 There is still a lot to learn about tooth crown fractures, 
and little has yet been done at the same level on root frac-
tures, which are clinically important. Yet the groundwork 
has been laid for a new era of understanding, particularly 
of enamel. Some say that the tissue behaves like metal 
 [102] , others that it is glassy  [58] . We conclude here that, 
dependent on the influence of structure and the scale at 
which it acts, both may be correct.
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