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Gas exchange parameters and stomatal physical properties were measured in Tradescantia virginiana plants grown under
well-watered conditions and treated daily with either distilled water (control) or 3.0 mm abscisic acid (ABA). Photosynthetic
capacity (CO2 assimilation rate for any given leaf intercellular CO2 concentration [ci]) and relative stomatal sensitivity to
leaf-to-air vapor-pressure difference were unaffected by the ABA treatment. However, at an ambient CO2 concentration (ca)
of 350 mmol mol21, ABA-treated plants operated with significantly lower ci. ABA-treated plants had significantly smaller
stomata and higher stomatal density in their lower epidermis. Stomatal aperture versus guard cell pressure (Pg) character-
istics measured with a cell pressure probe showed that although the form of the relationship was similar in control and
ABA-treated plants, stomata of ABA-treated plants exhibited more complete closure at Pg 5 0 MPa and less than half the
aperture of stomata in control plants at any given Pg. Scaling from stomatal aperture versus Pg to stomatal conductance
versus Pg showed that plants grown under ABA treatment would have had significantly lower maximum stomatal
conductance and would have operated with lower stomatal conductance for any given guard cell turgor. This is consistent
with the observation of lower ci/ca in ABA-treated plants with a ca of 350 mmol mol21. It is proposed that the ABA-induced
changes in stomatal mechanics and stomatal conductance versus Pg characteristics constitute an improvement in water-use
efficiency that may be invoked under prolonged drought conditions.

Although the plant growth regulator abscisic acid
(ABA) was first identified for its role in abscision
of fruits (Okhuma et al., 1963), it has since been
widely recognized for its ability to regulate stomatal
aperture (Little and Eidt, 1968; Mittelheuser and
van Steveninck, 1969; Jones and Mansfield, 1970;
Raschke, 1987; for review, see Leung and Giraudat,
1998). ABA is synthesized in several plant organs,
and the increased concentrations to which stomata
respond under conditions of water deficit are the
result of not only synthesis and redistribution of
ABA within leaves, but also synthesis and export
from roots (Davies and Zhang, 1991; Dodd et al.,
1996).

It has been shown that bulk leaf ABA concentration
increases with increasing water stress (e.g. Wright
and Hiron, 1969; Beardsell and Cohen, 1975; Pierce
and Raschke, 1980), and that the stomatal conduc-
tance attainable for any given set of environmental
conditions is negatively correlated with ABA concen-
tration (Trejo et al., 1995; Tardieu et al., 1996). These
and many other studies show that the short-term
effects of elevated ABA concentrations are reversible,
i.e. the return of ABA concentrations to those prevail-
ing before water stress is accompanied by a return of

stomatal function to near its full potential. In intact
plants subjected to brief drought (several days or
less) recovery of stomatal conductance and ABA con-
centrations to predrought levels can take 1 to 2 d
(Ackerson, 1980; Henson, 1981). However, Trejo et al.
(1995) showed that stomata in epidermal strips of
Commelina communis that had been substantially
closed by applying a 30-min pulse of 0.01 mm ABA
returned to initial apertures within 3 h. These studies
suggest that short periods (hours to days) of elevated
leaf ABA concentrations have no permanent effect on
stomatal function.

Much research into the action of ABA on stomata
has focused on the mechanism by which changes in
ABA concentrations in the vicinity of guard cells are
transduced into changes in stomatal aperture via pro-
cesses on the guard cell plasma membrane (Ass-
mann, 1993; MacRobbie, 1995, 1998). However, little
is known about the potential role of this growth
regulator in promoting developmental changes in
stomatal structure and arrangement within leaves, or
of the functional significance of such changes. Work
by McCree (1974) and Brown et al. (1976) showed
that when plants were subjected to frequent or long-
term drought, their stomata reopened more readily
upon rewatering than did stomata in plants experi-
encing only a single, brief period of drought. Based
on these observations and work by Cutler et al. (1977)
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that showed stomata grown under water stress were
smaller than in well-watered plants, Spence et al.
(1986) emphasized an important distinction between
long-term anatomical and short-term physiological
causes of a plant’s reaction to water stress. Spence et
al. (1986) showed mathematically that the smaller
stomata that develop in water-stressed plants are
likely to be mechanically different from those in well-
watered plants and may achieve greater increases in
aperture for a given change of guard cell turgor
under certain conditions. However, there have been
no measurements of guard cell mechanical properties
to support these claims.

To investigate the effects of longer-term exposure
to elevated ABA concentrations, Bradford et al.
(1983) sprayed leaves of young tomato plants with
ABA. They found that leaves that had developed
under these conditions had the same photosynthetic
capacity as control plants, despite operating with
different stomatal conductances and having different
stomatal sizes and frequencies. However, the effects
of prolonged elevated ABA concentrations on leaf
gas exchange and stomatal function remain poorly
understood.

Elevated concentrations of ABA in leaf tissues are
usually associated with water deficit in plants, and
elevated tissue ABA concentrations alone tend to
promote developmental changes in stomata and leaf
anatomy that mimic the effects of water deficit
(Quarrie and Jones, 1977). However, the functional
significance of ABA-induced changes in stomatal
structure has never been quantified in terms of sto-
matal guard cell inflation characteristics, so the true
energetic cost or benefit of these changes is difficult
to assess. Our aim in this study was to use the cell
pressure probe to measure the effect of long-term
elevated leaf ABA concentrations on the relationship
between stomatal aperture and guard cell pressure in
Tradescantia virginiana. We also sought to relate this
information to the overall effect of this treatment on
leaf gas exchange properties. The use of exogenous
ABA to chemically simulate “drought” conditions in
well-watered plants enabled investigation of the in-
fluence of ABA alone (i.e. without associated reduc-
tions in leaf water potential or turgor) in perma-
nently modifying stomatal functional characteristics.

RESULTS

Gas Exchange

Photosynthetic capacity overall was unaltered by
treatment with ABA. When the CO2 assimilation rate
(A) is plotted against the leaf intercellular CO2 con-
centration (ci), the relationship for ABA-treated
plants is similar to that for control plants (Fig. 1).
The data in Figure 1 are well characterized by the
photosynthesis model of Farquhar and von Caem-
merer (1982), but for ease of comparison, in Figure 1
we have fitted a single exponential decay function

to the data for control and ABA-treated plants (y 5
24.8 2 27.4e(2x/198), r2 5 0.99 for control; y 5 26.5 2
28.5e(2x/300), r2 5 0.98 for ABA-treated plants).
Overall, the relationship between A and ci was sim-
ilar between control and ABA-treated plants, sug-
gesting ABA had little, if any, influence on overall
photosynthetic capacity. However, steady-state oper-
ating points under the initial ambient conditions (am-
bient CO2 concentration, ca, 5 350 mmol mol21, leaf-
to-air vapor pressure difference, VPD, 5 1.0 kPa) did
differ significantly, with ABA-treated plants operat-
ing at lower ci (points circled and indicated by arrows
in Fig. 1). Mean 6 se ci/ca was 0.764 6 0.013 for
control and 0.600 6 0.016 for ABA-treated plants.

Although transpiration rates (E) differed between
control and ABA-treated plants, on account of differ-
ent stomatal conductances, changes in E following a
step change in VPD were similar when expressed as
a percentage reduction from the value at VPD 5 1.0
kPa. Mean 6 se A (mmol m22 s21), stomatal conduc-
tance to water vapor (gs; steady-state stomatal con-
ductance at the initial 1.0 kPa, at 2.0 kPa, and the final
1.0 kPa are denoted gs1, gs2, and gs3, respectively; mol
m22 s21), and E (mmol m22 s21) at the initial 1.0-kPa
VPD were, respectively, 18.1 6 0.49, 0.451 6 0.03, and
3.60 6 0.12 for control and 12.1 6 0.27, 0.149 6 0.01,
and 1.42 6 0.04 for ABA-treated plants. A step in-
crease in VPD from 1.0 kPa to 2.0 kPa resulted in
mean reductions in stomatal conductance of 18% and
14% for control and ABA-treated plants, respectively
(gs2/gs1 5 0.82 6 0.04 for control and 0.86 6 0.05 for
ABA-treated plants). Following a return from 2.0-kPa
to 1.0-kPa VPD, stomatal conductances increased, but

Figure 1. Plot of A against ci for control and ABA-treated plants. Data
are the combined results for three control and three ABA-treated
plants. Solid and dotted lines are nonlinear least-squares fits of
first-order exponential decay functions to data for control and ABA-
treated plants, respectively (y 5 24.8 2 27.4e(2x/198), r2 5 0.99 for
control; y 5 26.5 2 28.5e(2x/300), r2 5 0.98 for ABA-treated plants).
Solid and dotted arrows point to initial operating points (circled) for
control and ABA-treated plants, respectively (ca 5 350 mmol mol21,
vapor-pressure difference [VPD] 5 1.0 kPa). Leaf temperature 25°C,
photosynthetically active radiation 800 mmol m22 s21.
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recovery was not complete, with stomatal conduc-
tance of control plants recovering up to 90% of the
initial 1.0-kPa VPD value, and ABA-treated plants
recovering up to 94% (gs3/gs1 5 0.90 6 0.06 for
control and 0.94 6 0.03 for ABA-treated plants).
Mean gs2/gs1 and gs3/gs1 did not differ significantly
between control and ABA-treated plants at the 5%
level.

Steady-state relationships between gs and ci for
control and ABA-treated plants, at 1.0-kPa VPD, are
shown in Figure 2. Linear regressions were per-
formed on the grouped data for the three control and
three ABA-treated plants (y 5 0.57 2 0.58 3 1023x,
r2 5 0.79 for control; y 5 0.19 2 0. 20 3 1023 x, r2 5
0.72 for ABA-treated plants). Fitting a linear model to
these data gives a good approximation of the rela-
tionship between gs and ci, although there is evidence
to suggest the relationship is more likely to be cur-
vilinear (Wong et al., 1978; Morison and Jarvis, 1983).
Some of the individual plants in this study exhibited
a clear sigmoidal relationship between gs and ci (data
not shown). The 95% confidence intervals calculated
for the slopes and intercepts of the linear regressions
in Figure 2 revealed significant differences, i.e. when
averaged over the range 40 , ci , 900 mmol mol21,
the absolute sensitivity of stomata of ABA-treated
plants to ci was significantly lower than the control
plants under these experimental conditions. How-
ever, relative sensitivity remained unchanged. Also,
when sensitivity to ci is measured only over the range
of ci corresponding to a step reduction in ca from 350
to 200 mmol mol21, there is evidently a high degree of
variability in the sensitivities between individual
plants (Dgs/Dci 5 21053, 2534, and 2357 mol m22

s21 for the three controls and Dgs/Dci 5 23393, 2213,
and 2264 mol m22 s21 for the three ABA-treated
plants).

Leaf Turgor and Anatomical Measurements

Epidermal turgor (Pe), stomatal density in upper
(nsu) and lower (nsl) epidermis, guard cell length in
upper (Lsu) and lower (Lsl) epidermis, and mean sto-
matal ratio (S) are summarized in Table I. The sig-
nificance of difference between means was tested
using analysis of variance. Within treatments, both
control and ABA-treated plants showed significantly
higher stomatal densities in lower versus upper epi-
dermes (variance ratio [F] 5 490, P , 0.001, and n 5
30). Overall, stomatal densities that we measured are
typical of T. virginiana, which is known to have very
low stomatal densities (Willmer, 1983). Unlike con-
trol plants, the ABA-treated plants had significantly
longer guard cells in upper versus lower epidermes
(F 5 37.7, P , 0.001, and n 5 45). Between treatments,
ABA-treated plants maintained significantly lower
epidermal cell turgor in vitro, compared with control
plants (F 5 26.8, P , 0.001, and n 5 30). nsu did not
differ significantly between control and ABA-treated
plants, but nsl of ABA-treated plants was signifi-
cantly higher than in control plants (F 5 524, P ,
0.001, and n 5 30); hence, the stomatal ratio was
lower in ABA-treated plants. Compared with control
plants, mean guard cell length was significantly
shorter in both upper and lower epidermes of ABA-
treated plants (F 5 253, P , 0.001, and n 5 45 for
upper; F 5 443, P , 0.001, and n 5 45 for lower).

Guard Cell Aperture/Pressure Characteristics

Stomatal pore width as a function of guard cell
hydrostatic pressure is shown in Figure 3. The form
of this relationship in both ABA-treated and control
plants is the same, i.e. continuous negative curvature
over the range of 0 to 4 MPa. The smaller physical
size of guard cells in ABA-treated plants resulted in
apertures of less than half the width of control plants
for any given guard cell pressure. First-order expo-
nential decay functions were fitted to the data using
a nonlinear least-squares fitting procedure. These
functions provide an accurate mathematical descrip-
tion of the relationship between stomatal aperture
and guard cell hydrostatic pressure (or turgor) in T.
virginiana under conditions of 0 Pe (for control plants
y 5 30.2 2 25.6e2x/1.23, r2 5 0.988; for ABA-treated
plants y 5 14.8 2 14.6e2x/1.27, r2 5 0.991). The smaller
maximum possible aperture of stomata in ABA-
treated plants is due largely to shorter guard cell
length because the width of guard cells was similar in
both control and ABA-treated plants (approximately
18 mm).

DISCUSSION

Measurement of A as a function of ci (Fig. 1) re-
vealed exogenous ABA had no significant effect on
the photosynthetic capacity of T. virginiana (defined
here as A for a given ci). A versus ci characteristics did

Figure 2. Steady-state relationships between gs and ci for control and
ABA-treated plants, at 1.0-kPa VPD. Data are composites for three
control and three ABA-treated plants. Leaf temperature 25°C, pho-
tosynthetically active radiation 800 mmol m22 s21.
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not differ overall between ABA-treated and control
plants. However, plants grown under ABA treatment
operated at lower ci/ca and hence with higher water-
use efficiency due to lower stomatal conductance.

There has been mixed opinion as to whether ABA
has a direct effect on photosynthetic capacity. Several
studies have concluded that ABA fed to the transpi-
ration stream has a direct effect on carbon fixation
(Cornic and Miginiac, 1983; Raschke and Hedrich,
1985; Ward and Bunce, 1987). However, other studies
of isolated mesophyll cells (Mawson et al., 1981) or
whole-leaf gas exchange (Dubbe et al., 1978; Bradford
et al., 1983) have found no evidence of reduced pho-
tosynthetic capacity following ABA treatment. It has
been proposed that in cases where an effect is ob-
served, ABA could be acting (probably indirectly) to
inhibit the activity of ribulose-1,5-bisphosphate car-
boxylase (Fischer et al., 1986; Popova et al., 1996). It
has been shown that patchy distribution of stomatal
conductance, which can be induced by application of
ABA, can give the illusion of reduced photosynthetic
capacity (Terashima et al., 1988; Mott, 1995). It should
be noted that many of these studies have dealt with
only short-term responses. Our results (and those of
Bradford et al. [1983] with which our data agree)
relate to long-term exposure to elevated ABA con-
centrations where leaves have grown and matured
under such conditions.

The similarity of response to VPD for control and
ABA-treated plants suggests that either (a) The VPD

response mechanism is independent of physical
changes in guard cell structure induced by growth
under elevated ABA concentrations, or (b) the VPD
response mechanism is a highly conservative prop-
erty and that changes in stomatal structure associated
with elevated ABA concentrations (or water stress)
are linked to the maintenance of this property. There
are insufficient published data with which to explore
these possibilities. Several studies have observed al-
tered stomatal sensitivities to VPD following impo-
sition of water stress on fully developed leaves
(Schulze and Küppers, 1979; Turner et al., 1985;
Nonami et al., 1990), but it remains unclear as to how
the VPD response is affected in leaves that develop
entirely under water stress and/or elevated ABA
concentrations.

Our observations of increased stomatal density and
smaller stomatal dimensions in ABA-treated plants
(Table I) are similar to those of Bradford et al. (1983)
who grew tomato under artificially elevated ABA
(leaves sprayed daily with 10 or 30 mm ABA). Quarrie
and Jones (1977) observed similar trends in wheat
leaves injected with ABA. The same effect has been
observed in studies where plants were grown under
water stress without any artificial manipulation of
ABA concentrations (Cutler et al., 1977; Quarrie and
Jones, 1977; Spence et al., 1986; Xia, 1994). However,
it remains to be determined whether ABA is the main
chemical influencing developmental changes in sto-
matal properties under water stress.

Increased nsl of ABA-treated leaves could amount
to a shifting of greater transpiration control to the
lower epidermis, but the full advantage of this is
unclear. Several morphological adaptations associ-
ated with growth under water stress are likely to
contribute to an overall improvement in water-use
efficiency. Although we did not measure leaf areas
precisely, leaves from ABA-treated plants were no-
ticeably smaller, and this may have reduced total
plant transpirational losses (Quarrie and Jones, 1977).
However, it is this in combination with stomatal and
hydraulic properties that will determine plant water
status.

The results in Figure 3 show that the application of
ABA has altered the physical properties of stomata in
T. virginiana. For any given guard cell hydrostatic
pressure, mean stomatal pore width in the ABA-
treated plants is less than half that in control plants.
To assess whether this was likely to result in different
stomatal conductances, we applied an adaptation of

Figure 3. The relationship between stomatal aperture and guard cell
hydrostatic pressure, measured at 0 Pe, for control and ABA-treated
plants. Each datum point is the mean 6 SE for between three and 13
stomata.

Table I. Pe, nsu, nsl, Lsu, Lsl, and S (S 5 nsu/nsl) in control and ABA-treated plants
All figures are mean 6 SE; n 5 30 for Pe, nsu, nsl, S; n 5 45 for Lsu, Lsl.

Treatment Pe
a MPa nsl nsu Lsu Lsl S

mm22 mm

Control 0.56 6 0.01 11.4 6 0.27 4.24 6 0.17 86.6 6 0.75 88.6 6 1.11 0.37 6 0.01
ABA-treated plants 0.47 6 0.02 19.7 6 1.28 4.47 6 0.25 68.4 6 0.87 62.0 6 0.61 0.23 6 0.01
a As measured in peels from lower epidermes.
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the original Brown and Escombe (1900) model, which
has been shown to give a reliable approximation of
stomatal conductance using stomatal dimensions
(Penman and Schofield, 1951; Bange, 1953; Lee and
Gates, 1964). Using the molar terms of Cowan (1977),
this model may be written as:

gs 5
nsDa9

VSl 1
p

4 Îa9

p
D (1)

where gs is stomatal conductance to water vapor
(excluding boundary layer), ns 5 stomata per unit
epidermal area (m22; using nsu for calculating con-
ductance of upper leaf surface, and nsl for conduc-
tance of lower leaf surface), D 5 diffusivity of water
in air (m2 s21), a ’ 5 mean stomatal pore area (m2),
V 5 molar volume of air (m3 mol21), l 5 depth of
stomatal pore (m), and p is 3.142. In T. virginiana, a ’
is linearly related to stomatal pore width (Fig. 4).
Similar linear relationships have also been observed
in Vicia faba (Raschke, 1979) and C. communis (Weyers
and Meidner, 1990). The term:

p/4~Îa9/p! (2)

is the “end correction” accounting for diffusion shells
at the outside end of stomatal pores. There is some
difference of opinion as to the calculation of this end
correction (see discussions by Nobel, 1983; Weyers
and Meidner, 1990) and also whether or not to apply
the same correction to both the inside and outside
ends of the stomatal pore. It has been suggested (e.g.
Bange, 1953) that in some cases the end correction on
the inside of stomatal pores will be negligible for
water vapor diffusing out of leaves, and we found
that applying the above-end correction to both ends

of the stomatal pore tended to underestimate stoma-
tal conductance. Underestimates of similar magni-
tude also resulted from application of the end cor-
rection developed by Parlange and Waggoner (1970),
although it was used successfully with Avena fatua
(van Gardingen et al., 1989).

Estimates of stomatal conductance for T. virginiana
at 0 Pe (Fig. 5) show that ABA-treated plants would
have operated with substantially lower stomatal con-
ductance for any given guard cell turgor, and would
also have had a significantly lower maximum stoma-
tal conductance. Even if epidermal cells in ABA-
treated plants had a greater mechanical advantage
over guard cells than those in control plants (due to
the smaller physical dimensions of guard cells in
ABA-treated plants), the ABA-treated plants were
still likely to have operated with lower stomatal con-
ductances for any given combination of epidermal
and guard cell turgor. This situation may not hold if,
for any given set of environmental conditions, guard
cell turgor and Pe are substantially different between
control and ABA-treated plants. This possibility
awaits further experimental verification. However,
our gas exchange results show that plants grown
under ABA treatment operated with lower stomatal
conductance over a range of ci and VPD conditions,
which is consistent with the information in Figure 5.

We conclude that ABA applied daily to leaf sur-
faces of T. virginiana under well-watered conditions
produced leaves with much-reduced stomatal size
and potential stomatal conductance, but with unal-
tered photosynthetic capacity. Although this is likely
to indicate to some extent the effect of drought-

Figure 5. An estimate of the relationship between stomatal conduc-
tance (gs) and guard cell hydrostatic pressure (Pg) at 0 Pe, for control
and ABA-treated plants. gs was calculated using Equation 1 and
information from Table I and Figures 3 4. Each point is the calculated
mean 6 SE. See Table II for an example calculation. Solid and dotted
lines are nonlinear least-squares fits of first-order exponential decay
functions to data for control and ABA-treated plants, respectively
(y 5 0.52 2 0.40e(2x/1.03), r 2 5 0.990 for control; y 5 0.28 2
0.26e(2x/1.39), r 2 5 0.998 for ABA-treated plants).

Figure 4. The relationship between stomatal pore area a ’ (mm2) and
stomatal pore width a (mm), as measured for typical stomata from
control and ABA-treated T. virginiana plants. Solid and dotted lines
are linear regressions of a ’ on a for control and ABA-treated plants,
respectively. For control, a ’ 5 31.7a, r2 5 0.998; for ABA-treated
plants, a ’ 5 17.8a, r2 5 0.991.
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induced increases in leaf ABA concentrations during
leaf development, the results presented here will
help to clarify the role of ABA alone in the more
complex mechanism of plant adaptation to long-term
drought. Hence, in terms of “stomatal” and “non-
stomatal” components of plant response to drought,
it would appear that ABA operates directly and, at
least in this case, exclusively on the “stomatal” com-
ponent. Therefore, ABA not only regulates short-
term, reversible adjustments to rates of carbon up-
take and water loss, but through its effect on stomatal
structure has the potential also to permanently alter
the leaf photosynthetic operating point in the direc-
tion of improved water-use efficiency.

MATERIALS AND METHODS

Plant Material

Tradescantia virginiana plants were cloned by detaching
plantlets (roots plus shoots) from parent plants and placing
them immediately in 3-L pots filled with soil (compost:
sand:peat:perlite, 5:2:2:1). Existing mature leaves were
trimmed to a height of 4 cm and the plants were grown in
a greenhouse (day/night air temperature 30°C/25°C, high
humidity) under 50% shade cloth. Plants were well wa-
tered at all times. A slow-release fertilizer (Osmocote,
Scotts Australia Pty Ltd, Castle Hill, Australia) was added
in one application after 2 weeks (15 g/pot). After 3 weeks,
when new shoots had begun to appear, one-half of the pots
were selected at random and treated with 1 mL of 3.0 mm
ABA (Sigma-Aldrich Pty Ltd, Castle Hill, Australia) twice
daily at the base of an emerging leaf. Treatment lasted 14 d
in total. The ABA solution formed a well between the base
of the emerging leaf and the base of an adjacent mature
leaf. The remaining untreated plants (control) were given 1
mL distilled water in the same manner as treated plants.
Leaves that had emerged and matured after commence-

ment of treatments were used for subsequent gas exchange,
pressure probe, and anatomical measurements.

Gas Exchange

Leaf gas exchange measurements were performed with a
commercial, open-flow gas exchange measurement system
(LI-6400P, LI-COR Inc., Lincoln, NE). All experiments were
carried out during the natural daylight photoperiod, with
plants brought to the laboratory on the evening prior to
measurements. ABA treatment was stopped 24 h prior to
gas exchange measurements, and leaves were thoroughly
rinsed with tap water. For all measurements leaf tempera-
ture was 25°C and leaf irradiance was 800 mmol m22 s21.
Measurements were taken on attached, mature leaves ap-
proximately halfway along their length, with about 3.6 cm2

of the leaf inside the measurement cuvette. Stomatal re-
sponse to leaf-to-air VPD was assessed by first allowing the
leaf to reach a steady state at 1.0-kPa VPD, 350 mmol mol21

ca, and then stepping VPD up to 2.0 kPa. After steady state
had again been reached, VPD was returned to 1.0 kPa. The
time between these steady states was at least 40 min, and in
most cases 60 min, following the step reduction from 2.0 to
1.0 kPa. At each steady state, A, gs, E, and ci were obtained.
Steady-state stomatal conductance at the initial 1.0 kPa, at
2.0 kPa, and the final 1.0 kPa are denoted gs1, gs2, and gs3,
respectively. Stomatal sensitivity to the step increase in
VPD, for these particular conditions, was quantified as
gs2/gs1. With the same leaf, the relationship between A and
ci, and the steady-state relationship between gs and ci, were
obtained by first decreasing and then increasing ca in steps,
beginning with steady state at 350 mmol mol21.

Leaf Anatomical Measurements

Epidermal peels were prepared and viewed as for Pe

measurements. Means of nsu and nsl were obtained by
counting stomata in 10 different circular 2.0-mm diameter

Table II. An example of how total stomatal conductance to gs was calculated in control and ABA-
treated leaves

For this example, Pg is 1.09 MPa. Pe 5 0. From Figure 4, a9 5 31.7 3 1026a for control; a9 5 17.8 3
1026a for ABA-treated plants. Note that in this table a and a9 are in units of m and m2, respectively,
whereas in Figure 4, units are mm and mm2. Stomatal conductances for upper leaf surface (gs(upper)) and
lower leaf surface (gs(lower)) were obtained from Equation 1 using values of nsu and nsl from Table I.
gs(total) 5 gs(upper) 1 gs(lower).

Quantity Control Leaf ABA-Treated Leaf Units

Pg 1.09 1.09 MPa
a 18.4 3 1026 8.15 3 1026 m
a9 0.582 3 1029 0.145 3 1029 m2

nsu 4.24 3 1026 4.47 3 1026 m22

nsl 11.4 3 1026 19.7 3 1026 m22

D 24.9 3 1026 24.9 3 1026 m2 s21 @ 25°C
l 18 3 1026 18 3 1026 m
V 24.4 3 1023 24.4 3 1023 m3 mol21 @ 25°C, 101.3 kPa
gs(upper) 0.122 0.028 mol m22 s21 @ 25°C, 101.3 kPa
gs(lower) 0.236 0.125 mol m22 s21 @ 25°C, 101.3 kPa
gs(total) 0.358 0.153 mol m22 s21 @ 25°C, 101.3 kPa
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fields on upper and lower epidermes of three plants from
each treatment (n 5 30). Means of Lsu and Lsl were obtained
by sampling 15 stomata in upper and lower epidermes of
three plants for each treatment (n 5 45). Stomatal ratio was
obtained by dividing nsu by nsl.

Pressure Probe

Pe

Epidermal peels were prepared by carefully separating
epidermal tissue from sections of leaf with the aid of a
dissecting microscope. Peels were stuck with the cuticle up
on a well slide using a drop of “vallap” (vaseline:lanolin:
paraffin, 1:1:1) and the well filled with a bathing solution
comprising 25 mm MES [2-(N-morpholino) ethane-sulfonic
acid] at pH 6.5 (adjusted with NaOH), 1 mm KCl, and 0.1
mm CaCl2. Epidermal cell turgor was measured in the
conventional manner (for review, see Steudle, 1993) using
a pressure probe of the type described below. Mean Pe was
obtained by sampling 10 cells in peels from three different
plants (n 5 30).

Guard Cell Aperture/Pressure Characteristics

Epidermal peels were obtained as for Pe measurements
and incubated for 1 h in the dark in a bathing medium
having the same composition as that used for Pe measure-
ments, except for the addition of 400 mm mannitol. The
mannitol was added to induce a state of mild plasmolysis
in epidermal cells so that guard cell aperture/pressure
characteristics could be compared independent of Pe

(Franks et al., 1998). Peels were then mounted as for Pe

measurements and the slide well filled with incubating
medium. The relationship between guard cell hydrostatic
pressure and stomatal aperture was obtained using the
equipment and technique described by Franks et al. (1995,
1998). This involved the use of a specially modified pres-
sure probe capable of operating at high pressures (at least
6.0 MPa). In brief, using a micromanipulator (Narishige
Scientific Instrument Laboratory, Tokyo) and an inverted
microscope (Zeiss Axiovert 35M, Carl Zeiss, Oberkochen,
Germany), the glass microcapillary of the pressure probe
was inserted into the guard cells of a stoma in a manner
that allowed injection of silicone oil into both cells. While
ensuring no leakage of oil from the guard cells, pressure in
the guard cells was increased and decreased in steps and
steady-state aperture was recorded for each pressure. Im-
ages for each pressure increment were recorded digitally
for later analysis using a charge-coupled device camera
(RTE/CCD-1300-Y/HS, Princeton Instruments Inc., Tren-
ton, NJ) and image capture software (Metamorph 3.51,
Universal Imaging Corp., West Chester, PA).
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