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Abstract

Original Article

Introduction

Surgical pathology practice requires that current procedural 
terminology  (CPT) codes be used for codifying the level 
of complexity of specimens and pathology procedures 
performed on specimens. Assignments of CPT codes depend 
on a combination of factors, mainly tissue source, surgical 
procedure, final diagnosis, clinical information, and so on.[1] 
Each specimen is assigned a CPT code depending on the level 
of complexity, from 88300 to 88309. In some specimens, 
when additional procedures/tests, such as decalcification, 
special stains, immunostains, and molecular tests are 
performed and reported, there are additional CPT codes for 
these procedures/tests. The model described in this article 
deals with the initial CPT codes on specimens requiring 

microscopic examination, including 88302, 88304, 88305, 
88307, and 88309.

At our practice, an initial tentative specimen CPT code is 
assigned for each specimen at the time of accessioning based on 
the specimen label, surgical procedure, and clinical information. 
Most of the time (>97%), these presumptive entries are correct. 
In a minority of cases, the pathologist assistants change the 

Background: At our department, each specimen was assigned a tentative current procedural terminology (CPT) code at accessioning. The 
codes were subject to subsequent changes by pathologist assistants and pathologists. After the cases had been finalized, their CPT codes went 
through a final verification step by coding staff, with the aid of a keyword‑based CPT code‑checking web application. Greater than 97% of the 
initial assignments were correct. This article describes the construction of a CPT code‑predicting neural network model and its incorporation 
into the CPT code‑checking application. Materials and Methods: R programming language was used. Pathology report texts and CPT codes 
for the cases finalized during January 1–November 30, 2018, were retrieved from the database. The order of the specimens was randomized 
before the data were partitioned into training and validation set. R Keras package was used for both model training and prediction. The chosen 
neural network had a three‑layer architecture consisting of a word‑embedding layer, a bidirectional long short‑term memory (LSTM) layer, 
and a densely connected layer. It used concatenated header‑diagnosis texts as the input. Results: The model predicted CPT codes in both the 
validation data set and the test data set with an accuracy of 97.5% and 97.6%, respectively. Closer examination of the test data set (cases from 
December 1 to 27, 2018) revealed two interesting observations. First, among the specimens that had incorrect initial CPT code assignments, the 
model disagreed with the initial assignments in 73.6% (117/159) and agreed in 26.4% (42/159). Second, the model identified nine additional 
specimens with incorrect CPT codes that had evaded all steps of checking. Conclusions: A neural network model using report texts to predict 
CPT codes can achieve high accuracy in prediction and moderate sensitivity in error detection. Neural networks may play increasing roles in 
CPT coding in surgical pathology.

Keywords: Current procedural terminology codes, deep learning, neural network,

Access this article online

Quick Response Code:
Website:  
www.jpathinformatics.org

DOI:  
10.4103/jpi.jpi_3_19

Address for correspondence: Dr. Jay J. Ye, 
Dahl‑Chase Pathology Associates, 417 State Street, Suite 540, Bangor, 

Maine 04401, USA.  
E‑mail: jye@dahlchase.com

This is an open access journal, and articles are distributed under the terms of the Creative 
Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to 
remix, tweak, and build upon the work non‑commercially, as long as appropriate credit 
is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Ye JJ. Construction and utilization of a neural 
network model to predict current procedural terminology codes from 
pathology report texts. J Pathol Inform 2019;10:13.
Available FREE in open access from: http://www.jpathinformatics.org/text.
asp?2019/10/1/13/255395

Construction and Utilization of a Neural Network Model to 
Predict Current Procedural Terminology Codes from Pathology 

Report Texts
Jay J. Ye

Dahl‑Chase Pathology Associates, Bangor, Maine, USA

Received: 9 January 2019			   Accepted: 26 February 2019			   Published: 03 April 2019



J Pathol Inform 2019, 1:13	 http://www.jpathinformatics.org/content/10/1/13

Journal of Pathology Informatics2

CPT codes based on the gross finding or identifying an error 
at accessioning. The pathologists change the CPT codes based 
on the final diagnosis or because of an error at accessioning. 
After the reports have been finalized, the coding staff reviews 
each case to verify the CPT codes and correct any errors that 
have been missed by the pathologist assistants and pathologists. 
This final step of coding verification is assisted by a CPT 
code‑checking web application capable of detecting coding 
errors (see materials and methods section). It has been in use 
by our coding staff for over a year to assist in catching CPT 
coding errors and in maintaining coding consistency.

In anatomic pathology, deep learning has been utilized to 
analyze the microscopic images for both disease classification 
and detection.[2‑7] It will be interesting to see if applying deep 
learning to natural language, such as report texts, can produce 
models that are effective in predicting appropriate CPT code 
assignments for the specimens.

Programming language R (https://www. r‑project.org, accessed 
January 3, 2019) was selected. R is one of the major languages 
used by data scientists. With regard to R usage in surgical 
pathology, there have been reports on using R in statistical 
analysis[8] and information extraction from the report texts.[9,10]

In early 2018, a deep learning library Keras (https://keras.io, 
accessed January 3, 2019), originally written in Python (https://
www.python.org, accessed January 3, 2019), became 
available in R  (https://keras.rstudio.com, accessed January 
3, 2019), making training deep learning models easier for 
the R programmers. In order to use R Keras package, Python 
language and Python package Keras need to be installed on 
the same machine. Anaconda distribution of Python (https://
www.anaconda.com/download, accessed January 3, 2019) is 
a convenient way to obtain Python and many other libraries 
used in scientific computing and data science, including 
Keras, with a single download. R Keras package with Google 
TensorFlow  (https://www.tensorflow.org, accessed January 
3, 2019) as the back end was used to train the neural network 
models and to use the selected model for prediction.

In this article, I will describe how a neural network model 
capable of predicting CPT codes from report texts with high 
accuracy was constructed as well as the initial observations on 
the effect of its incorporation into the existing CPT‑checking 
web application.

Materials and Methods

The computer workstation used for data retrieval was a desktop 
personal computer (PC) HP Elitedesk (Hewlett‑Packard, Palo 
Alto, CA, USA) with Intel (R) (Intel, Santa Clara, CA, USA) 
Core™ i7‑670 central processing unit  (CPU) at 2.80 GHz 
and 24.0 GB random‑access memory (RAM). The pathology 
information system was PowerPath 10.0.0.19  (Sunquest 
Information Systems, Tucson, AZ, USA), with Advanced 
Material Processing (AMP module). The back end database 
management system for PowerPath was Microsoft SQL server. 

A  laptop PC  (Hewlett‑Packard, Palo Alto, CA, USA) with 
Intel (R) (Intel, Santa Clara, CA, USA) Core™ i7‑7500U CPU 
at 2.70G Hz and 16.0 GB RAM was used for deep learning 
training.

Open source programming language R version 3.5.1 (https://
www.r‑project.org, accessed January 3, 2019) was 
used for interacting with PowerPath database, for data 
preprocessing and for training neural network model. RStudio 
Version 1.2.1194 (https://www.rstudio.com, accessed January 
3, 2019) was the integrated development environment used for 
writing and running the R programs.

The process of obtaining data from the pathology database 
using a database connectivity package  (RODBC) is as 
described previously.[10] Briefly, a connection string containing 
information on database server address, the name of the 
database, and user login name and password was constructed. 
Furnishing connection string and SQL query as two arguments 
to an RODBC function sqlQuery() retrieved the data of interest 
from the PowerPath database into R.

The data frame is a two‑dimensional R data structure that 
holds tabular data consisting of rows and columns. The 
diagnosis header text and diagnosis text for each specimen 
were extracted from the retrieved report text and concatenated. 
The header‑diagnosis text was then associated with the 
assigned CPT code for the corresponding specimen. In the 
resulting data frame, each row represented a specimen and 
each column represented specific data for the specimens. 
Relevant columns included clinical information text, header 
text, diagnosis text, concatenated header‑diagnosis text, and 
CPT code. The data frame thus obtained had 74,477 rows. 
After the order of the rows was randomized, the first 20,000 
rows were used for validation and the remaining 54,477 rows 
were used for training.

R Keras package (https://keras. rstudio.com, accessed January 
3, 2019) was used for model training as well as for using the 
saved model to predict CPT codes for the specimens in the test 
data set (data from December 1 to 27, 2018) and for the new 
specimens encountered daily.

A three‑layer neural network model was trained to use the 
concatenated header‑diagnosis texts to predict the correct 
assignments of CPT codes for both the specimens. The 
specifics of the process are described below.

Header‑diagnosis texts were first tokenized into words, and 
then each word was converted to a unique nonzero integer by 
the following R code:

maxlen <‑ 100 

max_words <‑ 11000 

tokenizer <‑ text_tokenizer (num_words = max_words) %>%

fit_text_tokenizer (mytext$headerNdx)

sequences_headerNdx <‑ texts_to_sequences  (tokenizer, 
mytext$headerNdx)
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headerNdx_matrix <‑ pad_sequences (sequences_headerNdx, 
maxlen = maxlen)

For long texts, only the first 100 words were kept  (maxlen 
<‑ 100). For texts shorter than 100 words, the left side was 
padded with integer 0 by the function pad_serquences() so 
that every entry had the same length of 100.

The model architecture for a three‑layer neural network model 
consisting of a word‑embedding layer with input length of 100 
and with 50‑dimensional word vectors as output, a bidirectional 
LSTM layer with 32 units and a densely connected layer with 
5 units were defined by the following R code:

model <‑ keras_model_sequential() %>%

layer_embedding  (input_dim  =  max_words, input_
length = maxlen, output_dim = 50) %>%

bidirectional (layer_lstm (units = 32) %>%

layer_dense (units = 5, activation = ‘softmax’)

The learning process was configured by specifying rmsprop 
as the gradient decent method (optimizer), sparse categorical 
cross entropy as the loss function  (loss), and classification 
accuracy as the metrics by the following R code:

model %>% compile(

optimizer = ‘rmsprop’,

loss = ‘sparse_categorical_crossentropy’,

metrics = c(“accuracy”)

)

The batch size for the mini‑batch gradient decent was 500.

Functions save_text_tokenizer() and save_model_hdf5() were 
used to save both the text tokenizer and the trained model; the 
saved model, with the saved text tokenizer, can be loaded into a 
different program to predict CPT codes, such as for predicting 
CPT codes on the test data set and for being incorporated into 
a web application (see below).

A web application written in R with shiny package (https://
shiny.rstudio.com, accessed January 3, 2019) for CPT code 
checking based on report text parsing has been used at 
our practice by the coding staff for over a year. A detailed 
description of that application is beyond the scope of this 
article. Briefly, the program retrieves information from the 
PowerPath database and parses report text to identify keywords 
or the combination of keywords that may suggest incorrect 
CPT code assignments. For instance, identifying words 
“fibroepithelial polyp” in the diagnosis text in a skin biopsy 
with CPT code assignment of 88305 would prompt the user 
to see if the code needs to be changed to 88304. This web 
application is hosted on a virtual Windows server (Windows 
2012R2, 4 cores and 8 GB of RAM) in the intranet and can 
be accessed from any PC within the network by using a web 
browser. The user can query the pathology database by a date 
range to see if there are any cases flagged for possible errors.

The new CPT code‑predicting neural network model has 
been incorporated into the above CPT code‑checking web 
application based on keyword searching. A data table listing 
the specimens with predicted CPT codes different from 
the assigned CPT codes is displayed by the browser as an 
additional output of the application.

Results

The model predicts CPT codes based on the report texts, 
specifically, diagnosis header, followed by the diagnosis. 
Figure  1 shows a screenshot of portion of the data frame 
containing the data for training or validation. Three columns 
of the data frame are shown as follows: case number 
concatenated with the ordinal number of the specimen 
within the case (accNspc), header text followed by diagnosis 
text  (headerNdx), and CPT code  (cpt). For instance, 
S‑18‑10000_4 denotes the fourth specimen of case S‑18‑10000. 
The last three digits of the case numbers were erased for 
de‑identification purposes. The text before the colon  (:) is 
the header, generally consisting of the information about the 
specimen and the procedure. The text following the colon (:) 
is the diagnosis. Take the displayed first row as an example, 
“Antrum bx” is the header, and “Reactive gastropathy” is the 
diagnosis. They are concatenated into a continuous text. For 
specimen in row 6, the header is “Subcutaneous mass, left 
hip, excision,” and the diagnosis is “Unclassified pleomorphic 
sarcoma. See comment.” Only the beginning portion of the 
diagnosis is visible in the screenshot.

As observed from the above two examples, the length of the 
header‑diagnosis text varies. Figure 2 shows the distribution of 
the length of concatenated header‑diagnosis texts. The median 
length is 12 words. A length of 100 words corresponds to the 
98.1th percentile. The first 100 words of the text are used as 
input for the model. As such, for 98.1% of the cases, the entire 
header‑diagnosis texts are included. For the remaining 1.9% 
of the specimens with longer texts, only the first 100 words 
are used.

Many model architectures have been explored. Because both 
LSTM and gated recurrent units (GRU) variants of recurrent 
neural network are frequently used as layers of neural network 
for text processing,[11] both were tested. They performed 
equally well, and LSTM was chosen. Stacking 2 or 3 GRU or 
LSTM layers in the model to produce models of 4 or 5 layer 
deep did not increase the accuracy of prediction; therefore, a 
simpler model of only 3 layers was chosen. Models tested also 
include models with 2 or 3 branches of inputs, each branch 
starting with a word‑embedding layer, followed by LSTM 
layer (or GRU layer), and converged at a concatenating layer, 
and then further followed by a densely connected layer. There 
was only probably marginal enhancement in the accuracies. In 
the branched model, each branch processed text from header, 
diagnosis, and clinical information separately. In regard to 
the scope of texts to be included as input, the inclusion of 
the first 10 words of the clinical information did not increase 
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The text data as shown in Figure 1 needed to be preprocessed 
into nonzero integer representation. For the final model 
selected, this preprocessing took 19 s. Iterating over each epoch 
took between 60 and 104 s. As such, training such a model 
with 15 epochs took about 20 min.

The chosen model contains 571,573 parameters. Table  1 
is a slightly modified printout of the model summary. The 
modifications were made for the sake of clarity: “Params #” in 
the first line was changed to “no. of parameters” and “params” 
in the last three lines were changed to “parameters.”

The file sizes for the model and the text tokenizer are relatively 
small, 5.5 and 0.5 MB, respectively.

The accuracy on the 20,000‑specimen validation set by the 
selected model was 97.5%. The distribution of predicted 
CPT codes in the validation set was quite similar to that 
of the assigned CPT codes  [Figure  4]. The model slightly 
overpredicted 88305; slightly underpredicted 88302, 88304, 

Figure 1: Screenshot of portion of a data frame containing concatenated 
header‑diagnosis texts and CPT codes. Only three columns of the data 
frame are shown. accNspc: Accession number concatenated with the 
ordinal number of the specimen within the case. The last three digits of 
each case number are erased for de‑identification, headerNdx: Header 
text concatenated with the diagnosis text, cpt: The assigned CPT code 
for the specimen. CPT: Current procedural terminology

Figure 2: Distribution of the length (number of words) of the concatenated 
header‑diagnosis text. While the horizontal axis denotes the number 
of words for the concatenated text, the vertical axis is the number of 
occurrences (number of specimens) for that length

Figure 3: Training and validation metrics for the training of a model. The 
horizontal axis denotes the number of epochs (iteration over the entire 
training set once) since the beginning of the training. The y‑axis of the 
top panel denotes the loss (categorical cross entropy); the y‑axis of the 
bottom panel denotes the accuracy of CPT code prediction with reference 
to the final CPT code assignments, expressed as fraction. The salmon 
color denotes metrics associated with training data; the teal color denotes 
the metrics of the validation data. CPT: Current procedural terminology

the accuracy; as such, text from clinical information was not 
included as a component of input. Ultimately, the simplest 
three‑layer model with concatenated header‑diagnosis text as 
input was selected.

Figure  3 shows the training and validation metrics of 
a representative three‑layer model, with 25 epochs 
of training. After 15 epochs, the model accuracy on the 
training data set and validation data set was 98.9% and 97.6%, 
respectively.

Figure  4: Distributions of assigned versus predicted CPT codes in 
the validation data set. The height of the bars denotes the number of 
specimens with the particular CPT codes as shown in the horizontal axis. 
The salmon color is for the assigned CPT codes; the teal color is for the 
CPT codes predicted by the model. CPT: Current procedural terminology
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and 88307; and significantly underpredicted 88309. While 
there were 131 specimens with assigned CPT code of 88309, 
there were only 61  specimens with predicted CPT code of 
88309.

The model was then used to predict CPT codes on a test data 
set. All the cases finalized from December 1 to 27, 2018, were 
used as the test data set. This end date of December 27 was 
chosen so as to only include data before the incorporation of 
the neural network model into the web application. The model 
prediction differed from the assigned CPT codes in 2.4% of 
the specimens (152/6240). During this period, excluding the 
cases with specimen bundling/unbundling and considering 
only specimens with the five CPT codes  (88302–88309), 
159  specimens have their initial CPT codes changed  (by 
pathologist assistants, pathologists, or a CPT coding staff). 
Of these specimens, the model predicted CPT codes different 
from the initial assignments in only 73.6% (117/159), whereas 
agreeing with the initial incorrect assignments in the remaining 
26.4%  (42/159). On the other hand, the model identified 
nine additional specimens that have incorrect final CPT code 
assignments not detected by the coding staff. For the purpose 
of calculation, it is assumed that the number of specimens with 
CPT codes changed (159), and the nine additional specimens 
identified by the model constituted 100% of the specimens 
that had incorrect initial CPT code assignments. Our current 
practice of verifying 100% of the CPT codes has an error 
detection rate of 95% (159/[159 + 9]); the error detection rate 
for the model is 75.0% ([117 + 9]/[159 + 9]), 20 percentage 
points below that of our current practice.

As mentioned previously, for the final step of CPT code 
verification at our practice, CPT codes for every specimen were 
examined by a coding staff and by a CPT code‑checking web 
application. These two approaches are complementary, 
with coding staff catching more coding errors than the web 
application  (numerically coincidentally 95% vs. 75%, with 
all the codes modified at the final step of verification as 
100%  [codes changed by the pathologist assistants and 
pathologists were not included in this calculation], details 
not shown).

The neural network model has been newly incorporated 
into the existing CPT code‑checking web application. The 
prediction by the model and the error detection by rule‑based 
keyword search are both complementary (flagging different 
specimens) and overlapping (flagging the same specimens). 
Each approach can identify some specimens that the other 

approach misses. For instance, the keyword‑searching 
approach caught cases that required specimen unbundling, 
whereas the model’s prediction agreed with the assignments. 
On the other hand, the model correctly predicted 88305 
for a skin with keloid (initially assigned CPT code 88304), 
88307 for a neoplastic ovary  (initially assigned CPT code 
88305), and 88305 for a pleural nodule ultrasound‑guided 
biopsy  (initially assigned CPT code 88307), whereas the 
keyword‑searching approach did not flag these specimens. As 
such, the incorporation of neural network model into the web 
application has enhanced the application’s ability to detect 
CPT coding errors.

Discussion

Training deep learning model to tackle the real‑world 
problems is frequently a computationally expensive 
process, requiring multicore GPU.[11] Training on CPU can 
be excruciatingly slow. Even on multicore GPU, either on 
local workstation or in the cloud, it can take many hours or 
even days to train a model.[4] I was pleasantly surprised that 
the CPT code prediction model took <30 min to train on a 
conventional laptop without GPU. Perhaps, this was due 
to the fact that the architecture of the model was relatively 
simple, consisting of three layers with only roughly half a 
million parameters. Of course, either a much more powerful 
workstation with GPU or cloud computing will be needed in 
order for me to build neural network with higher complexity 
in future.

A second unexpected finding was that this simple neural 
network with only three layers and using only up to 100 words 
of the report text was able to predict the specimen CPT codes 
with high accuracy, 97.5% and 97.6% for the training data set 
and test data set, respectively.

In the test data set, although the neural network model 
predicts CPT codes with a high accuracy of 97.6%, the 
error detection rate is only 75%, which is not enough for us 
to change our current practice of verifying CPT codes for 
every specimen (error detection rate 95%) to only checking 
the specimens that the model suggests different CPT codes. 
The reasons for this apparent discrepancy between the high 
accuracy of CPT code prediction and the moderate capability 
for error detection became clear after looking at the cases that 
the model failed to detect the coding errors. The information 
prompting the changes of CPT codes is frequently quite subtle. 
While therapeutic appendectomy is 88304, an incidental 
appendectomy is 88305. The third trimester placentas are 
88307, but the first and second trimester placentas are 88305. 
While most diagnoses on skin specimens are 88305, diagnoses 
such as cyst or fibroepithelial polyp will necessitate a change 
to 88304. There are many other similar examples of pairs with 
subtle differences.

Even with moderate capability to detect coding error, the 
model was able to identify nine cases with coding errors in 
the test set; these errors have had evaded vetting by our coding 

Table 1: Model summary

Layer (type) Output shape Number of parameters
Embedding_1 (Embedding) None, 100, 50 550,000
Bidirectional_1 
(Bidirectional)

None, 64 21,248

Dense_1 (Dense) None, 5 325
Total parameters: 571,573, Trainable parameters: 571,573, Nontrainable 
parameters: 0
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staff. As such, the model is not only able to detect errors that 
were not detected by our CPT code‑checking web application 
based on keywords, but is also able to identify errors in the 
specimens after verification by the coding staff. The model 
has been added to the web application. The preliminary results 
show that the degree of complementarity is significant. It will 
be interesting to record the outputs of this application for a 
period of time so as to enable us to reliably estimate the error 
detection rate when we combine the deep learning model with 
the existing keyword‑searching approach. With this combined 
approach and with additional model refining, it is possible that 
the application may attain high enough sensitivity for error 
detection so that we only need to check the cases flagged by 
the program.

Conclusions

Neural network models using report text to predict CPT codes 
can achieve high accuracy in prediction and moderate level 
of sensitivity in error detection. Combining with rule‑based 
approaches, neural networks may play increasing roles in CPT 
coding in surgical pathology.
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