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ADENO-ASSOCIATED VIRAL VECTOR OVEREXPRESSION

Viral overexpression is a common approach for investigating 
candidate genes in lipid and atherosclerosis research.1,2 This 
is also the underlying principle of additive gene therapy, which 
seeks to restore activity of a dysfunctional gene by adding an 
artificial transgene (Figure 1). Adeno-associated viruses (AAVs) 
are small, nonenveloped, nonintegrating, single-stranded DNA 
viruses that can package up to 4.9 kb of exogenous DNA.3 
Upon delivery, recombinant AAV genomes are converted to 
double-stranded intermediate and circularize to form episomes, 
which are maintained extrachromosomally in the nucleus. 
Relative to adenoviral vectors, AAVs elicit a far milder immune 
response, allowing for stable transgene expression for months 
to years.4 Recombinant AAVs can be cross-packaged with 
capsids from many naturally occurring serotypes or engineered 
variants, allowing the researcher to restrict or broaden tissue 
distribution.3 Most AAV capsids have a high liver tropism, 
making them ideal for delivery to this organ. Thus far, AAV 
vectors have been used safely in humans in more than 120 
clinical gene therapy trials. The first AAV-based gene therapy 
products were approved for use in humans in 2012 (Europe) 
and another in 2017 (United States).5,6

AAV vectors based on serotype 8 (AAV8) primarily target the 
liver in mice and have become a mainstay of lipid research. 
They have been used to overexpress numerous proteins in 
lipid metabolism, including apolipoproteins, lipases, lipid 
transfer proteins, lipoprotein receptors, signaling proteins, 
and several enzymes in lipid synthesis. Delivery of Cre 
recombinase with AAV8 is rapidly gaining popularity and is 
viewed by many as superior to albumin-cre for generating 
liver-specific knockouts.7 A noteworthy example of the power 

of liver-directed overexpression involves the use of AAV-
PCSK9 to induce atherosclerosis. Proprotein convertase 
subtilisin kexin 9 (PCSK9) is secreted by the liver and promotes 
degradation of the low-density lipoprotein receptor (LDLR) 
by preventing recycling to the cell surface.8 Several groups 
have demonstrated that AAV-based overexpression of PCSK9 
gain-of-function variants can be used to model atherosclerosis 
in mice.1,9 This approach can greatly simplify atherosclerosis 
studies by avoiding the need to cross mice to Ldlr or Apoe 
knockout backgrounds.

AAV vectors are also the leading technology in tissue-directed 
gene therapy for lipid disorders. Lipoprotein lipase is a key 
enzyme in the catabolism of chylomicrons that hydrolyzes 
triglycerides (TG). Lipoprotein lipase (LPL) deficiency is a 
rare inherited disease characterized by the accumulation of 
chylomicrons in plasma, severe hypertriglyceridemia, and 
episodes of life-threatening pancreatitis. Glybera (uniQure N.V.) is 
an AAV1 vector designed for direct intramuscular delivery of the 
human gain-of-function LPL gene variant S447X.10 Clinical trials 
demonstrated that Glybera was associated with a lower incidence 
of pancreatitis in patients with LPL deficiency.5,11 This was the 
first gene replacement therapy to receive regulatory approval in 
Europe in 2012. However, since Glybera is locally injected and 
targets only a small proportion of skeletal muscle in the body, 
it provides limited restoration of LPL activity. This product was 
recently withdrawn from the market because of inadequate long-
term efficacy and lack of commercial viability. Nonetheless, this 
was a major step forward for AAV vectors, demonstrating safety in 
humans and a clear path for regulatory approval.

Familial hypercholesterolemia (FH) is an autosomal-dominant 
disease characterized by high plasma LDL levels and premature 
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cardiovascular disease (CVD).12 It is most frequently caused by 
loss-of-function mutations in the LDLR gene, resulting in impaired 
clearance of apolipoprotein B (apoB)-containing lipoproteins. 
Functional replacement of LDLR has long been a desired 
treatment strategy for patients with homozygous FH (HoFH).13 
The first clinical trial of FH gene therapy involved ex vivo retroviral 
LDLR transduction of hepatocytes from patients with HoFH, 
followed by reimplantation of the cells.14 However, engraftment 
of the hepatocytes was inefficient and without significant lipid 
improvements, discouraging further follow-up. Since then, 
multiple preclinical studies have been performed using an AAV8 
vector with the liver-specific thyroxine-binding globulin promoter 
to express the human LDLR cDNA. These studies demonstrated 
efficient hepatocyte transduction, sustained LDL lowering, and 
protection from atherosclerosis,15-17 thus providing the scientific 
and regulatory support for a phase 1/2 clinical trial in humans 
that is currently in progress, with results expected in 2019.13

ANTISENSE OLIGONUCLEOTIDES AND SMALL INTERFERING RNAS

Antisense oligonucleotides (ASOs) and small interfering 
RNAs (siRNAs) are synthetic nucleic acids that are commonly 
used for silencing gene expression in the liver (Figure 1).18 
ASOs are short, single-stranded DNA sequences (20-30 
oligonucleotides) engineered to hybridize with a target mRNA 
or pre-mRNA.18 The ASO-mRNA annealing results in the 
recruitment of a ribonuclease (RNase H) that cleaves the 
targeted mRNA, leading to its degradation.19 Small interfering 
RNAs are short, double-stranded RNA sequences (21-23 
oligonucleotides) that cause sequence-specific degradation of 
mRNA through the RNA interference (RNAi) process.18 ASOs 
have been used extensively by lipid researchers to probe basic 
biology. Several chemical modifications of ASOs and siRNAs 
exist that can both improve their stability as well as specific 
delivery.20 In particular, polyethylene glycol (PEG)-coated lipid 

Figure 1.
Gene delivery technologies in lipid research and therapies. (A) AAV vectors are commonly used for overexpressing proteins. (B) ASOs and siRNAs are synthetic 
nucleic acids engineered to hybridize with a target mRNA or pre-mRNA to induce its degradation and silencing. (C) AAV vectors are also used for delivering the 
CRISPR/Cas9 genome editing system. A gRNA guides the Cas9 nuclease to a complementary genomic site in proximity to a Protospacer Adjacent Motif (PAM). 
Cas9 induces a DSB causing indel mutations, which can be used to permanently inactivate or knock out the target gene. AAV: adeno-associated virus; ASO: 
antisense oligonucleotides; siRNAs: small interfering RNAs; CRISPR/Cas9: Clustered Regularly Interspaced Short Palindromic Repeats; gRNA: guide RNA
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nanoparticles and trivalent N-acetylgalactosamine conjugates 
are respectively used for enhancing the delivery and uptake of 
oligonucleotide therapeutics to the liver, minimizing off-tissue 
effects.20,21 These two technologies have also been used for 
preclinical knockdown of several proteins involved in lipoprotein 
metabolism, including apoB100, apoCIII, angiopoietin-like 
3 (ANGPTL3), lipoprotein(a), and PCSK9. However, all 
oligonucleotide therapies require careful evaluation of possible 
off-tissue effects as well as potential adverse events arising from 
sequence-related off-target silencing and immune activation.

Familial hypercholesterolemia has been aggressively pursued 
as a candidate for mRNA silencing therapeutics. The proposed 
mechanisms of cholesterol lowering generally involve 
inhibition of very low-density lipoprotein (VLDL) production 
or promotion of LDL clearance by the liver. Mipomersen is an 
ASO that inhibits the synthesis of apoB100 and is approved 
as an adjunctive therapy for HoFH.10,22 ApoB100 is the major 
structural component of VLDL, intermediate-density lipoprotein, 
and LDL, and its expression is critical for the normal export of 
TG from the liver.23 In a phase 3 study in patients with HoFH, 
mipomersen showed significant reductions of LDL-C, non-HDL 
cholesterol, and apoB lipoproteins.24 In addition, long-term 
mipomersen treatment has been associated with reduced 
cardiovascular events in FH patients.25 To date, the use of 
mipomersen in the United States is only available through the 
U.S. Food and Drug Administration's (FDA) Risk Evaluation 
and Mitigation Strategy drug safety program because of the 
potential for liver toxicity, which may involve on-target effects of 
apoB inhibition on hepatic fat content.

Inhibition of PCSK9 with monoclonal antibodies has been 
extremely successful, particularly in the setting of heterozygous 
FH. Therefore, it is not surprising that several RNA silencing 
drugs targeting PCSK9 have been pursued. ALN-PCSsc is an 
siRNA investigational agent that targets PCSK9 and is the only 
siRNA currently in clinical trials for lipid-related disorders. In a 
phase 2 clinical study, patients with high baseline LDL-C levels 
who received ALN-PCSsc demonstrated a significant decrease 
of plasma circulating PCSK9 and LDL-C levels at 240 days of 
follow-up.26 These positive results led to phase 2 and 3 clinical 
studies that are now in progress.27-31

Triglycerides are emerging as an important independent risk 
factor for CVD, and no currently available drugs substantially 
reduce this lipid class. ApoCIII is a liver-expressed secreted 
glycoprotein that binds to apoB-containing lipoproteins. It has 
been shown to inhibit LPL hydrolysis in vitro32 and interferes 
with receptor-mediated clearance of TG-rich lipoproteins by 
the liver.33 Elevated apoCIII levels are a risk factor for CVD, 
and loss-of-function variants are associated with reduced risk 
of coronary heart disease.34 Volanesorsen is an ASO that 

showed dose-dependent and prolonged reduction of circulating 
apoCIII and TG in multiple preclinical models and in a phase 
1 trial.35 Recently, volanesorsen has been reported to reduce 
TG, abdominal pain, and pancreatitis attacks in patients with 
familial chylomicronemia syndrome within a phase 3 study.36 
This drug was considered by the FDA in September 2018 but 
was not approved, possibly due to concerns about the risk of 
thrombocytopenia.

Another promising target for TG lowering is ANGPTL3, a liver-
derived secreted protein that raises plasma lipids by inhibiting 
LPL and preventing hepatic uptake of apoB lipoproteins.37,38 
Loss-of-function mutations in the human ANGPTL3 gene have 
been associated with low plasma LDL-C and TG.39 AKCEA-
ANGPTL3-LRx is an ASO agent targeting ANGPTL3 that 
was developed to treat HoFH and severe dyslipidemias. Data 
from a recent phase 1 trial showed that AKCEA-ANGPTL3-
LRx strongly reduced plasma levels of circulating ANGPTL3 
protein, TG, LDL, VLDL, apoB, and apoCIII after 6 weeks of 
treatment, without serious adverse events.40 Several phase 
2 clinical trials in patients with high TG levels are currently in 
progress.41-44

GENOME EDITING

The Clustered Regularly Interspaced Short Palindromic Repeats 
(CRISPR)/Cas9 genome editing system is derived from a 
naturally occurring immune system in bacteria.45 This technology 
consists of an RNA-guided nuclease (Cas9) and a 20- to 
23-nucleotide synthetic guide RNA (gRNA) that hybridizes to 
a complementary target sequence in genomic DNA (Figure 1). 
Cas9 induces a double-strand break (DSB) that can then be 
repaired by nonhomologous end-joining (NHEJ) or homology-
directed repair (HDR). As the dominant repair pathway in 
mammalian cells, NHEJ results in insertions and/or deletions 
of nucleotides (referred as “indels”) that can be used to knock 
out genes. The HDR pathway uses a DNA template to repair 
DSB through homologous recombination and is active only in 
dividing cells. By providing an exogenous donor template with 
homology to the genome, it may eventually be possible to use 
CRISPR/Cas9 to correct pathogenic mutations in patients. The 
theoretical advantage of genome editing over other methods is 
the ability to make precise, permanent changes at the DNA level 
with a single delivery.

One of the first in vivo applications of CRISPR/Cas9 involved 
the somatic disruption of the Pcsk9 gene in mice. The authors 
used an adenoviral vector to deliver Streptococcus pyogenes 
(Sp) Cas9 and a gRNA targeting Pcsk9 to the liver,46 which 
resulted in a high-rate of NHEJ-derived indels and significant 
reductions in circulating PCSK9 and plasma cholesterol. 
A subsequent study by Ran et al. used AAV to deliver 
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Staphylococcus aureus (Sa) Cas9 and a gRNA targeting 
Pcsk9.47 The authors achieved sustained reductions of PCSK9 
protein and plasma cholesterol with the advantage of using a 
clinically relevant AAV vector for delivery. Jarrett et al. showed 
that AAV delivery of guide RNAs to the Cas9-transgenic mice 
could efficiently disrupt the Ldlr and Apob genes.48 Liver-
directed editing of Ldlr resulted in severe hypercholesterolemia 
and atherosclerosis that could be rescued with concomitant 
deletion of Apob. However, CRISPR-mediated deletion of 
Apob produced a microvesicular steatosis, highlighting the 
risk of inhibiting VLDL secretion from the liver as a therapeutic 
strategy. In follow-up work, the authors generated an all-in-one 
vector to disrupt the Ldlr gene using the SaCas9 nuclease.49 
They showed that a single injection of AAV-CRISPR could 
produce severe hypercholesterolemia and atherosclerosis 
that was comparable to AAV-PCSK9 overexpression. These 
studies show that AAV delivery of CRISPR/Cas9 is an 
attractive alternative to RNA silencing for loss-of-function 
studies. Preexisting immunity to SpCas9 has recently been 
found in humans,50 and it is likely that this will also be the 
case for SaCas9. Therefore, the targeting specificity as well 
as immune responses to these bacterially derived nucleases 
will both be important considerations for therapeutic genome 
editing applications. Recently, the CRISPR/Cas9 system has 
been modified by adding a cytosine deaminase domain to 
catalytically inactive Cas9. This “dead” Cas9 becomes a base 
editor that can catalyze deamination of cytosine to uracil without 
generating DSB.51 Uracil is ultimately converted into thymine, 
thus enabling either the correction of specific mutations or the 
generation of premature stop codons. Chadwick et al. used 
adenoviral vectors encoding base editor 3 (BE3) and a gRNA 
targeting Angptl3 to introduce loss-of-function mutations into 
Angptl3 genes in the liver.52 The authors reported a 35% base 
editing efficiency of Angptl3, resulting in significant lowering 
of plasma ANGPLT3, TG, and cholesterol levels. Recently, 
base editing has been efficiently used for performing in utero 
gene editing of the liver, where the tyrosine catabolic pathway 
was used to confer a selective advantage to base-edited 
hepatocytes.53 Base editing is innovative because it could allow 
precise repair of genes in both dividing and nondividing cells, 
and it avoids potential genotoxicity and insertional mutagenesis 
that may occur with DSB by CRISPR/Cas9. However, all base 
editing systems are very large and present significant delivery 
challenges using AAV vectors. In addition, off-target base 
editing could in theory be gRNA-independent and therefore 
more difficult to predict and detect.

In principle, almost any gene that is a candidate for inhibition 
by RNA silencing could also be therapeutically targeted for 
permanent deletion with CRISPR/Cas9 or base editing. More 
precise repair of disease-causing lipid genes must contend 
with the requirement of active cell division for homology 

directed repair, which is a major issue for post-mitotic tissues 
such as liver. In addition, there are numerous challenges to be 
addressed with regard to delivery, editing efficiency, specificity 
of genome editing, unwanted side effects of genome editing, 
and persistent expression of the editing enzymes themselves. 
Nonetheless, the concept of permanently correcting lipid 
disorders by modifying the patient's own DNA is inherently 
exciting and will undoubtedly usher in a new era of precision 
medicine.

CONCLUSIONS

Gene transfer technologies are a critical component of lipid 
research in model organisms (Table 1). Adeno-associated viral 
vectors are a well-established tool for overexpressing genes, 
particularly in the liver, in order to study lipid metabolism and 
physiology. RNA knockdown with ASOs and siRNA has been 
useful for somatic knockdown of genes in the liver, in many 
cases bypassing the need for new knockout animals. The 
emerging field of somatic genome editing with CRISPR/Cas9 
provides a useful alternative to RNA knockdown approaches 
for loss-of-function studies. In addition, these tools are not 
proprietary and should be accessible to most laboratories 
competent in basic molecular biology techniques. These same 
technologies could be harnessed for gene therapy of lipid 
disorders. Some gene therapy products have already been 
approved for clinical use, such as Glybera for the treatment 
of LPL deficiency and Mipomersen for HoFH. Other products 
in clinical development are showing promising efficacy and 
tolerability in patients. However, the withdrawal of Glybera and 
the potential hepatic side effects of mipomersen encourage 
further optimization of gene therapy products with regard to 
efficiency and safety as well as consideration of biological 
mechanisms.

Although very promising, the long-term efficacy and safety of 
AAV gene therapy is still being established in humans. There 
are additional concerns regarding off-target effects of siRNA, 
ASOs, and CRISPR/Cas9, which has a target specificity based 
on Watson-Crick base pairing. Improvements in targeting 
design and off-target prediction, as well as the development 
of more sensitive sequencing technologies, will help improve 
the precision of these gene therapy products. Gene transfer 
technologies have already made invaluable contributions to 
our understanding of lipid metabolism and physiology. Despite 
several important challenges, gene therapy represents one of 
the most promising therapeutic approaches for correction of 
lipid disorders and CVD risk reduction.
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APPROACH TECHNOLOGY STRENGTHS WEAKNESSES
POTENTIAL 
THERAPEUTIC 
TARGETS

Overexpression AAV Safe for use in humans

Nonreplicating

Low risk of insertional mutagenesis

Noncytotoxic, modest immune response

Efficient transduction of dividing and 
nondividing cells

Strong and sustained transgene 
expression for months to years

Limited packaging capacity ∼4.9 kb

Artificial expression cassettes do not 
preserve endogenous regulation

High frequency of neutralizing antibodies 
to AAV capsids in humans

T-cell responses to capsid managed with 
immunosuppression

Pursued 
LPL 
LDLR

Possible 
LCAT 
APOE 
APOC2 
APOA1 
LIPA 
LIPC 
LDLRAP1 
GPIHBP1

Knockdown ASOs Efficient knockdown by RNAse H 
recruitment or translation blocking

Splicing modulation by targeting pre-
mRNA

Chemically modified for improved liver 
uptake

Efficient long-term silencing with weekly 
or biweekly administration

Subcutaneous injection

Chemical modifications needed to increase 
nuclease resistance and half-life

Possibility of sequence-related off-targets

Potential class effects depending on 
modifications

Mild skin reactions

Pursued 
APOB 
APOC3 
ANGPTL3 
LPA

Possible 
PCSK9

siRNA Efficient knockdown by RNAi machinery

Long-term silencing can be achieved

Chemically modified for direct liver uptake

Can also be effective at lower doses via 
lipid nanoparticle delivery

Possibility of sequence-related off-targets

Potential class effects depending on 
modifications

Some formulations require intravenous 
injection

Pursued 
PCSK9

Possible 
APOB 
APOC3 
ANGPTL3 
LPA

Genome editing CRISPR/Cas9 Ease of design and customization

High NHEJ-mediated editing efficiency

Multiplex genome editing capacity

Correct gene dosage

Preservation of regulatory elements

One-time treatment

Permanent correction to patient's own DNA

Potential off-target activity that requires 
careful testing

Potential unintended consequences at the 
DSB site (i.e., large insertions/deletions)

Low efficiency of HDR-mediated gene 
correction (restricted to dividing cells)

Potential immune response against Cas9-
expressing cells

Possible 
APOB 
APOC3 
ANGPTL3 
PCSK9 
LPA

Table 1. 
Summary of gene transfer technologies. AAV: adeno-associated virus; ASO: antisense oligonucleotides; siRNAs: small interfering RNAs; CRISPR/Cas9: 
Clustered Regularly Interspaced Short Palindromic Repeats; NHEJ: nonhomologous end-joining
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