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1  | INTRODUC TION

Huntington’s disease (HD) is an autosomal dominant neurodegenera-
tive disorder and is characterized by motor impairment and cognitive 
and psychiatric symptoms.1,2 Currently, only symptomatic drugs are 
available to cure HD. Tetrabenazine was approved by FDA in 2008 
for the treatment of choreic movements in HD. Other symptoms, 
such as hypokinesia and rigidity and/or depressive and behavioral 
defects, are usually treated with antiparkinson, antidepressant, and 
antipsycotic drugs.3-7

The neuropathological hallmark of HD is the degeneration of stri-
atum. However, several studies have shown repercussions on other 
parts of the brain, such as cerebral cortex, globus pallidus, thalamus, 
substantia nigra, and cerebellum. Moreover, not all the striatal neu-
rons are affected in the same way: While aspiny neurons (cholinergic 
interneurons marked with somatostatin, neuropeptide y) are spared, 
medium spiny neurons (MSNs) undergo a massive degeneration that 

begins at the early stages of the disease. MSNs are divided into two 
different subtypes: enkephalin-containing neurons project to the 
external segment of globus pallidus (GPe) (indirect pathway) and 
substance P neurons projecting to internal segment of globus palli-
dus (GPi) (direct pathway). Neurons of the indirect pathway are more 
vulnerable to HD degeneration.8-12

Many mechanisms are involved in HD neurodegeneration and 
include both loss and gain of function mutated huntingtin–poly-
glutamine aggregates formation of mutant protein, alteration of 
axonal transport and energy metabolism, oxidative stress, ex-
citotoxicity, impairment of synaptic signals, and transcriptional 
dysregulation.13 In particular, it is known that transcriptional dys-
regulation plays a major role in HD, since mutated huntingtin al-
ters the cAMP response element-binding protein (CREB) and its 
related transcriptional action.14-18 Brain-derived neurotrophic 
factor (BDNF) gene transcription is regulated by CREB,19 and 
its expression is stimulated by huntingtin that lost this function 
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when mutated.20,21 Several studies have shown a downregulation 
of BDNF levels in cellular and animal models,19,21-23 as well as in 
postmortem brain of HD patients.21,24

Thus, strategies aimed at increasing CREB transcription—and, 
consequently, the expression of BDNF—have neuroprotective ef-
fects in HD animals.25-27 CREB activation is mediated by a cAMP-
dependent protein kinase (PKA). The balance of intracellular cAMP/
cGMP levels, thus, represents an important aspect in the regulation 
of neuronal processes.

In light of this, PDEs and their inhibitors can play an important 
role in a therapeutic scenario for HD. In fact, PDEs are enzymes 
that catabolize cAMP and/or cGMP in the cell. Thus, their inhibition 
could be beneficial in the neuronal degeneration in the central ner-
vous system (CNS).

In this review, we will discuss the inhibition of PDEs and its neu-
roprotective action in HD by upregulation of the cyclic nucleotide 
signaling.

2  | MOLECUL AR MECHANISM OF PDES 
FUNC TION

Phosphodiesterases (PDEs) are fundamental enzymes that belong 
to intracellular signal transduction cascade, hydrolyzing cyclic nu-
cleotides cAMP, and/or cGMP. PDEs are divided into 11 families 
and variants, encoded by 21 genes. Moreover, they are classified 
as cAMP (PDEs 4,7,8), cGMP (PDEs 5,6,9) or double specific PDEs 
(PDEs 1,2,3,10,11).28,29

Cyclic nucleotides are second messengers in the signal transduc-
tion process and synaptic transmission in dopaminergic, noradren-
ergic and glutamatergic systems in neurons.30-33 cAMP and cGMP 
derives, respectively, from ATP and GTP by the reaction of adenylyl 
(AC) and guanylyl cyclase (GC). In particular, the cellular mechanism 
involved is the following: the binding of hormones, neurotransmit-
ters, chemokines, autocrine, and paracrine receptor factors to GPCR 
receptors (G protein-coupled receptors) activates the heterotri-
meric G proteins, consisting of the three subunits (alpha, beta and 
gamma).34,35 In fact, the trans-membrane adenylated cyclic (tAC), 
activated by the stimulatory G protein (Gs) and inhibited by the in-
hibitory G protein (Gi), produces 3′,5′-cyclic adenosine monophos-
phate (cAMP) from ATP; however, it is also synthesized in the brain 
by soluble adenylate cyclase (AC), whose production is stimulated 
by bicarbonate (HCO3) and calcium in neuronal cells and in glia. At 
this point, cyclic AMP stimulates the protein kinase A, the exchange 
factors directly activated by cAMP 1 (EPAC1 and EPAC2), and/or 
the cyclic nucleotides gated channels (CNGs). In the case of the pro-
duction of 3′,5′-cyclic guanosine monophosphate (cGMP), however, 
nitrogen monoxide (NO) activates soluble GC (sGC), whereas par-
ticulate guanylyl cyclase (pGC) is activated through binding of na-
triuretic peptides (NPs) to coupled receptors. The cGMP, produced 
from the GTP, will in turn activate the protein kinase G and CNGs. 
Formation of both cAMP and cGMP involves activation of CREB 
by phosphorylation, generating the transcription of several genes. 

As previously mentioned, both cAMP and cGMP are neutralized 
through the hydrolysis performed by phosphodiesterases.36-42

3  | PDES IN NEURODEGENER ATIVE 
DISORDERS

Many cellular processes are impaired in neurodegenerative disor-
ders, as an imbalance of cyclic nucleotides with consequent altera-
tion of PDEs functions and neuronal survival.43 Cyclic nucleotides 
can be considered a central player in many cellular processes, such as 
long-term potentiation, synaptic plasticity, memory, neurogenesis, 
neurotransmission, in which they regulate—by PKA (protein kinase 
A) and ERK (extracellular regulated kinase) signaling pathway—many 
proteins and their transcription and translation.44,45 As mentioned 
above, CREB is an important target of cAMP and cGMP.46,47 CREB 
has a pivotal role in neuronal survival and plasticity, and one of its 
target gene is BDNF, a key growth factor for the striatum. BDNF 
is a neurotrophin involved in synaptic plasticity, neuronal survival, 
and differentiation. It is known that BDNF expression is altered in 
neurodegenerative diseases, and a reduction in its levels occurs in 
people affected by Alzheimer’s disease, Parkinson’s disease, and 
Huntington’s disease. Particularly in HD, BDNF shows a dysregula-
tion in cellular transport mechanisms, and in transcription and post-
synaptic signaling. Moreover, only in HD, BDNF levels are linked to 
huntingtin mutation. In fact, wild-type huntingtin has a stimulating 
effect on BDNF expression. Consequently, a reduction in BDNF pro-
tein level occurs in the striatum.21,22,48,49 PDEs are largely diffused 
in neuronal cells, and thanks to modulating cAMP/cGMP content, 
they have attracted the attention of neuroscientists as possible key 
molecules in the battle against neurodegenerative diseases.50-53 
Furthermore, a bulk of data point out the role of PDEs in dopaminer-
gic pathways. Thus, their inhibition seems to be a useful strategy to 
fight diseases such as Alzheimer’s disease, Parkinson’s disease, HD, 
depressive and cognition disorders.54

4  | PHOSPHODIESTER A SES IN 
DOPAMINERGIC PATHWAYS

As mentioned previously, the dopaminergic system is altered in 
neurodegenerative and neuropsychiatric diseases, and among 
these also in Huntington’s disease. These diseases have in common 
the cortico-striato-thalamic systems, which work in a synergistic 
and complex way,55-59 and in which the alteration of the balance 
involves the appearance of motor, cognitive, and behavioral dys-
functions typical of these disorders. Dopamine appears to be the 
modulator of these circuits both in the frontal cortex and in the 
striatum, regions in which dopamine receptors are strongly dis-
tributed.57,60,61 In fact, as it is well known, some of these diseases, 
such as PD, use dopaminergic therapy to fight its symptoms, al-
though it subsequently involves various side effects. Dopamine, 
originating from the pars compacta of the substantia nigra or from 
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the VTA, is bound to the D1 receptors on the MSNs neurons of the 
direct pathway activating the stimulatory (Golf, Gs) and stimulat-
ing the production of cAMP, or to the D2 receptors of the indirect 
pathway that bind to the inhibitory G protein (Gi) that inhibits the 
production of cAMP.57,62-66 This information therefore establishes 
the central role played by dopamine in the regulation of psycho-
motor mechanisms. As mentioned above, the action of dopamine 
occurs through the signal transduction mechanism operated by 
the cAMP/PKA system and is also controlled by phosphodiester-
ases.67 In the striatum, the regulation of cAMP and cGMP turnover 
plays a fundamental role because of their inhibitory and excita-
tory effects of the nigro-striated-pallid circuits, mentioned before, 
in neurons. In the striatum are expressed many phosphodiester-
ase isoforms, which have various localizations and functions in-
fluencing synaptic plasticity and excitability of the membrane.68 
Furthermore, the activation of the signal transduction mechanism 
of cAMP and cGMP, as mentioned, involves the activation of a se-
ries of downstream proteins, such as PKA and PKG, respectively, 
which in turn activates other modulators of neuronal excitability 
as ion channels and phosphatases. For example, in the striatum, 
their activation involves the phosphorylation of DARPP-32, which 
plays a central role in the regulation of dopamine and its action on 
the GABAergic and glutamminergic pathway. The phosphorylation 
of DARPP-32 involves the activation of its inhibitory phosphatase 
activity of PP1, which is inactivated and makes PKA unable to 
stimulate other substrates such as CREB.30,69-71 All this informa-
tion highlights the importance of the PKA/PKG pathway in the 
execution of complex motor mechanisms through the regulation 
of striatal synaptic transmission.72,73 In fact, MSNs, striatal projec-
tion neurons, have high levels of ACs and GCs, whose activation is 
regulated by various neurotransmitters (eg, dopamine, 5HT, neu-
ropeptide Y, adenosine, glutamate) that act through GPCRs and 
NO synthesis stimulation, respectively. The different isoforms of 
PDEs are highly expressed in the striatum.30,74,75 The inhibition of 
phosphodiesterases involves a regulation of the cAMP/PKA sig-
nal transduction mechanism, resulting in the stimulation of dopa-
mine synthesis at the dopaminergic terminal level, the inhibition of 

dopamine signal in the D2 receptors in striato-pallidal neurons, and 
stimulation of dopamine D1 receptors in striatonigral neurons.67 
In fact, numerous studies have shown that, under physiological 
conditions, compounds that activate the production of cAMP and 
cGMP in the MSNs (such as the aforementioned PDEs inhibitors 
or cyclase activators) positively regulate cortico-striatal transmis-
sion. In the opposite case, when drugs, such as cyclase inhibitors, 
decrease the levels of these species in neuronal cells, there is a 
reduction in synaptic activity.76-79 All these considerations lead 
to the hypothesis of the central role played by AC-cAMP-PKA 
mechanism in MSNs, enhancing the activation of AMPA and 
NMDA receptors during cortico-striatal transmission. As men-
tioned previously, the excitatory effect of NMDA receptors is due 
to dopamine binding to D1 receptors, with activation of the AC-
cAMP-PKA signal transduction system. On the contrary, binding 
to D2 receptors inhibits the cascades of the AC-cAMP-PKA sig-
nal.80-85 As mentioned above, these mechanisms, widely described 
so far, are altered in neurodegenerative and neuropsychiatric dis-
eases, and therefore also in Huntington’s disease. In HD, the path-
ological mechanism of the disease is the neuronal death of striatal 
MSNs neurons, and in particular of the striatal cells of the indirect 
pathway. The death of these neurons appears at least in part due 
to the overexpression of mutant huntingtin, although the under-
lying mechanism is not yet clear.86 Various studies, conducted in 
vitro and in vivo (using the different HD animal models available) 
but also in patients with HD, have highlighted the reduced level of 
expression of cAMP, CREB, and nNOS mRNA.47,87-89 These data 
underline the alteration of the cAMP/cGMP mechanism and of the 
PDE signals. These reports confirm what was said previously: the 
activity of phosphodiesterase inhibitors which increase the levels 
of cyclic nucleotides in striatal neurons seems to regulate the stri-
atal cortical transmission in a positive way.68 Moreover, it is known 
that dopamine undergoes changes in the levels of expression and 
release in the course of the HD. Dopamine has a biphasic modula-
tion in the striatum during the course of HD disease. In particular, 
it seems that in the initial stages of the disease there is an increase 
in dopamine neurotransmission which involves hyperkinesia in the 

TABLE  1 The principal phosphodiesterases in HD and their relative inhibitors

Phosphodiesterase Substrate Isoforms Distribution Modulation Inhibitors

PDE1 cAMP/cGMP PDE1A 
PDE1B 
PDE1C

Cortex, Hippocampus, 
Striatum

Ca2+/Calmodulin Vinpocetine

PDE4 cAMP PDE4A 
PDE4B 
PDE4D

Cortex, Hippocampus, 
Striatum

Phosphorylation Rolipram

PDE5 cGMP PDE5A Spinal cord, Cerebellum cAMP/Phosphorylation Sildenafil, 
Vardenafil, 
Tadalafil,

PDE10 cAMP/cGMP PDE10A Striatum cAMP/Phosphorylation TP 10 
TAK-063 
PF-0254920

PDE, Phosphodiesterase.
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movement. On the contrary, in the late stages of the pathology, 
there is a reduction in dopamine neurotransmission with the con-
sequent appearance of hypokinesia. Various studies have also ob-
served the loss of dopaminergic innervation and a reduction in TH 
+ neurons in the striatum of postmortem brains of HD patients.90 
These observations were confirmed in PET studies conducted 
both on patients with overt disease and on patients with the modi-
fied gene but who still had not shown the typical symptoms of 
the disease.91,92 These data have been confirmed in animal mod-
els.93-95 Furthermore, a reduction in dopamine D1 and D2 receptor 
levels was also evidenced.96

5  | PDES IN HUNTINGTON’S DISE A SE

In the following section, we examine the different PDEs that play a 
role in HD pathology, with regard to their tissue distribution, and to 
the inhibitors that have been tested so far in clinical and preclinical 
trials in HD (Table 1).

As mentioned above, PDEs and their relative inhibitors could 
be considered a new therapeutic strategy in HD. In fact, various 
studies showed beneficial, neuroprotective effects of PDEs in-
hibitors in animal models of HD improving motor and cognitive 

problems but also increasing the expression of species such as 
pCREB and BDNF, altered, as mentioned, in Huntington’s disease 
97-100 (Figure 1).

5.1 | PDE 1

Phosphodiesterase 1 (PDE1) hydrolyzes both cAMP and cGMP. It 
has three isoforms (PDE1A, PDE1B, PDE1C), two of which (PDE1A 
and PDE1B) are expressed in striatum, as well as in cortex and hip-
pocampus as PDE1C. Particularly, PDE1B is ubiquitously distributed 
in spiny projection neurons and colocalizes with D1 receptors,101 
suggesting a possible involvement of this isoform in striatal neurode-
generation and dopaminergic signaling.102,103 PDE1 is not localized 
only in cytoplasm, but, for example, PDE1A is expressed in nucleus, 
which has a regulation activity of gene transcription.104 For its high 
expression in striatum and frontal cortex and its colocalization with 
D1 receptor, PDE1B could be considered a good target for phospho-
diesterase inhibitors in disorders characterized by cognitive com-
plications (schizophrenia) and motor dysfunction. Therefore, PDE1 
inhibition was studied in Parkinson’s disease. In fact, vinpocetine is a 
PDE1 inhibitor characterized by the capacity to reduce neuronal in-
flammation and the expression of TNF-α and IL-1β.105 In many stud-
ies, this compound has shown neuroprotective properties: regulate 

F IGURE  1 Figure shows the signaling cascade of cAMP (cGMP not shown in figure) in Huntington’s disease, where there is a reduction 
in cAMP levels and cAMP response element-binding protein (CREB) activity of transcription gene. Inhibition of phopshodiesterases seems 
to improve motor and cognitive deficits and restore cAMP and CREB normal expression. *Reduced levels of cAMP, CREB, and brain-derived 
neurotrophic factor (BDNF) levels. **Phosphodiesterase (PDEs) levels changes according to the different isoforms analyzed (please see main 
text)
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oxidative stress and enhance cognition in behavioral test and mem-
ory both in animal models and patients.106-108

Interestingly, PDE1A2 isoform was found to be preferentially 
distributed in cholinergic interneurons,103 suggesting a role in the 
survival of striatal interneurons in HD.

With the aim of shedding light on the role of PDEs in HD, vin-
pocetine treatment was shown to ameliorate impaired cognition 
and motor coordination in a 3-nitroproprionic acid-induced HD rat 
model, by reducing oxidative species, inflammation, and mitochon-
drial dysfunction.109

Recently, a new molecule capable of inhibiting PDE1 has been 
discovered. It has been tested in PHASE 1 of a clinical trial and has 
shown positive effects not only in Alzheimer’s disease and schizo-
phrenia, but also in movement disorders.110

Thus, inhibition of PDE1 could be seen as a potential drug tar-
get in HD treatment, although more precise studies are necessary in 
both clinical and preclinical research in HD.

5.2 | PDE 4

The best described PDEs are the PDE4 family, composed by four 
different enzymes (PDE4A, PDE4B, PDE4C, and PDE4D). With the 
exception of PDE4C, the other isoforms are ubiquitous in the cen-
tral nervous systems, and their distribution is particularly high in the 
striatum, cortex, and hippocampus.111

PDE4 has distinct functions in the dopaminergic system because 
of its different distribution to the various striatal neuronal subtypes. 
Moreover, indirect pathway presents a higher expression of PDE4B 
than direct pathway. Thus inhibition of PDE4 regulates and amelio-
rates cAMP/PKA signaling in the indirect pathway neurons, and at the 
same time, upregulating TH activation and dopamine formation.112

In fact, regulating cAMP balance PDE4 is essential in the PKA/
CREB/BDNF pathway, as demonstrated by the CREB-upregulating 
effects of PDE inhibition in depressive behavior.113,114

As mentioned earlier, CREB represents an important transcrip-
tion factor, as it is needed for adult neuronal survival and for mediat-
ing nuclear calcium-regulated gene transcription. CREB is activated 
by cAMP-dependent protein kinase (PKA) by the phosphorylation of 
its Ser133. Consequently, the activated form pCREB binds to CREs 
elements (cyclic AMP response elements) on the promoter region 
of DNA and promotes the transcription of various genes involved 
in memory and neuronal plasticity, such as BDNF.115-117 Our group 
previously confirmed the abnormalities in CREB transcription in the 
quinolinic-induced rat model of HD, describing a differential mod-
ulation of pCREB in the striatal neuronal population.46 Particularly, 
a decreased expression in the neurons most vulnerable to HD (me-
dium spiny neurons, parvalbumin and carletinin positive interneuron) 
was observed. On the other hand, cholinergic interneurons conserve 
adequate pCREB expression, and probably this event confers their 
neuroprotection.46

Interestingly, however, PDE4 in HD was described to be de-
creased in R6/2 mice, suggesting a compensatory mechanism due to 
a concurrent decrease in CREB activation, as seen above.118

The first generation of PDE4 inhibitor is rolipram. Previous stud-
ies of our group showed that this PDE4 inhibitor is able to increase 
the levels of pCREB (the activated form of CREB) in the medium spiny 
neurons, with neuroprotective effects both in HD rat model induced 
by quinolinic acid, and in R6/2 transgenic HD mice. These effects 
were demonstrated by the reduction of intranuclear formation of 
mutant huntingtin inclusions, sparing of striatal neurons, decrease in 
microglial activation, the delay of onset, and decrease in severity of 
neurological impairment and movement defects.119-121

In spite of the promising results obtained in animal models, these 
inhibitors have not proved to be successful in human clinical trials: 
rolipram have various side effects, such as nausea and emesis, 122 
and in multiple sclerosis MRI showed an increase in brain inflamma-
tory processes measured by brain lesions.123

Thus, recently, the new purpose of the research will be to 
study new inhibitors that do not have the aforementioned side ef-
fects.124,125 The last clinical study in HD is represented by the PDE4 
inhibitor GSK356278 (GlaxoSmithKline) that has shown good toler-
ability in patients although the improvement in motor and cognitive 
symptoms is not clear.66

5.3 | PDE 5

PDE 5 is specific to cGMP and is abundant in striatum, cortex, and 
hippocampus.126

Inhibition of these phosphodiesterases showed positive effects 
in rats as far as it concerns memory amelioration,127,128 synaptic 
plasticity,129 and depressive symptoms.130

Sildenafil, known primarily for its use in the erectile dysfunction 
and pulmonary arterial hypertension due to its vasodilator effects, 
also showed to exert a neuroprotective effect in various animal mod-
els of disease.126,131 Indeed, Puerta et al132 demonstrated that silde-
nafil and vardenafil ameliorate neurological impairment, decrease 
death of medium spiny neurons, and upregulate pCREB and BDNF 
expression in a rat model of HD induced by 3 nitroproprionic acid. 
This confirms the importance of cGMP pathway in HD pathology, 
suggesting PDE5 inhibitors as a possible therapeutic strategy in HD.

5.4 | PDE 10

Phosphodiesterase 10 is an enzyme with a double specificity for 
cAMP and cGMP, characterized by its high level of expression in 
striatum, nucleus accumbens, and olfactory tubercle. PDE10A is 
also distributed in hippocampus, thalamus, cerebellum, and spinal 
cord.133-136 PDE10 expression in the caudate portion of the basal 
ganglia suggests a role of this enzyme in striatonigral and striato-
pallidal pathways.137 Xie et al137 described PDE10A localization only 
in medium spiny neurons, whereas it was not expressed in interneu-
rons. Because of such peculiar expression in medium spiny neurons 
(MSNs), PDE10A involvement was studied in dopamine signaling. 
Many studies showed that inhibition of PDE10A involves the acti-
vation of D1-direct and D2-indirect pathway.138-141 In 2008, Nishi 
et al142 showed the effects of papaverine, a PDE10A inhibitor, in 
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D1-DARPP-32-FLAG/D2 DARPP-32-Myc mice and demonstrated 
that PDE10A controls cAMP/PKA pathway as a dopamine D2 an-
tagonist, activating the indirect pathway.

However, our group also found PDE10A protein expressed in in-
terneurons, with a nuclear distribution, suggesting a specific role of 
the PDEs determined by their distribution.143-145 Studies described 
a decrease in PDE10A mRNA expression in striatum of R6/2 mice 
and in brain samples of HD affected people118; also, low cAMP ex-
pression was recorded in the striatum of HD patients and in STHdh 
Q111 cell HD model.88,146 It is possible that the latter mechanism 
determines the decrease in PDE10A expression as a compensatory 
mechanism.147 Interestingly, in contrast with the findings by Hebb 
et al 2004,118 our group found a dramatic increase of PDE10A in 
MSN of R6/2 mice compared to WT mice. This pattern is repeated 
in all types of interneurons (parvalbuminergic, somatostatinergic, 
calretininergic), except in cholinergic ones where PDE10A showed 
low expression levels during the disease progression.143 On the 
basis of these considerations, our group has previously tested the 
PDE10A inhibitor TP10 (Pfizer) in rats and R62 mice, obtaining a 
reduction in striatal neuronal loss and an increase in life span. This 
was associated with the upregulation of pCREB and BDNF protein 
expression.148,149 Those results were later confirmed by the study by 
Beaumont et al.150 obtained by using PDE10 inhibitors in the Q175 
mice that show activation of CREB pathway and of MAP kinase sig-
naling cascades.

Recently, a novel PDE10A inhibitor 1-[2-fluoro-4-(1H-pyrazol-1yl)
phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-
one (TAK-063) has been tested in R6/2 mouse HD model. This 
new compound produces an activation of both indirect and direct 
pathway MSNs. In this study, TAK-063 showed beneficial effects in 
mice with amelioration of behavioral and neurological impairment, 
reduction in neurons loss in striatum, and upregulation of BDNF 
expression.151

The effects of PDE10A inhibition are still under investigation. A 
Phase II clinical trial has just been concluded: PF-0254920 drug was 
used to taste safety and tolerability in HD patients. Unfortunately, 
with the data available so far, the drug does not ameliorate move-
ment and/or behavioral problems.152

6  | CONCLUSIONS

This review highlighted the important role that phosphodiesterases 
plays in many cellular processes under physiological and/or patho-
logical conditions. Therefore, we have described in more detail the 
phosphodiesterases expressed in the striatum and related brain 
regions, the main target of the Huntington pathology, and more 
involved in the regulation of the dopaminergic system, universally 
recognized as altered in the aforesaid pathology. All the studies pre-
sented here suggest the use of PDE inhibitors in HD, in order to po-
tentiate cAMP signaling in the striatum.

As mentioned elsewhere, in recent years the therapeutic role of 
phosphodiesterase regulation has emerged through their inhibition. 

Without a doubt, the most known drug among antiphosphodiester-
ase drugs is viagra, which inhibits phosphodiestrase 5 and improves 
erectile dysfunction. Few other drugs capable of inhibition phospho-
diestrase are used in clinical settings: for example, in the dysregu-
lation of various diseases such as pulmonary hypertension, acute 
refractory cardiac failure, intermittent claudication, and chronic ob-
structive pulmonary disease. Moreover, the importance of PDEs in-
hibition is demonstrated by the NIH clinical trials Web site.153 In fact, 
some of FDA-approved PDE drugs in Phase Trials are being tested in 
AD, HD, and/or other neurodegenerative disease patients.

Therefore, in the last few years, clinical neuroscientists have 
shifted their attention to the development of new candidates for 
PDE inhibition, developing isoform selective inhibitors.
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