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Abstract
Understanding the neural substrates of depression is crucial for diagnosis and treat-
ment. Here, we review recent studies of functional and effective connectivity in de-
pression, in terms of functional integration in the brain. Findings from these studies, 
including our own, point to the involvement of at least four networks in patients with 
depression. Elevated connectivity of a ventral limbic affective network appears to be 
associated with excessive negative mood (dysphoria) in the patients; decreased con-
nectivity of a frontal-striatal reward network has been suggested to account for loss 
of interest, motivation, and pleasure (anhedonia); enhanced default mode network 
connectivity seems to be associated with depressive rumination; and diminished con-
nectivity of a dorsal cognitive control network is thought to underlie cognitive defi-
cits especially ineffective top-down control of negative thoughts and emotions in 
depressed patients. Moreover, the restoration of connectivity of these networks—
and corresponding symptom improvement—following antidepressant treatment (in-
cluding medication, psychotherapy, and brain stimulation techniques) serves as 
evidence for the crucial role of these networks in the pathophysiology of 
depression.
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1  | INTRODUC TION

Depression is one of the most common psychiatric disorders, with 
a lifetime prevalence of up to 20% and 30% in men and women, re-
spectively.1 A key step toward developing effective diagnosis and 
intervention techniques is to uncover the neural substrates of this 
disorder. For example, which brain systems are associated with af-
fective and cognitive dysfunction in depression? How do distributed 
regions interact to produce the symptoms of depression? What is the 
neural mechanism underlying remission following antidepressant 
treatment? Why is the relapse rate so high in remitted depressed 
patients? Advances in neuroimaging techniques and brain connec-
tivity analysis are now making it possible to address these questions, 
thereby tackling one of the greatest mysteries of the human mind.

A growing literature supports the notion that the symptoms of 
depression are associated with widespread network dysconnectiv-
ity rather than the aberrant responses of individual brain regions. 
Here, we review recent advances in functional magnetic resonance 
imaging (fMRI) studies that have tried to elucidate the neurobiologi-
cal underpinnings of depression, from the perspective of functional 
integration. Depression—frequently seen as withdrawal from the 
prosocial environment—is characterized by aberrant emotional and 
affective processing, excessive self-focus, and diminished cognitive 
control. To this end, we pay special attention to four core networks 
that have been implicated in these processes: the affective network 
(AN), reward network (RN), default mode network (DMN), and cogni-
tive control network (CCN), respectively. First, we briefly summarize 

brain connectivity analysis methods. Detailed descriptions of the 
different methods we refer to can be found in Reference (2-9). We 
then review findings from recent fMRI studies that have investigated 
abnormalities in brain connectivity in depression. This is followed 
by a short discussion on how brain connectivity studies can help 
with the treatment of the disease. Finally, we suggest that future 
studies should elucidate the structural and metabolic substrates of 
depression-related dysconnectivity and try to develop an extended 
model of depression for improved diagnosis, treatment, and preven-
tion of the disorder.

2  | A BRIEF SUMMARY OF BR AIN 
CONNEC TIVIT Y ANALYSIS METHODS

Characterizations of brain connectivity include structural connec-
tivity, functional connectivity, and effective connectivity. For the 
most part, structural connectivity analysis relies on techniques such 
as diffusion magnetic resonance imaging (dMRI) and tractography, 
which report the integrity of white matter fiber tracts. The remain-
ing distinction between functional and effective connectivity is 
important to understand.2-4 The former refers to (undirected) cor-
relations between the activity of two brain regions, while the latter 
refers to (directed and usually reciprocal) causal influences among 
brain regions within a network (Figure 1).

Specifically, functional connectivity corresponds to the tempo-
ral correlations (or statistical dependencies) between the activity 

F IGURE  1 Characterization of different approaches to examine brain connectivity. Experimental inputs usually enter into sensory cortex 
and cause changes in neuronal activity X1 in the region (R1). Activity in R1 will then be propagated to a second region R2 which is connected 
to R1 and causes changes in X2. The neuronal activity X1 and X2 are hidden neuronal states because they cannot be observed directly using 
fMRI. Instead, the BOLD signals recorded in fMRI images are a convolution of the neuronal states with a hemodynamic function. Functional 
connectivity analyses simply measure the undirected temporal correlations (or statistical dependencies) among observed BOLD signals of 
different brain regions. Granger causality modeling (GCM) tries to infer directed connectivity using autoregressive models. Strictly speaking, 
GCM measures directed functional connectivity because it operates on observed hemodynamic (BOLD) responses. In contrast, dynamic 
causal modeling (DCM) estimates the influence that the neural activity of one brain region exerts on another. FC: functional connectivity; 
EC: effective connectivity
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of different brain regions.3,4 It is a simple characterization of brain 
connectivity and can be measured directly from fMRI data using dif-
ferent methods. The easiest way to measure functional connectivity 
is to use a seed-based method. Usually, one extracts the mean time 
series of a region of interest (ROI) and computes the correlation be-
tween the time series of the ROI and all other voxels (or regions) 
in the brain. The ensuing (thresholded) correlation map represents 
functional connectivity between the ROI and all other voxels (or 
regions). Lately, researchers have started to map whole-brain func-
tional connectivity using fMRI. Usually, the brain is segmented into 
many (about 100) regions according to a template (eg, the automated 
anatomical labeling atlas, AAL.10 Whole-brain functional connectiv-
ity can then be summarized with a correlation matrix. The topolog-
ical properties of the functionally connected networks can then be 
studied using graph theory approaches. Graphs are constructed to 
describe the brain networks with the nodes denoting brain regions 
and the edges denoting significant connections among these regions. 
Properties such as node degree, efficiency, clustering coefficient, 

path length, and modularity can be calculated and compared across 
different groups.11-13 Finally, independent component analysis (ICA) 
is widely used to derive coherent patterns or modes of activity from 
neuroimaging data that correspond to functionally connected brain 
networks. This sort of characterization decomposes the fMRI im-
ages of the whole brain into a series of spatially independent modes 
or networks.

Unlike functional connectivity, effective connectivity infers 
directed (ie, causal) interactions within a brain network. Effective 
connectivity is defined as the influence one neural system exerts 
on another.2,4 In the past decade, different approaches to measure 
effective connectivity such as psychophysiological interaction (PPI) 
analysis, structural equation modeling (SEM), Granger causality mod-
eling (GCM), and dynamic causal modeling (DCM) have been devel-
oped. GCM tries to infer directed connectivity from observed BOLD 
signals using autoregressive models.5 In contrast, DCM treats the 
brain as a dynamic system of (unobserved or hidden) neuronal states, 
which are driven by experimental inputs or endogenous fluctuations 

F IGURE  2 Dysconnectivity and depression. Four networks including the affective network (AN), reward network (RN), default 
mode network (DMN), and cognitive control network (CCN) have been mainly associated with the neural substrates of depression, with 
hyperconnectivity (marked in red) of the AN and DMN and attenuated connectivity (marked in green) of the RN and CCN observed in the 
patients. OFC: orbitofrontal cortex; INS: insula; AMY: amygdala; HIP: hippocampus; vACC: ventral anterior cingulate cortex; mPFC: medial 
prefrontal cortex; PCC: posterior cingulate cortex; PCUN: precuneus; ANG: Angular; DLPFC: dorsolateral prefrontal cortex; dACC: dorsal 
anterior cingulate cortex; PFC: prefrontal cortex; CAU: caudate; NA: nucleus accumbens. This figure was prepared with the BrainNet 
Viewer132
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to produce BOLD responses.6,7 DCM estimates neural interactions 
using state-space models based on (deterministic or random) differ-
ential equations. These equations describe neural dynamics and are 
supplemented with hemodynamic equations to transform regional 
neuronal activity into the observed BOLD response (Figure 1).6 Both 
empirical and simulated data suggest DCM may be more robust than 
GCM, when estimating directed connectivity.14,15

3  | A NET WORK MODEL OF MA JOR 
DEPRESSION

Major depressive disorder is characterized by prominent affective 
disruptions and cognitive impairments. Neuroimaging studies sug-
gested that these deficits may be associated with altered connec-
tivity of four brain networks (Figure 2): Elevated connectivity of a 
ventral limbic affective network appears to be associated with ex-
cessive negative feeling (dysphoria); decreased connectivity of a 
frontal-striatal reward network has been suggested to account for 
loss of interest, motivation, and pleasure (anhedonia); enhanced 
default mode network connectivity seems to be associated with 
depressive rumination; and diminished connectivity of a dorsal 
cognitive control network is thought to underlie cognitive deficits 
especially ineffective top-down control of negative thoughts and 
emotions in depressed patients. In this section, we examine these 
core networks affected in depression, focusing on the pattern of 
disruption within each—as related to the symptoms of depression.

3.1 | Elevated affective network connectivity and 
persistent sad mood

The orbitofrontal cortex (OFC), the affective division of the anterior 
cingulate cortex (ACC), and limbic regions including the amygdala, 
hippocampus, and insula form a ventral network which is also known 
as the brain’s affective network (AN).16,17 Crucially, the AN has been 
associated with processing and regulation of emotions. Emerging 
neuroimaging findings suggest an involvement of the AN in the 
pathophysiology of depression.18,19 Previous studies have found hy-
peractivation of the amygdala and subgenual ACC, associated with 
dysfunctional affective processing in depressed patients. Functional 
neuroimaging also points to aberrant connectivity within the AN 
(Figure 2, Table 1), which may underlie emotion dysregulation, a hall-
mark of depression.

Increased resting-state interactions between regions of the AN 
have been consistently reported in depression. The patients showed 
enhanced functional connectivity between the dorsal midinsula 
cortex and the amygdala, subgenual prefrontal cortex, and OFC20; 
between the subgenual ACC and dorsomedial frontal cortex16,21; 
between pregenual ACC and left dorsolateral frontal cortex21; and 
between lateral orbitofrontal cortex and the precuneus, angular 
gyrus, and temporal visual cortex,22 with connectivity strength pos-
itively correlated with illness severity.20,21,23 Notably, the strength 
of the amygdala-sgACC connectivity was positively correlated with 

negative affectivity, while an increase in this connection was asso-
ciated with the onset of depression.23 In addition, enhanced OFC 
connectivity with the precuneus and angular gyrus was also related 
to affectively negative sense of the self in the patients.22 Attempts 
have also been made to determine the directionality of the influ-
ences among these regions at rest. Granger causality analysis re-
vealed increased excitatory influences from hippocampus to ventral 
anterior cingulate cortex and reciprocal interactions between the 
medial prefrontal cortex and ventral anterior cingulate cortex in 
major depressive disorder (MDD).24

When presented with sad and happy faces, individuals with 
depression demonstrated an attentional bias for sad faces,25,26 
whereas healthy controls show a positive bias toward happy faces.26 
Related to these findings, an opposite pattern of limbic network 
connectivity was found during processing of emotional stimuli. 
Specifically, happy faces modulated bidirectional OFC-amygdala 
and OFC-fusiform gyrus connectivity in depressed subjects. The 
same pattern of modulation was observed when healthy controls 
viewed sad faces. Similarly, the connection from the fusiform gyrus 
to orbitofrontal cortex was modulated when healthy subjects were 
presented with happy faces and depressed patients were processing 
sad faces.27 Depressed patients also show increased memory sensi-
tivity for negative information associated with increased amygdala-
hippocampus and amygdala-caudate-putamen connectivity.28 
Admon et al29 found an increased susceptibility to negative stimuli in 
remitted patients compared with controls. The increases in cortisol 
and anxiety levels were higher in the remitted MDD individuals than 
the controls in a stress task. It is worth noting that elevated caudate-
amygdala and caudate-hippocampus connectivity during processing 
of negative stimuli was only seen in remitted subjects, but not the 
control group.29

3.2 | Attenuated frontal-striatal reward network 
connectivity and anhedonia

Symptoms such as loss of pleasure, interest, or motivation (anhedo-
nia) are also typical in depression. Evidence from neuroimaging stud-
ies suggests that anhedonia seen in the patients may be attributed 
to diminished interactions in the frontal-striatal reward network 
(Figure 2, Table 1). The frontal cortex and striatal regions including 
the caudate, putmen, and nucleus accumbens form a brain’s reward 
network. Interactions among regions in this network have been 
shown to be attenuated in patients with depression,22 with reduc-
tion in connectivity being in proportion to depression severity.30 
Interestingly, nodal efficiency of the right putamen’s resting-state 
functional connectivity network was associated with the course 
of depressive episodes—an important predictor of depressive re-
lapse.31 Recently, a study by Felger and colleagues further suggested 
that anhedonia and hypoconnectvity of the reward network may be 
caused by elevated inflammation, increased biomarkers of which 
were seen in depression.32

When exposed to positive stimuli, depressed patients demon-
strated reduced magnitude and duration of positive affect.33 The 
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inability to sustain positive affect has been shown to be associated 
with reduced frontostriatal connectivity.34 In addition, depressed 
individuals exhibited lower caudate-dACC connectivity than the 
controls in response to monetary gains.35 Win/loss anticipation was 
mediated through distinct mechanisms in diseased and healthy indi-
viduals, with bottom-up striatal-frontal connectivity seen in MDD 
and frontostriatal top-down connectivity observed in the controls.36 
Furthermore, aberrant activation and connectivity of the reward 
network have also been shown to be associated with depression-
related appetite loss/increase in the patients.37

3.3 | Hyperconnectivity of the default mode 
network and excessive self-focus

The third system involved in the neural substrates of depression is 
the task-negative default mode network (DMN) (Figure 2, Table 1). 
The DMN mainly encompasses the precuneus, posterior cingulate 
cortex (PCC), and medial prefrontal cortex (mPFC), as well as the in-
ferior parietal cortex.38,39 This network is known as a task-negative 
network as regions within this network generally demonstrate deac-
tivation during performance of cognitive tasks.39,40

Enhanced DMN connectivity is marked in depression. An early 
study conducted by Greicius et al41 reported elevated resting-state 
DMN connectivity in patients with depression. Their findings of 
increased DMN connectivity have been reproduced by several 
other studies and our analyses.16,42-44 In addition, Zhang et al45 re-
ported increased nodal centralities in DMN regions in the patients. 
Furthermore, depressed subjects also demonstrated enhanced DMN 
connectivity while being engaged in externally focused thought,46 in 
an emotion identification task,44 and during self-referential process-
ing.47 Elevated DMN functional connectivity thus appears to be a 
robust marker of MDD that is evident even in remitted,48 and recov-
ered state.49 Notably, a history of preschool depression in children 
may also affect the developmental trajectory of the DMN, with in-
creased PCC functional connectivity in the subgenual and anterior 
cingulate cortices detected in these individuals.50

The DMN is associated with self-referential processes,51,52 which 
are enhanced in patients with depression. Depressed individuals 
usually demonstrate maladaptive rumination—the process of repet-
itively and passively thinking about one’s negative feelings, possible 
causes, and consequences.48,53 Rumination, the content of which is 
typically negative, has been shown to predict the onset of depres-
sion, prolong the duration, exacerbate negative thinking, and impair 
problem-solving.53 Hyperconnectivity of the DMN may represent 
excessive self-referential processes and maladaptive rumination 
in the patients.42,48,54,55 In a study by Berman et al,42 resting-state 
functional connectivity, between the posterior cingulate and the 
subgenual cingulate, correlated positively with rumination scores 
both in depressed and healthy subjects. In addition, increase in DMN 
connectivity was seen in the MDD group from unconstrained resting 
states to induced-ruminative states.55 Accordingly, stronger DMN 
connectivity was associated with higher levels of rumination in de-
pression,54 which was also evident in remitted depressed patients.48

3.3.1 | DMN subnetworks in depression

Previous studies have also suggested that the DMN may consist of 
interacting subnetworks.56,57 Zhu et al54 reported elevated func-
tional connectivity in the anterior division of the DMN in MDD pa-
tients to be positively correlated with rumination score. Interestingly, 
they also found attenuated functional connectivity in the posterior 
division of the DMN in the patients to be negatively correlated with 
autobiographical memory scores. In our study, using group ICA to 
investigate resting-state functional connectivity in MDD, we found 
evidence for two dissociable subnetworks in the DMN: an anterior 
subnetwork which had the highest amplitude in the mPFC, and a 
posterior subnetwork, which had the highest amplitude in the pre-
cuneus.43 Unlike Zhu and colleagues, Sambataro et al58 found in-
creased functional connectivity within posterior, ventral, and core 
DMN subsystems in patients with MDD. They also reported altered 
interactions between DMN subsystems in patients.

3.4 | Diminished cognitive control network 
connectivity and impaired top-down control

In patients with depression, impaired emotion processing is often 
accompanied by cognitive impairments.59,60 These impairments can 
persist even after remission of affective symptoms. Related to these 
impairments, another brain network has been implicated in the 
pathophysiology of depression, the so-called cognitive control net-
work (CCN). This network mainly consists of functionally connected 
brain regions including the dorsolateral prefrontal cortex (DLPFC), 
the cognitive subdivision of ACC, and the parietal cortex.61-64 The 
CCN is thought to be an executive or control system, responsible 
for regulating thoughts, and actions in accordance with internal 
goals.65,66 Neuroimaging studies have identified coactivation of 
the CCN during performance of different cognitive tasks. A failure 
of effective cognitive control over emotional processing is one of 
the central characteristics of depression.67,68 Neuroimaging studies 
seeking to elucidate the neural substrates of depression therefore 
have identified prominent impairments of the CCN in depression 
(Figure 2, Table 1).

Dysconnectivity of regions involved in the CCN has been re-
ported in patients with depression during performance of tasks 
involving working memory,69 executive-control,70 and affective in-
terference,71 as well as during rest.16,72-74 However, the findings have 
been divergent. Sheline et al,16 using the bilateral DLPFC as a seed 
region, reported increased resting-state functional connectivity in 
the bilateral dorsomedial prefrontal cortex (DMPFC) in depressed 
subjects. Vasic et al69 observed increased functional connectivity in 
the left DLPFC during a working memory task in MDD. However, 
Stange et al75 reported attenuated CCN connectivity which was 
stable over time in remitted MDD. Aizenstein et al70 reported re-
duced DLPFC-dACC functional connectivity on an executive-control 
task in patients with late-life depression (LLD). Children with a pa-
rental history of depression are known to be at high risk to develop 
this disorder. In a recent study, Clasen and the colleagues reported 
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decreased resting-state functional connectivity within the CCN in 
depression-naive adolescent females with a parental history of de-
pression. In addition, severity of the parents’ depression was asso-
ciated with deficits in functional connectivity of the CCN in their 
children.76 Neuroimaging studies thus support a link between im-
pairments in the CCN and depression vulnerability even in healthy 
patients.

Evidence over the years suggests that abnormal top-down corti-
cal regulation of the limbic systems may also contribute to inefficient 
emotion regulation in depressed patients. In an early study, Anand 
and colleagues found that while regions in the affective network 
showed increased activation, functional connectivity between the 
ACC and limbic regions was decreased both at rest and during ex-
posure to different stimuli (neutral, positive, and negative pictures) 
in depressed subjects. This finding may reflect an ineffective regu-
latory effect of the ACC on the hyperactivation of the limbic system 
in the patients.77 Additionally, reduced functional connectivity be-
tween amygdala and the PFC was found in depressed subjects both 
at rest and in response to fearful faces.78,79 In a resting-state study 
of mood regulation in refractory and nonrefractory major depres-
sion, Lui et al80 found decreased functional connectivity in bilateral 
prefrontal-limbic-thalamic areas in both patient groups. Recently, 
Song et al81 also reported reduced resting-state frontal-subcortical 
connection. These findings appear to further support a poor top-
down emotional regulation view of depression.

Studies of directed functional and effective connectivity have 
further confirmed a diminished top-down cortical control of the lim-
bic systems in depressed patients. Using structural equation mod-
eling, Carballedo et al82 found lower bilateral effective connectivity 
from the amygdala to OFC in major depression. A recent study com-
pared activity and effective connectivity in postpartum healthy and 
depressed mothers, when subjects responded to negative emotional 
faces.83 Using Granger causality mapping, the authors studied the 
top-down regulation of the amygdala by the dorsomedial prefron-
tal cortex. They found a significant effective connection from the 
left dorsomedial prefrontal cortex to the left amygdala in healthy 
controls, but this connection was absent in depressed subjects.83 In 
a separate study using PPI analysis, Erk and colleagues observed re-
duced amygdala-DLPFC connectivity in depressed patients during 
active emotion regulation.84 However, a GCM study showed that 
only MDD subjects with a history of early life trauma (ELT) pre-
sented reduced mPFC-amygdala connectivity. In non-ELT exposed 
patients, mPFC inhibition of the amygdala was intact.85

4  | BR AIN CONNEC TIVIT Y AND 
TRE ATMENT OF DEPRESSION

In addition to providing a better understanding of the neural sub-
strates of depression, brain connectivity analyses have also helped 
with the treatment of the disease. fMRI studies have reported 
partially restored brain connectivity in keeping with improvement 
in depressive symptoms in the patients after treatment. Notably, 

pretreatment brain connectivity patterns were shown to be able 
to predict the outcomes of antidepressant treatment. Responders 
and nonresponders were characterized by distinct connectivity pat-
terns. Interestingly, although brain stimulation techniques adopted 
in the treatment of depression targeted a single brain region, the 
therapeutic effects seem to be mediated by the connections from 
the target to distributed regions or brain networks. Brain connectiv-
ity studies thus allow the identification of the optimal stimulation 
sites (Figure 3).

4.1 | Normalization of aberrant brain connectivity 
after antidepressant treatment

An important question of interest to researchers and psychiatrists 
is whether normalization of aberrant brain connectivity would ac-
company improvement in depressive symptoms after antidepressant 
treatment. Studies of depression have reported restored connectiv-
ity of the AN,19,86 RN,87,88 DMN,19,89-94 and CCN95 in the patients 
following antidepressant treatment. A variety of treatments have 
targeted the AN and RN in depression. Connectivity of the subcal-
losal cingulate cortex with limbic regions was reduced after elec-
troconvulsive therapy (ECT) treatment.86 Even administration of 
a single dose of ketamine (0.5 mg kg−1) resulted in increased neu-
ral responses and connectivity of the right caudate during posi-
tive emotion perception in patients with treatment-resistant major 
depressive disorder.88 In addition, enhancement of dopaminergic 
transmission in the reward network through amisulpride potentiated 
diminished corticostriatal connectivity,96 while treatment-induced 
increases in network connectivity were associated with gains in pos-
itive affect in depressed patients.94 Abnormal connectivity of the 
DMN has also been modulated by antidepressants and transcutane-
ous vagus nerve stimulation (tVNS).43,91 Given the central role of the 
CCN in the neurobiology of depression, its response to antidepres-
sant treatments has been studied frequently, revealing increased 
post-treatment ACC connectivity.97,98

4.2 | Prediction of treatment outcomes

The outcomes of antidepressant treatment vary largely among pa-
tients, thereby yielding responders, and nonresponders. Brain con-
nectivity patterns have been shown to be able to predict treatment 
outcomes with quite high sensitivity and specificity.99 Baseline de-
gree centrality of the posterior default mode network was associated 
with changes in depression severity after 2 weeks of medication.100 
Pretreatment connectivity of the OFC, insula, and RN has been 
shown to predict response to psychotherapy.101,102 Compared with 
responders, nonresponders of dorsomedial prefrontal repetitive 
transcranial magnetic stimulation (rTMS) were characterized by more 
severe pretreatment anhedonia symptoms and lower connectivity 
of the RN.103 Higher baseline sgACC connectivity was associated 
with greater TMS-induced clinical improvement.92,104 Furthermore, 
two resting-state networks centered in the dorsomedial prefrontal 
cortex and ACC have been found to predict the outcome of ECT in 
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treatment-resistant patients.99 In addition, low pretreatment CCN 
functional connectivity was associated with low remission rate and 
residual symptoms when patients with late-life depression were 
treated with escitalopram.73 Notably, it has been shown recently 
that resting-state functional connectivity of the subcallosal cingulate 
cortex with left anterior ventrolateral prefrontal cortex/insula, the 
dorsal midbrain, and the left ventromedial prefrontal cortex may be 
capable of guiding treatment choice. Specifically, positive summed 
connectivity scores for these three regions were associated with re-
mission to CBT, while negative summed connectivity was associated 
with better treatment outcomes to medication. These findings are 
of particular importance in the identification of the most effective 
treatment option that an individual patient is likely to benefit from.

4.3 | Identification of optimal stimulation sites

Brain stimulation techniques such as deep brain stimulation(DBS)
and TMS aim to normalize aberrant brain activity in depressed sub-
jects by applying electrical or magnetic stimulation to specific re-
gions. Such therapy alternatives have been shown to be effective in 
treatment-resistant depression.105 DBS initially targeted the sgACC 
to restore hyperactivity of this region observed in the patients, 
while the first applications of rTMS targeted the DLPFC which dem-
onstrated hypoactivity.106 However, the clinical efficacy of these 
traditional protocols still needs to be improved as the response and 
remission rates are relatively low. Attempts thus have been made to 
apply rTMS over targets beyond the DLPFC. New advances in neu-
roimaging studies of depression, MRI-guided rTMS, as well as the 
introduction of coils with the capacity to stimulate deep structures, 

have helped improve the identification of optimal stimulation sites. 
rTMS targeting other core regions whose connectivity has been 
shown to be disrupted in depression such as the DMPFC,103,107-109 
OFC,110,111 ACC,112 has demonstrated apparent therapeutic effec-
tiveness. Although commonly applied to single brain regions, the 
effects of DBS and TMS are mediated via distributed networks. 
Notably, the efficacy of the rTMS was associated with the connec-
tivity profile of the targets.103,104,113 Responders and nonresponders 
to DMPFC-rTMS had distinct connectivity patterns of the reward 
network,103 while DLPFC-rTMS targets that demonstrated stronger 
anti-correlation with subgenual cingulate cortex were found to be 
more effective than others.113 Neuroimaging studies thus not only 
provide important insights into our understanding of the patho-
physiology of depression, but also facilitate the identification of the 
optimal stimulation sites for the treatment of the disease.

5  | FUTURE STEPS

We review recent studies of functional and effective connectiv-
ity in depression. The findings above present an emerging pic-
ture of four aberrant networks in depression; namely, abnormal 
connectivity within the AN, RN, DMN, and CCN. However, the 
interactions between different networks may be disrupted as 
well.24,47,114,115 Recent meta-analysis studies have revealed in-
creased functional connectivity of the AN (subgenual prefron-
tal cortex)115 and the CCN114,115 with the DMN in MDD. In fact, 
Sheline et al16 found a bilateral region in the dorsomedial pre-
frontal cortex, which they termed the dorsal nexus, consistently 

F IGURE  3 Brain effects of antidepressant treatment. A large part of aberrant connections reported in the patients have been shown 
to be normalized after treatment with antidepressants, psychotherapy, repetitive transcranial magnetic stimulation (rTMS), deep brain 
stimulation (DBS), and electroconvulsive therapy (ECT). This figure was prepared with the BrainNet Viewer132
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showing increased functional connectivity with the AN, DMN, 
and CCN in depression. Later, Perrin et al95 reported reduced con-
nectivity of the dorsal nexus and an improvement in symptoms in 
depressed patients following treatment with ECT. There is further 
evidence showing that TMS targeting the DLPFC (a component of 
the CCN) modulated functional connectivity of the DMN.92 These 
findings suggest that depression may not only be associated with 
abnormal interactions between different brain regions within the 
same neural circuit, but also abnormal interactions between dis-
tributed brain networks. Future studies should aim to integrate 
these core networks and their contributions toward developing an 
extended model of depression for improved diagnosis, treatment, 
and prevention of the disorder.

Recent studies confirmed a structural basis for the altered 
functional integration seen in depression. Studies using dMRI 
have demonstrated disrupted white matter integrity and/or struc-
tural connectivity in the patients.116-120 In addition, topologi-
cal organization of white matter networks was also impaired in 
the patients.121,122 Future studies may need to further elucidate 
how changes in structural changes may relate to functional dy-
sconnectivity in widely distributed networks. Furthermore, the 
pathophysiology of dysfunctional integration or disconnection 
in depression may rest on a failure to contextualize interregional 
coupling; for example, aberrant neuromodulation of synaptic effi-
cacy may be an important etiological factor. One important can-
didate for this sort of pathophysiology is the neuromodulatory 
effect of neurotransmitters such as serotonin. Indeed, the imaging 
literature—using positron emission tomography and radio-ligand 
binding—points to an abnormality of 5HT neurotransmission, at 
the level of transporter availability, (5HT1-A) receptor binding, 
etc.123,124 Furthermore, secondary or complementary changes in 
metabotropic glutamate receptor function may be intimately in-
volved (or respond) to the synaptic pathophysiology that underlies 
functional disconnections. This is suggested by imaging studies 
that show, for example, reduced glutamate receptor 5 (mGluR5) 
density in major depression and response to antidepressant 
treatment.125,126

It is worth emphasizing that although the interactions among 
different brain regions have been demonstrated to fluctuate over 
time,127-130 the majority of functional and effective connectiv-
ity studies on depression have treated the brain as a station-
ary system and calculated the averaged functional or effective 
connectivity over the whole session which generally last for 
5-10 minutes. Investigating the dynamics of functional interac-
tions among distributed systems may be critically important to 
concisely delineate the neural mechanisms of the diseases. In 
a recent study on patients with schizophrenia, the authors re-
ported that transient states of dysconnectivity could only be 
captured by dynamic connectivity analyses, but not traditional 
static functional network connectivity analyses.131 Future stud-
ies on depression utilizing dynamic functional or even effective 
connectivity analyses may provide a better understanding of the 
etiology of depression.

6  | CONCLUSION

In conclusion, we have reviewed an overwhelming amount of evi-
dence based upon studies of functional and effective connectivity 
that implicate key modes or intrinsic brain networks in depression. 
The functional anatomy of these modes fits comfortably with the 
psychopathology of depression; namely, depressive rumination, a 
failure of emotion regulation, and difficulties with top-down or ex-
ecutive control. The fact that the implicit functional disconnection 
shows systematic changes with therapeutic interventions lends fur-
ther support to the notion that depression is linked to a functional 
disintegration or disconnection within and between intrinsic brain 
networks.
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