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Abstract

Understanding the neural substrates of depression is crucial for diagnosis and treat-
ment. Here, we review recent studies of functional and effective connectivity in de-
pression, in terms of functional integration in the brain. Findings from these studies,
including our own, point to the involvement of at least four networks in patients with
depression. Elevated connectivity of a ventral limbic affective network appears to be
associated with excessive negative mood (dysphoria) in the patients; decreased con-
nectivity of a frontal-striatal reward network has been suggested to account for loss
of interest, motivation, and pleasure (anhedonia); enhanced default mode network
connectivity seems to be associated with depressive rumination; and diminished con-
nectivity of a dorsal cognitive control network is thought to underlie cognitive defi-
cits especially ineffective top-down control of negative thoughts and emotions in
depressed patients. Moreover, the restoration of connectivity of these networks—
and corresponding symptom improvement—following antidepressant treatment (in-
cluding medication, psychotherapy, and brain stimulation techniques) serves as
evidence for the crucial role of these networks in the pathophysiology of

depression.
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1 | INTRODUCTION

Depression is one of the most common psychiatric disorders, with
a lifetime prevalence of up to 20% and 30% in men and women, re-
spectively.! A key step toward developing effective diagnosis and
intervention techniques is to uncover the neural substrates of this
disorder. For example, which brain systems are associated with af-
fective and cognitive dysfunction in depression? How do distributed
regions interact to produce the symptoms of depression? What is the
neural mechanism underlying remission following antidepressant
treatment? Why is the relapse rate so high in remitted depressed
patients? Advances in neuroimaging techniques and brain connec-
tivity analysis are now making it possible to address these questions,
thereby tackling one of the greatest mysteries of the human mind.
A growing literature supports the notion that the symptoms of
depression are associated with widespread network dysconnectiv-
ity rather than the aberrant responses of individual brain regions.
Here, we review recent advances in functional magnetic resonance
imaging (FMRI) studies that have tried to elucidate the neurobiologi-
cal underpinnings of depression, from the perspective of functional
integration. Depression—frequently seen as withdrawal from the
prosocial environment—is characterized by aberrant emotional and
affective processing, excessive self-focus, and diminished cognitive
control. To this end, we pay special attention to four core networks
that have been implicated in these processes: the affective network
(AN), reward network (RN), default mode network (DMN), and cogni-

tive control network (CCN), respectively. First, we briefly summarize
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neural activity
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1005
C N S Neuroscience & Therapeutics _Wl L EY

brain connectivity analysis methods. Detailed descriptions of the
different methods we refer to can be found in Reference (2-9). We
then review findings from recent fMRI studies that have investigated
abnormalities in brain connectivity in depression. This is followed
by a short discussion on how brain connectivity studies can help
with the treatment of the disease. Finally, we suggest that future
studies should elucidate the structural and metabolic substrates of
depression-related dysconnectivity and try to develop an extended
model of depression for improved diagnosis, treatment, and preven-

tion of the disorder.

2 | A BRIEF SUMMARY OF BRAIN
CONNECTIVITY ANALYSIS METHODS

Characterizations of brain connectivity include structural connec-
tivity, functional connectivity, and effective connectivity. For the
most part, structural connectivity analysis relies on techniques such
as diffusion magnetic resonance imaging (dMRI) and tractography,
which report the integrity of white matter fiber tracts. The remain-
ing distinction between functional and effective connectivity is
important to understand.?* The former refers to (undirected) cor-
relations between the activity of two brain regions, while the latter
refers to (directed and usually reciprocal) causal influences among
brain regions within a network (Figure 1).

Specifically, functional connectivity corresponds to the tempo-

ral correlations (or statistical dependencies) between the activity

Y,(t)

BOLD response

Dynamic causal modelling:
Directed effective connectivity
between X;(t) and X,(t)

FIGURE 1 Characterization of different approaches to examine brain connectivity. Experimental inputs usually enter into sensory cortex
and cause changes in neuronal activity X, in the region (R1). Activity in R1 will then be propagated to a second region R2 which is connected
to R1 and causes changes in X,. The neuronal activity X, and X, are hidden neuronal states because they cannot be observed directly using
fMRI. Instead, the BOLD signals recorded in fMRI images are a convolution of the neuronal states with a hemodynamic function. Functional
connectivity analyses simply measure the undirected temporal correlations (or statistical dependencies) among observed BOLD signals of
different brain regions. Granger causality modeling (GCM) tries to infer directed connectivity using autoregressive models. Strictly speaking,
GCM measures directed functional connectivity because it operates on observed hemodynamic (BOLD) responses. In contrast, dynamic
causal modeling (DCM) estimates the influence that the neural activity of one brain region exerts on another. FC: functional connectivity;

EC: effective connectivity
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of different brain regions.>* It is a simple characterization of brain
connectivity and can be measured directly from fMRI data using dif-
ferent methods. The easiest way to measure functional connectivity
is to use a seed-based method. Usually, one extracts the mean time
series of a region of interest (ROI) and computes the correlation be-
tween the time series of the ROI and all other voxels (or regions)
in the brain. The ensuing (thresholded) correlation map represents
functional connectivity between the ROI and all other voxels (or
regions). Lately, researchers have started to map whole-brain func-
tional connectivity using fMRI. Usually, the brain is segmented into
many (about 100) regions according to a template (eg, the automated

L.1° Whole-brain functional connectiv-

anatomical labeling atlas, AA
ity can then be summarized with a correlation matrix. The topolog-
ical properties of the functionally connected networks can then be
studied using graph theory approaches. Graphs are constructed to
describe the brain networks with the nodes denoting brain regions
and the edges denoting significant connections among these regions.

Properties such as node degree, efficiency, clustering coefficient,

path length, and modularity can be calculated and compared across
different groups.***? Finally, independent component analysis (ICA)
is widely used to derive coherent patterns or modes of activity from
neuroimaging data that correspond to functionally connected brain
networks. This sort of characterization decomposes the fMRI im-
ages of the whole brain into a series of spatially independent modes
or networks.

Unlike functional connectivity, effective connectivity infers
directed (ie, causal) interactions within a brain network. Effective
connectivity is defined as the influence one neural system exerts
on another.?* In the past decade, different approaches to measure
effective connectivity such as psychophysiological interaction (PPI)
analysis, structural equation modeling (SEM), Granger causality mod-
eling (GCM), and dynamic causal modeling (DCM) have been devel-
oped. GCM tries to infer directed connectivity from observed BOLD
signals using autoregressive models.®> In contrast, DCM treats the
brain as a dynamic system of (unobserved or hidden) neuronal states,
which are driven by experimental inputs or endogenous fluctuations

CCN

FIGURE 2 Dysconnectivity and depression. Four networks including the affective network (AN), reward network (RN), default

mode network (DMN), and cognitive control network (CCN) have been mainly associated with the neural substrates of depression, with
hyperconnectivity (marked in red) of the AN and DMN and attenuated connectivity (marked in green) of the RN and CCN observed in the
patients. OFC: orbitofrontal cortex; INS: insula; AMY: amygdala; HIP: hippocampus; vVACC: ventral anterior cingulate cortex; mPFC: medial
prefrontal cortex; PCC: posterior cingulate cortex; PCUN: precuneus; ANG: Angular; DLPFC: dorsolateral prefrontal cortex; dACC: dorsal
anterior cingulate cortex; PFC: prefrontal cortex; CAU: caudate; NA: nucleus accumbens. This figure was prepared with the BrainNet

Viewer'®?
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to produce BOLD responses.("7 DCM estimates neural interactions
using state-space models based on (deterministic or random) differ-
ential equations. These equations describe neural dynamics and are
supplemented with hemodynamic equations to transform regional
neuronal activity into the observed BOLD response (Figure 1). Both
empirical and simulated data suggest DCM may be more robust than

GCM, when estimating directed connectivity.!**>

3 | ANETWORK MODEL OF MAJOR
DEPRESSION

Major depressive disorder is characterized by prominent affective
disruptions and cognitive impairments. Neuroimaging studies sug-
gested that these deficits may be associated with altered connec-
tivity of four brain networks (Figure 2): Elevated connectivity of a
ventral limbic affective network appears to be associated with ex-
cessive negative feeling (dysphoria); decreased connectivity of a
frontal-striatal reward network has been suggested to account for
loss of interest, motivation, and pleasure (anhedonia); enhanced
default mode network connectivity seems to be associated with
depressive rumination; and diminished connectivity of a dorsal
cognitive control network is thought to underlie cognitive deficits
especially ineffective top-down control of negative thoughts and
emotions in depressed patients. In this section, we examine these
core networks affected in depression, focusing on the pattern of

disruption within each—as related to the symptoms of depression.

3.1 | Elevated affective network connectivity and
persistent sad mood

The orbitofrontal cortex (OFC), the affective division of the anterior
cingulate cortex (ACC), and limbic regions including the amygdala,
hippocampus, and insula form a ventral network which is also known
as the brain’s affective network (AN).2%” Crucially, the AN has been
associated with processing and regulation of emotions. Emerging
neuroimaging findings suggest an involvement of the AN in the
pathophysiology of depression.®? Previous studies have found hy-
peractivation of the amygdala and subgenual ACC, associated with
dysfunctional affective processing in depressed patients. Functional
neuroimaging also points to aberrant connectivity within the AN
(Figure 2, Table 1), which may underlie emotion dysregulation, a hall-
mark of depression.

Increased resting-state interactions between regions of the AN
have been consistently reported in depression. The patients showed
enhanced functional connectivity between the dorsal midinsula
cortex and the amygdala, subgenual prefrontal cortex, and OFC?°;
between the subgenual ACC and dorsomedial frontal cortex!¢?%;
between pregenual ACC and left dorsolateral frontal cortex?!; and
between lateral orbitofrontal cortex and the precuneus, angular
gyrus, and temporal visual cortex,?? with connectivity strength pos-
itively correlated with illness severity.zo’m*23 Notably, the strength
of the amygdala-sgACC connectivity was positively correlated with
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negative affectivity, while an increase in this connection was asso-
ciated with the onset of depression.23 In addition, enhanced OFC
connectivity with the precuneus and angular gyrus was also related
to affectively negative sense of the self in the patients.22 Attempts
have also been made to determine the directionality of the influ-
ences among these regions at rest. Granger causality analysis re-
vealed increased excitatory influences from hippocampus to ventral
anterior cingulate cortex and reciprocal interactions between the
medial prefrontal cortex and ventral anterior cingulate cortex in
major depressive disorder (MDD).2*

When presented with sad and happy faces, individuals with

depression demonstrated an attentional bias for sad faces,>2%

whereas healthy controls show a positive bias toward happy faces.?
Related to these findings, an opposite pattern of limbic network
connectivity was found during processing of emotional stimuli.
Specifically, happy faces modulated bidirectional OFC-amygdala
and OFC-fusiform gyrus connectivity in depressed subjects. The
same pattern of modulation was observed when healthy controls
viewed sad faces. Similarly, the connection from the fusiform gyrus
to orbitofrontal cortex was modulated when healthy subjects were
presented with happy faces and depressed patients were processing
sad faces.?’ Depressed patients also show increased memory sensi-
tivity for negative information associated with increased amygdala-

hippocampus and connectivity.?®

|29

amygdala-caudate-putamen
Admon et al*” found an increased susceptibility to negative stimuliin
remitted patients compared with controls. The increases in cortisol
and anxiety levels were higher in the remitted MDD individuals than
the controls in a stress task. It is worth noting that elevated caudate-
amygdala and caudate-hippocampus connectivity during processing
of negative stimuli was only seen in remitted subjects, but not the

control group.?’

3.2 | Attenuated frontal-striatal reward network
connectivity and anhedonia

Symptoms such as loss of pleasure, interest, or motivation (anhedo-
nia) are also typical in depression. Evidence from neuroimaging stud-
ies suggests that anhedonia seen in the patients may be attributed
to diminished interactions in the frontal-striatal reward network
(Figure 2, Table 1). The frontal cortex and striatal regions including
the caudate, putmen, and nucleus accumbens form a brain’s reward
network. Interactions among regions in this network have been
shown to be attenuated in patients with depression,?? with reduc-
tion in connectivity being in proportion to depression severity.30
Interestingly, nodal efficiency of the right putamen’s resting-state
functional connectivity network was associated with the course
of depressive episodes—an important predictor of depressive re-
lapse.®! Recently, a study by Felger and colleagues further suggested
that anhedonia and hypoconnectvity of the reward network may be
caused by elevated inflammation, increased biomarkers of which
were seen in depression.32

When exposed to positive stimuli, depressed patients demon-
strated reduced magnitude and duration of positive affect.®® The
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inability to sustain positive affect has been shown to be associated
with reduced frontostriatal connectivity.>* In addition, depressed
individuals exhibited lower caudate-dACC connectivity than the
controls in response to monetary gains.35 Win/loss anticipation was
mediated through distinct mechanisms in diseased and healthy indi-
viduals, with bottom-up striatal-frontal connectivity seen in MDD
and frontostriatal top-down connectivity observed in the controls.
Furthermore, aberrant activation and connectivity of the reward
network have also been shown to be associated with depression-

related appetite loss/increase in the patients.37

3.3 | Hyperconnectivity of the default mode
network and excessive self-focus

The third system involved in the neural substrates of depression is
the task-negative default mode network (DMN) (Figure 2, Table 1).
The DMN mainly encompasses the precuneus, posterior cingulate
cortex (PCC), and medial prefrontal cortex (mPFC), as well as the in-
ferior parietal cortex.>®%? This network is known as a task-negative
network as regions within this network generally demonstrate deac-
tivation during performance of cognitive tasks.3740

Enhanced DMN connectivity is marked in depression. An early
study conducted by Greicius et al*! reported elevated resting-state
DMN connectivity in patients with depression. Their findings of
increased DMN connectivity have been reproduced by several
other studies and our analyses.*®*"%4 In addition, Zhang et al* re-
ported increased nodal centralities in DMN regions in the patients.
Furthermore, depressed subjects also demonstrated enhanced DMN
connectivity while being engaged in externally focused thought,*® in
an emotion identification task,** and during self-referential process-
ing.#” Elevated DMN functional connectivity thus appears to be a
robust marker of MDD that is evident even in remitted,*® and recov-
ered state.*’ Notably, a history of preschool depression in children
may also affect the developmental trajectory of the DMN, with in-
creased PCC functional connectivity in the subgenual and anterior
cingulate cortices detected in these individuals.*°

The DMN is associated with self-referential processes,51’52 which
are enhanced in patients with depression. Depressed individuals
usually demonstrate maladaptive rumination—the process of repet-
itively and passively thinking about one’s negative feelings, possible
causes, and consequences.*®53 Rumination, the content of which is
typically negative, has been shown to predict the onset of depres-
sion, prolong the duration, exacerbate negative thinking, and impair
problem-solving.’® Hyperconnectivity of the DMN may represent
excessive self-referential processes and maladaptive rumination
in the patients.*>*®54% |n a study by Berman et al,*? resting-state
functional connectivity, between the posterior cingulate and the
subgenual cingulate, correlated positively with rumination scores
both in depressed and healthy subjects. In addition, increase in DMN
connectivity was seen in the MDD group from unconstrained resting
states to induced-ruminative states.>” Accordingly, stronger DMN
connectivity was associated with higher levels of rumination in de-
pression,>* which was also evident in remitted depressed patients.*®

3.3.1 | DMN subnetworks in depression

Previous studies have also suggested that the DMN may consist of
interacting subnetworks.’®” Zhu et al®* reported elevated func-
tional connectivity in the anterior division of the DMN in MDD pa-
tients to be positively correlated with rumination score. Interestingly,
they also found attenuated functional connectivity in the posterior
division of the DMN in the patients to be negatively correlated with
autobiographical memory scores. In our study, using group ICA to
investigate resting-state functional connectivity in MDD, we found
evidence for two dissociable subnetworks in the DMN: an anterior
subnetwork which had the highest amplitude in the mPFC, and a
posterior subnetwork, which had the highest amplitude in the pre-
cuneus.*® Unlike Zhu and colleagues, Sambataro et al®® found in-
creased functional connectivity within posterior, ventral, and core
DMN subsystems in patients with MDD. They also reported altered
interactions between DMN subsystems in patients.

3.4 | Diminished cognitive control network
connectivity and impaired top-down control

In patients with depression, impaired emotion processing is often
accompanied by cognitive impairments.s"*60 These impairments can
persist even after remission of affective symptoms. Related to these
impairments, another brain network has been implicated in the
pathophysiology of depression, the so-called cognitive control net-
work (CCN). This network mainly consists of functionally connected
brain regions including the dorsolateral prefrontal cortex (DLPFC),
the cognitive subdivision of ACC, and the parietal cortex.®*** The
CCN is thought to be an executive or control system, responsible
for regulating thoughts, and actions in accordance with internal
goals.8>% Neuroimaging studies have identified coactivation of
the CCN during performance of different cognitive tasks. A failure
of effective cognitive control over emotional processing is one of
the central characteristics of depression.“’z68 Neuroimaging studies
seeking to elucidate the neural substrates of depression therefore
have identified prominent impairments of the CCN in depression
(Figure 2, Table 1).

Dysconnectivity of regions involved in the CCN has been re-
ported in patients with depression during performance of tasks

I,70 and affective in-

involving working memory,69 executive-contro
terference,”? as well as during rest.?®”274 However, the findings have
been divergent. Sheline et al,*® using the bilateral DLPFC as a seed
region, reported increased resting-state functional connectivity in
the bilateral dorsomedial prefrontal cortex (DMPFC) in depressed
subjects. Vasic et al® observed increased functional connectivity in
the left DLPFC during a working memory task in MDD. However,

17> reported attenuated CCN connectivity which was

|70

Stange eta
stable over time in remitted MDD. Aizenstein et al’” reported re-
duced DLPFC-dACC functional connectivity on an executive-control
task in patients with late-life depression (LLD). Children with a pa-
rental history of depression are known to be at high risk to develop

this disorder. In a recent study, Clasen and the colleagues reported
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decreased resting-state functional connectivity within the CCN in
depression-naive adolescent females with a parental history of de-
pression. In addition, severity of the parents’ depression was asso-
ciated with deficits in functional connectivity of the CCN in their
children.”® Neuroimaging studies thus support a link between im-
pairments in the CCN and depression vulnerability even in healthy
patients.

Evidence over the years suggests that abnormal top-down corti-
cal regulation of the limbic systems may also contribute to inefficient
emotion regulation in depressed patients. In an early study, Anand
and colleagues found that while regions in the affective network
showed increased activation, functional connectivity between the
ACC and limbic regions was decreased both at rest and during ex-
posure to different stimuli (neutral, positive, and negative pictures)
in depressed subjects. This finding may reflect an ineffective regu-
latory effect of the ACC on the hyperactivation of the limbic system
in the patients.”” Additionally, reduced functional connectivity be-
tween amygdala and the PFC was found in depressed subjects both
at rest and in response to fearful faces.”®”? In a resting-state study
of mood regulation in refractory and nonrefractory major depres-
sion, Lui et al®® found decreased functional connectivity in bilateral
prefrontal-limbic-thalamic areas in both patient groups. Recently,
Song et al®? also reported reduced resting-state frontal-subcortical
connection. These findings appear to further support a poor top-
down emotional regulation view of depression.

Studies of directed functional and effective connectivity have
further confirmed a diminished top-down cortical control of the lim-
bic systems in depressed patients. Using structural equation mod-
eling, Carballedo et al®? found lower bilateral effective connectivity
from the amygdala to OFC in major depression. A recent study com-
pared activity and effective connectivity in postpartum healthy and
depressed mothers, when subjects responded to negative emotional
faces.%® Using Granger causality mapping, the authors studied the
top-down regulation of the amygdala by the dorsomedial prefron-
tal cortex. They found a significant effective connection from the
left dorsomedial prefrontal cortex to the left amygdala in healthy
controls, but this connection was absent in depressed subjects.®® In
a separate study using PPl analysis, Erk and colleagues observed re-
duced amygdala-DLPFC connectivity in depressed patients during
active emotion regulation.84 However, a GCM study showed that
only MDD subjects with a history of early life trauma (ELT) pre-
sented reduced mPFC-amygdala connectivity. In non-ELT exposed

patients, mPFC inhibition of the amygdala was intact.%’

4 | BRAIN CONNECTIVITY AND
TREATMENT OF DEPRESSION

In addition to providing a better understanding of the neural sub-
strates of depression, brain connectivity analyses have also helped
with the treatment of the disease. fMRI studies have reported
partially restored brain connectivity in keeping with improvement
in depressive symptoms in the patients after treatment. Notably,
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pretreatment brain connectivity patterns were shown to be able
to predict the outcomes of antidepressant treatment. Responders
and nonresponders were characterized by distinct connectivity pat-
terns. Interestingly, although brain stimulation techniques adopted
in the treatment of depression targeted a single brain region, the
therapeutic effects seem to be mediated by the connections from
the target to distributed regions or brain networks. Brain connectiv-
ity studies thus allow the identification of the optimal stimulation

sites (Figure 3).

4.1 | Normalization of aberrant brain connectivity
after antidepressant treatment

An important question of interest to researchers and psychiatrists
is whether normalization of aberrant brain connectivity would ac-
company improvement in depressive symptoms after antidepressant
treatment. Studies of depression have reported restored connectiv-
ity of the AN,**% RN,8788 DMN 8794 and CCN?° in the patients
following antidepressant treatment. A variety of treatments have
targeted the AN and RN in depression. Connectivity of the subcal-
losal cingulate cortex with limbic regions was reduced after elec-
troconvulsive therapy (ECT) treatment.8® Even administration of
a single dose of ketamine (0.5 mg kg™) resulted in increased neu-
ral responses and connectivity of the right caudate during posi-
tive emotion perception in patients with treatment-resistant major
depressive disorder.®® In addition, enhancement of dopaminergic
transmission in the reward network through amisulpride potentiated
diminished corticostriatal connectivity,96 while treatment-induced
increases in network connectivity were associated with gains in pos-
itive affect in depressed patients.”* Abnormal connectivity of the
DMN has also been modulated by antidepressants and transcutane-
ous vagus nerve stimulation (tVNS).*371 Given the central role of the
CCN in the neurobiology of depression, its response to antidepres-
sant treatments has been studied frequently, revealing increased

post-treatment ACC connectivity.””?®

4.2 | Prediction of treatment outcomes

The outcomes of antidepressant treatment vary largely among pa-
tients, thereby yielding responders, and nonresponders. Brain con-
nectivity patterns have been shown to be able to predict treatment
outcomes with quite high sensitivity and specificity.”’ Baseline de-
gree centrality of the posterior default mode network was associated
with changes in depression severity after 2 weeks of medication.'°°
Pretreatment connectivity of the OFC, insula, and RN has been
shown to predict response to psychotherapy.ml’102 Compared with
responders, nonresponders of dorsomedial prefrontal repetitive
transcranial magnetic stimulation (rTMS) were characterized by more
severe pretreatment anhedonia symptoms and lower connectivity
of the RN.1® Higher baseline sgACC connectivity was associated
with greater TMS-induced clinical improvement.”’104 Furthermore,
two resting-state networks centered in the dorsomedial prefrontal
cortex and ACC have been found to predict the outcome of ECT in
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Antidepressants

ECT

DBS
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FIGURE 3 Brain effects of antidepressant treatment. A large part of aberrant connections reported in the patients have been shown
to be normalized after treatment with antidepressants, psychotherapy, repetitive transcranial magnetic stimulation (rTMS), deep brain

stimulation (DBS), and electroconvulsive therapy (ECT). This figure was prepared with the BrainNet Viewer

treatment-resistant patients.’” In addition, low pretreatment CCN
functional connectivity was associated with low remission rate and
residual symptoms when patients with late-life depression were
treated with escitalopram.73 Notably, it has been shown recently
that resting-state functional connectivity of the subcallosal cingulate
cortex with left anterior ventrolateral prefrontal cortex/insula, the
dorsal midbrain, and the left ventromedial prefrontal cortex may be
capable of guiding treatment choice. Specifically, positive summed
connectivity scores for these three regions were associated with re-
mission to CBT, while negative summed connectivity was associated
with better treatment outcomes to medication. These findings are
of particular importance in the identification of the most effective
treatment option that an individual patient is likely to benefit from.

4.3 | Identification of optimal stimulation sites

Brain stimulation techniques such as deep brain stimulation(DBS)
and TMS aim to normalize aberrant brain activity in depressed sub-
jects by applying electrical or magnetic stimulation to specific re-
gions. Such therapy alternatives have been shown to be effective in
treatment-resistant depression.'%> DBS initially targeted the sgACC
to restore hyperactivity of this region observed in the patients,
while the first applications of rTMS targeted the DLPFC which dem-
onstrated hypoactivity.'°® However, the clinical efficacy of these
traditional protocols still needs to be improved as the response and
remission rates are relatively low. Attempts thus have been made to
apply rTMS over targets beyond the DLPFC. New advances in neu-
roimaging studies of depression, MRI-guided rTMS, as well as the

introduction of coils with the capacity to stimulate deep structures,

132

have helped improve the identification of optimal stimulation sites.
ITMS targeting other core regions whose connectivity has been
shown to be disrupted in depression such as the DMPFC,03:107-109
OFC, 1011 ACC, M2 has demonstrated apparent therapeutic effec-
tiveness. Although commonly applied to single brain regions, the
effects of DBS and TMS are mediated via distributed networks.
Notably, the efficacy of the rTMS was associated with the connec-
tivity profile of the targets.!°%194!13 Responders and nonresponders
to DMPFC-rTMS had distinct connectivity patterns of the reward
network,'°® while DLPFC-rTMS targets that demonstrated stronger
anti-correlation with subgenual cingulate cortex were found to be
more effective than others.?*® Neuroimaging studies thus not only
provide important insights into our understanding of the patho-
physiology of depression, but also facilitate the identification of the

optimal stimulation sites for the treatment of the disease.

5 | FUTURE STEPS

We review recent studies of functional and effective connectiv-
ity in depression. The findings above present an emerging pic-
ture of four aberrant networks in depression; namely, abnormal
connectivity within the AN, RN, DMN, and CCN. However, the
interactions between different networks may be disrupted as
well 2447114115 pacent meta-analysis studies have revealed in-
creased functional connectivity of the AN (subgenual prefron-
tal cortex)115 and the CCN™*15 \ith the DMN in MDD. In fact,
Sheline et al*® found a bilateral region in the dorsomedial pre-

frontal cortex, which they termed the dorsal nexus, consistently
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showing increased functional connectivity with the AN, DMN,

and CCN in depression. Later, Perrin et al’®

reported reduced con-
nectivity of the dorsal nexus and an improvement in symptoms in
depressed patients following treatment with ECT. There is further
evidence showing that TMS targeting the DLPFC (a component of
the CCN) modulated functional connectivity of the DMN.?? These
findings suggest that depression may not only be associated with
abnormal interactions between different brain regions within the
same neural circuit, but also abnormal interactions between dis-
tributed brain networks. Future studies should aim to integrate
these core networks and their contributions toward developing an
extended model of depression for improved diagnosis, treatment,
and prevention of the disorder.

Recent studies confirmed a structural basis for the altered
functional integration seen in depression. Studies using dMRI
have demonstrated disrupted white matter integrity and/or struc-
tural connectivity in the patients.'*12% |n addition, topologi-
cal organization of white matter networks was also impaired in
the patients.*?2122 Future studies may need to further elucidate
how changes in structural changes may relate to functional dy-
sconnectivity in widely distributed networks. Furthermore, the
pathophysiology of dysfunctional integration or disconnection
in depression may rest on a failure to contextualize interregional
coupling; for example, aberrant neuromodulation of synaptic effi-
cacy may be an important etiological factor. One important can-
didate for this sort of pathophysiology is the neuromodulatory
effect of neurotransmitters such as serotonin. Indeed, the imaging
literature—using positron emission tomography and radio-ligand
binding—points to an abnormality of 5HT neurotransmission, at
the level of transporter availability, (5HT1-A) receptor binding,
etc.t?312% Furthermore, secondary or complementary changes in
metabotropic glutamate receptor function may be intimately in-
volved (or respond) to the synaptic pathophysiology that underlies
functional disconnections. This is suggested by imaging studies
that show, for example, reduced glutamate receptor 5 (mGIuR5)
density in major depression and response to antidepressant
treatment.125126

It is worth emphasizing that although the interactions among
different brain regions have been demonstrated to fluctuate over

time'127»130

the majority of functional and effective connectiv-
ity studies on depression have treated the brain as a station-
ary system and calculated the averaged functional or effective
connectivity over the whole session which generally last for
5-10 minutes. Investigating the dynamics of functional interac-
tions among distributed systems may be critically important to
concisely delineate the neural mechanisms of the diseases. In
a recent study on patients with schizophrenia, the authors re-
ported that transient states of dysconnectivity could only be
captured by dynamic connectivity analyses, but not traditional
static functional network connectivity analyses.*®! Future stud-
ies on depression utilizing dynamic functional or even effective
connectivity analyses may provide a better understanding of the
etiology of depression.

C N S Neuroscience & Therapeutics _Wl L EYJﬁ
6 | CONCLUSION

In conclusion, we have reviewed an overwhelming amount of evi-
dence based upon studies of functional and effective connectivity
that implicate key modes or intrinsic brain networks in depression.
The functional anatomy of these modes fits comfortably with the
psychopathology of depression; namely, depressive rumination, a
failure of emotion regulation, and difficulties with top-down or ex-
ecutive control. The fact that the implicit functional disconnection
shows systematic changes with therapeutic interventions lends fur-
ther support to the notion that depression is linked to a functional
disintegration or disconnection within and between intrinsic brain
networks.
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