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Background: Hypertrophic cardiomyopathy (HCM) remains the most common cause of sudden

cardiac death (SCD) in the young; however, current strategies do not identify all HCM patients

at risk. A novel validated algorithm was proposed by the last European Society of Cardiology

guidelines to guide implantable cardioverter-defibrillator (ICD) therapy. Recently, extensive

myocardial fibrosis was independently associated with increased risk of SCD events. This study

aimed to establish the relation between myocardial fibrosis (late gadolinium enhancement

[LGE] extension) and the novel SCD risk-prediction model in a real population of HCM to eval-

uate its potential additional value in the different risk groups.

Hypothesis: There is a significant association between LGE extension and the novel SCD risk

calculator that may help conflicting ICD decisions.

Methods: Seventy-seven patients with HCM underwent routine clinical evaluation, echocardi-

ography, and cardiac magnetic resonance study. Their SCD risk at 5 years was calculated using

the new model.

Results: Extension of LGE positively correlated with SCD risk prediction (r = 0.7, P < 0.001).

Low-, intermediate-, and high-risk groups according to the model showed significantly different

extent of LGE (5% � 6% vs 18% � 9% vs 17% � 4%; P < 0.001). Four patients (6%) in the

low-risk group and 5 (62%) in the intermediate-risk group showed extensive areas of LGE. All

patients except 1 (86%) at highest risk (n = 6) showed extensive areas of LGE.

Conclusions: LGE extension is concordant with the novel SCD-risk model defining low- and

high-risk groups; it may provide additional information, allowing better discrimination to sup-

port implantable cardioverter-defibrillator decision. LGE quantification holds promise for SCD

stratification in HCM.
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1 | INTRODUCTION

Hypertrophic cardiomyopathy (HCM) remains the most common

cause of sudden cardiac death (SCD) in the young, mainly due to fatal

arrhythmic events.1–4 Clinical risk strategies comprise several clinical

and imaging features to detect patients at highest risk, candidates for

implantable cardioverter-defibrillator (ICD) therapy. Although primary

prevention with ICD has been highly effective for life-threatening

ventricular tachyarrhythmias, conventional risk assessment fails to

identify all HCM patients at risk.1,2,4–7 Recently, the detection of
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myocardial fibrosis as an additional marker of risk is gaining consider-

able interest, particularly to support the decision in ambiguous

patients. Contrast-enhanced cardiovascular magnetic resonance

(CMR) imaging with late gadolinium enhancement (LGE) is capable of

noninvasive detection of myocardial fibrosis in ischemic and nonis-

chemic cardiomyopathies.8–10 Although the presence of LGE in HCM

has been associated with ventricular arrhythmias, the association with

SCD has been largely questioned.11–19 Initial research in this scenario

considered LGE as a binary variable attributing equal risk to any

amount of LGE, from trivial to extensive. In a disease in which the

prevalence of LGE oscillates between 60% and 80%, this objective

has proved impractical and nonrealistic. Recent evidence has shown a

continuous relationship between the amount of LGE and the risk of

SCD, independent of conventional risk factors.18

A novel prognostic algorithm was recently developed and vali-

dated by UK investigators and has been proposed by current 2014

European Society of Cardiology (ESC) guidelines.1,20 It was designed

with retrospectively collected data, and therefore, new associations

with SCD such as the amount of LGE were not explored or included.

Thenceforth, the prognostic model has been incorporated into clinical

practice to guide ICD therapy based on the estimation of 5-year risk

of SCD.

The aim of this study is to establish the relation between LGE

extension and the novel SCD risk-prediction model in a real popula-

tion of HCM to evaluate its potential additional value in the different

risk groups.

2 | METHODS

Seventy-seven patients with unequivocal diagnosis of HCM and who

were referred for clinically indicated CMR from January 2013 to

October 2015 were included in this study.10 All subjects underwent

clinical evaluation, echocardiography, and a CMR study. SCD risk was

assessed by the new validated prediction model.1,20 Exclusion criteria

for all subjects included patient age <16 years, elite athletes, known

diagnosis of metabolic/infiltrative diseases and syndromes, and previ-

ous procedures of myectomy or alcohol septal ablation. In addition,

subjects with generally accepted contraindications to CMR or a his-

tory of renal disease with a current estimated glomerular filtration

rate <30 mL/min/1.73 m2 were also excluded.

The study protocol was reviewed and approved by the local insti-

tutional ethics committees. All procedures were carried out in accord-

ance with the Declaration of Helsinki (2000).

2.1 | Echocardiography

All patients underwent clinical transthoracic echocardiography (TTE)

according to the recommendations from the European Association of

Cardiovascular Imaging.21 Those variables included in the risk-

stratification model were collected. Maximum left ventricular

(LV) wall thickness (LVWT) was defined as the greatest thickness

using parasternal short-axis plane in 2D echocardiography. Left atrial

(LA) diameter was determined by M-mode or 2D echocardiography in

the parasternal long-axis plane. The maximum left ventricular outflow

tract (LVOT) gradient was determined at rest and with Valsalva prov-

ocation using pulsed and continuous-wave Doppler from the apical

3- and 5-chamber view. Peak LVOT gradients were determined using

the modified Bernoulli equation (pressure gradient = 4v2, where v is

the peak aortic outflow velocity.

2.2 | CMR and image analysis

All patients underwent routine clinical scan protocol for volumes,

mass, and tissue characterization by LGE using a 1.5-Tesla mag-

netic resonance imaging scanner equipped with an advanced car-

diac package and multitransmit technology (Achieva; Philips

Healthcare, Best, The Netherlands) following professional recom-

mendation for standardized acquisition.22 All cine images were

acquired using a balanced steady-state free precession sequence

in combination with parallel imaging (SENSitivity encoding, factor

2) and retrospective gating during a gentle expiratory breathhold

(echo time [TE]/repetition time [TR]/flip-angle: 1.7 ms/3.4 ms/60�,

spatial resolution 1.8 × 1.8 × 8 mm). LGE imaging was performed

in a gapless whole heart coverage of short-axis slices ~15 minutes

after administration of 0.2 mmol/kg body-weight gadobutrol using

a mid-diastolic inversion prepared 2D gradient echo sequence

(TE/TR/flip-angle: 2.0 ms/3.4 ms/25�, interpolated voxel size

0.7 × 0.7 × 8 mm) with a patient-adapted prepulse delay.

All routine CMR analysis was performed on commercially available

software (CMR 42; Circle, Calgary, Canada). Endocardial LV borders

were manually traced at end-diastole and end-systole. LV end-diastolic

volume (LVEDV) and LV end-systolic volume (LVESV) were determined

using the Simpson rule. Left ventricular ejection fraction (LVEF) was

computed as LVEDV − LVESV/LVEDV. LGE images were visually

examined for the presence of regional fibrosis showing as bright areas

within the myocardium in corresponding longitudinal views and by

exclusion of potential artifacts.23 LGE was quantified using the gray-

scale threshold method of ≥6 SDs. Extensive areas of LGE were defined

by the presence of >15% of LGE of the total LV mass.18,24

Inter- and intraobserver reproducibility of LGE quantification

were assessed in 10 randomly selected subjects. For agreement mea-

surements, the endocardial and epicardial borders were retraced, and

the threshold was redetermined.

2.3 | Statistical analysis

Statistical analysis was performed using SPSS software version 21.0

(IBM Corp., Armonk, NY). Normality of distributions was tested with

the Kolmogorov-Smirnov statistic. Categorical data are expressed as

percentages; continuous variables are expressed as mean � SD or

median (interquartile range), as appropriate. For comparison of 2 and

>2 normally distributed variables, the Student t test, 1-way analysis

of variance (ANOVA, with the Bonferroni post hoc test), and the χ2

test were employed as appropriate. Correlations were assessed using

the Pearson correlation coefficient for normally distributed variables

and the Spearman correlation coefficient for nonparametric data.

Associations were explored by single and multivariate linear regres-

sions. All tests were 2-tailed, and a P value of <0.05 was considered

significant.
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3 | RESULTS

Clinical and demographic characteristics of the study population are

summarized in Table 1. At initial evaluation, 23% of the patients had

suffered a previous unexplained syncope, 17% had evidence of non-

sustained ventricular tachycardia (NSVT), and 8% had family history

of SCD (Table 2). Unexplained syncope was significantly more preva-

lent in those patients with LGE (38% vs 5%; P = 0.02); however, no

differences were found in the prevalence of rest obstruction,

presence of NSVT, or family history of SCD between patients with

and without LGE (P > 0.05 for all).

LGE was present in 75% of HCM patients (n = 58), and 26% of

them (n = 15) showed extensive areas of LGE (>15% of the total LV

mass; Figure 1). Extensive LGE was more frequently observed in men,

in patients with a previous episode of unexplained syncope, with

NSVT, with family history of SCD, with LVWT ≥30 mm, and in

patients with New York Heart Association class ≥ II (P < 0.001 for

all). HCM patients with extensive areas of LGE showed higher E/e0

ratios, higher LV mass, and maximum LV thickness (P < 0.001 for all).

Two patients exhibited extreme hypertrophy (≥30 mm); one of them

also showed a wide amount of LGE and was considered at high risk

by the model. Apical aneurysm was present in 2 patients, both of

them clinically judged to be at low risk. Both exhibited areas of LGE,

one representing 8% and the other 18% of the total LV mass. Signifi-

cant resting LVOT obstruction (gradient >30 mm Hg) was present in

10 patients (13%).

The amount of LGE was significantly higher in patients with

unexplained syncope, NSVT, and family history of SCD (12% � 8%

vs 6% � 8%, 14% � 7% vs 7% � 8%, and 22% � 8% vs 7% � 7%,

respectively; P < 0.01 for all). The median LGE of patients with

extreme hypertrophy (n = 2) was 10%, compared with 6% of the

other HCM patients (P < 0.05). The extension of LGE was not signifi-

cantly different in the subgroup of patients with significant LVOT

gradient.

According to the proposed 5-year risk score, 62 patients (81%)

were considered as low risk, 8 (10%) intermediate risk, and 7 (9%)

high risk. Among imaging findings, maximum LVWT and parameters

of diastolic function showed significant differences between risk

groups (Table 3). All patients included in intermediate-risk and high-

risk groups showed areas of LGE, as did 69% of patients in the low-

risk group. Patients with LGE had a significantly higher score com-

pared with patients without LGE (SCD score: HCMLGE: 1.4 � 0.75 vs

2.9 � 1.7; P < 0.001). Low-, intermediate-, and high-risk groups

showed a significantly different extent of LGE (5 � 6 vs 18 � 9 vs

17 � 4, respectively; P < 0.0001). Only 4 patients (6%) in the low-risk

group showed extensive areas of LGE (see Supporting Information,

Table 1, in the online version of this article for detailed characteristics

of these patients); however, 5 patients (62%) at intermediate risk and

all except 1 at highest risk (n = 6) showed extensive areas of LGE.

3.1 | Analysis of relationships

The SCD-risk score showed positive moderate correlations with some

functional-imaging parameters included in the proposed SCD score

(maximum LVWT and LA size, r = 0.4 and r = 0.5, respectively;

P < 0.01 for both). In addition, measurement of diastolic function

(medial and lateral E/é, r = 0.4; P < 0.01 for both) and the extension

of LGE (r = 0.7; P < 0.0001) were positively correlated with the SCD-

risk model (Figure 2).

The amount of LGE was predictive between low-risk and

intermediate-risk + high-risk groups (<4% and >4% risk) in binary

logistic regression analysis independently of LVEF, LV mass, LA vol-

ume, and NYHA class, with an area under the curve (AUC) of 0.92

(95% confidence interval: [CI]: 0.86-0.98; per 1% of LGE, Wald: 8.3,

TABLE 1 Demographic and clinical characteristics of patients

with HCM

Variable All HCM Patients, N = 77

Age, y 59 � 15

Male sex 52 (67)

Body surface area, g/m2 1.86 � 0.3

T2DM 10 (13)

HTN 42 (55)

Hypercholesterolemia 27 (35)

Smoker 12 (16)

eGFR, mL/min/1.73 m2 81 � 20

Hgb, g/dL 14 � 1.5

History of CAD 5 (7)

NYHA class

I 55 (72)

II 17 (22)

III/IV 5 (6)

AF 19 (25)

Obstructive HCM 10 (13)

Abbreviations: AF, atrial fibrillation; CAD, coronary artery disease; eGFR,
estimated glomerular filtration rate; HCM, hypertrophic cardiomyopathy;
Hgb, hemoglobin; HTN, hypertension; NYHA, New York Heart Associa-
tion; SD, standard deviation; T2DM, type 2 diabetes mellitus.

Data are presented as n (%) or mean � SD.

TABLE 2 Risk-stratification variables according to the model

Variable All HCM Patients, N = 77

Age, y 59 � 15

Family history of SCD n (%) 6 (8)

Unexplained syncope n (%) 18 (23)

LVOT gradient, mm Hg 20.4 � 27

Maximum LVWT, mm 18.7 � 4.7

LA diameter, mm 43 � 7

NSVT n (%) 13 (17)

HCM SCD-risk score 2.5 � 1.6

5-Year risk by group n (%)

Low risk, <4% 62 (81)

Intermediate risk, 4%–6% 8 (10)

High risk, 6% 7 (9)

Abbreviations: ECG, electrocardiographic; HCM, hypertrophic cardiomy-
opathy; LA, left atrial; LVOT, left ventricular outflow tract; LVWT, left
ventricular wall thickness; NSVT, nonsustained ventricular tachycardia
during 24- to 48-hour ambulatory ECG monitoring; SCD, sudden cardiac
death; SD, standard deviation.

Data are presented as n (%) or mean � SD.
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Exp(B): 1.22; P < 0.01). Furthermore, the amount of LGE was an inde-

pendent predictor between low- and high-risk groups (Wald: 8.99,

Exp(B): 1.17; P < 0.001) and between low- and intermediate-risk

groups (Wald: 11.26, Exp(B): 1.16; P < 0.001); however, it did not aid

prediction between intermediate- and high-risk groups (P < 0.05).

According to conventional SCD risk assessment,1,3 the amount of

LGE was predictive of the presence of ≥1 risk factor (including LVWT

≥30 mm, unexplained syncope, family history of SCD, or evidence of

NSVT) with an AUC of 0.84 (95% CI: 0.74-0.93; per 1% of LGE,

Wald: 14.2, Exp(B): 1.24; P < 0.001). Moreover, the amount of LGE

was predictive of the presence of ≥2 risk factors with an AUC of

0.88 (95% CI: 0.80-0.96; per 1% of LGE, Wald: 7.49, Exp(B):

1.12; P < 0.01).

3.2 | Reproducibility

Intra- and interobserver agreement for the grayscale threshold

method (≥6 SD) was high (intraobserver: coefficient of correlation:

r = 0.99, P < 0.001, coefficient of variation: 5.2%; interobserver:

r = 0.95, P < 0.001, coefficient of variation = 8.1%).

4 | DISCUSSION

In a real-world clinical scenario of patients with HCM, we provide a

proof-of-concept that LGE extension is concordant with the SCD-risk

model proposed by current ESC guidelines. Although only a minority

of patients at low risk exhibited extensive areas of LGE, nearly all of

the patients in the high-risk group showed ≥15% LGE. All patients in

the intermediate-risk and high-risk groups showed any amount of

LGE, suggesting that its absence could identify low-risk patients, but

its presence per se is not enough to define risk. We further show that

none or trivial amounts of LGE are predictive of low risk of SCD

according to the model. Our findings suggest an additive role of LGE

imaging as an arbitrator after clinical risk assessment, particularly

when an intermediate risk is estimated.

FIGURE 1 Representative case of a patient with septal HCM, an estimated risk of SCD at 5 years of 5.1% (intermediate risk) and extensive

amount of LGE. (A) End-diastolic cine images from SA views. (B) and (C): Basal, mid, and apical LGE images. Yellow areas delineate LGE
extension using the grayscale threshold method of ≥6 SDs above the normal myocardium. Abbreviations: HCM, hypertrophic cardiomyopathy;
LGE, late gadolinium enhancement; SA, short-axis; SCD, sudden cardiac death; SD, standard deviation.
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Identification of HCM patients without a previous history of

lethal ventricular arrhythmias, who are at high risk of SCD, remains a

challenge with serious clinical implications. Although ICD has proven

to be effective in the primary prevention of sudden death in

HCM,25–27 conventional risk stratification is incomplete. First, it does

not identify all patients at risk, and second, it overestimates risk,

resulting in inappropriate prophylactic ICD implantation,28 which on

the whole underlines the importance of more precise identification of

those patients at highest risk.

In 2014, a new SCD model was designed and validated with mul-

ticenter data, which resulted in higher discrimination compared with

the stratification of conventional risk factors used in contemporary

clinical practice.20 These results were validated in an external and

independent cohort of 2 tertiary European centers.29 The score relies

on complex mathematical and statistical modeling to estimate 5-year

risk of SCD. Previously, markers of risk were considered as binary

clinical parameters (NSVT, severe hypertrophy, unexplained syncope,

family history of SCD, and abnormal blood pressure response to exer-

cise), but most of the parameters included in the new score take into

account the continuous association with an increasing risk of SCD

(age, LVWT, LA diameter, LVOT gradient). The latest 2014 ESC

expert consensus guidelines proposed the new score as the primary

method by which patients should be (or should not be) selected for

prophylactic ICDs.1 The score stratifies 3 groups of risk: low, interme-

diate, and high risk, according to the estimated 5-year risk of SCD

(<4%, 4%–6%, and ≥6%, respectively). In the low-risk group, ICD is

“generally not indicated”; in the intermediate-risk group, it “may be

considered”; and in the high-risk group, ICD “should be considered.”

As a result, the new model has been largely incorporated into clinical

practice; however definitive decision in intermediate-risk patients

remains challenging. The prognostic model was derived from a retro-

spective, multicenter longitudinal cohort study and, therefore, novel

markers of risk such as amount of LGE have not been included for

the moment.

In recent years, there has been an increasing interest in using

LGE as a marker of risk. Ventricular arrhythmias represent the most

likely mechanism of SCD in HCM and originate from regions of struc-

turally abnormal myocardium. The extension of localized LGE signifi-

cantly correlates with both the corresponding depolarizing and

repolarizing electrical damage causing ventricular arrhythmias in

HCM.12 Although prospective outcome studies have demonstrated

an association between the presence of LGE and a combined end-

point of adverse HCM-related events,13–17,30 these studies have con-

flicting results regarding the relation between LGE and SCD. When

TABLE 3 Echocardiographic and CMR findings

Variable
All
Patients, N = 77

Low-Risk
Group, n = 62

Intermediate-Risk
Group, n = 8

High-Risk
Group, n = 7

P
Value

Echocardiographic measures

LAD, mm 43 � 7 42 � 7 46 � 7 44 � 4 0.2

Maximum LVWT, mm 18.7 � 4 18 � 4 21 � 5 25 � 5 0.001

LVOT gradient, mm Hg 20 � 26 20 � 18 31 � 37 14 � 4 0.4

Basal LVOT gradient ≥30 mm
Hg

10 (13) 8 (13) 2 (25) 0 (0) 0.3

E/A ratio 1.15 � 0.4 1.1 � 0.4 1.6 � 0.2 1.01 � 0.5 0.005

Lateral E/e0 9.3 � 5 8.1 � 4 10 � 5 15 � 5 0.007

Septal E/e0 12 � 5 11 � 4 13 � 4 18 � 3 0.04

CMR measures

LVEDV index, mL/m2 43 � 17 43 � 16 44 � 17 33 � 8 0.4

LVEF, % 62 � 7 66 � 8 62 � 6 69 � 7 0.2

RVEF, % 69 � 7 68 � 7 67 � 9 69 � 3 0.8

LVMI, mg/m2 86 � 30 82 � 31 102 � 32 105 � 24 0.09

Maximal LVWT, mm 18.8 � 5 18 � 4 21 � 8 24 � 6 0.009

LAVI, mL/m2 63 � 20 58 � 23 70 � 35 64 � 10 0.2

LGE

LGE present 58 (75) 43 (69) 8 (100) 7 (100) <0.05

LGE extent 7.9 � 8 5 � 6 18 � 9 17 � 4 <0.001

LGE extension <0.001

1%–5% 25 (32) 25 0 0

6%–10% 12 (16) 9 3 0

11%–15% 6 (8) 5 0 1

16%–20% 6 (8) 1 1 4

>20% 9 (12) 3 4 2

Abbreviations: CMR, cardiac magnetic resonance imaging; LAD, left atrial diameter; LAVI, left atrial volume index; LGE, late gadolinium enhancement;
LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVMI, left ventricular mass index; LVOT, left ventricular outflow
tract; LVWT, left ventricular wall thickness; RVEF, right ventricular ejection fraction; SD, standard deviation.

Data are presented as n (%) or mean � SD.
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data from these studies were pooled in a meta-analysis, LGE showed a

nonsignificant trend toward the detection of SCD/aborted SCD.17 As

a result, available data did not definitively support its inclusion in cur-

rent ESC recommendations. HCM is generally a low-event-rate dis-

ease, and therefore demonstrating novel (and independent to

conventional ones) risk markers is a challenging task. Initial CMR stud-

ies in HCM were focused largely on the association between the pres-

ence of LGE as a binary variable and adverse outcomes, with most of

them failing in demonstrating it to be independently predictive of SCD

risk. However, any amount of LGE per se cannot be considered a risk

marker, because this designation attributes equal predictive weight to

a broad spectrum of LGE amounts (from trivial to extensive). Further-

more, HCM exhibits LGE in 60% to 80% of cases, suggesting that its

presence represents a more diagnostic than prognostic parameter.

Recent evidence demonstrated that SCD event risk increased in a con-

tinuous and direct manner with respect to the extent of LGE.18 Chan

et al showed that when %LGE was considered together with each of

the conventional risk markers, the incremental prognostic value in pre-

dicting SCD events was significantly increased. Extensive areas of LGE

(≥15% of LV mass) demonstrated a 2-fold increase in SCD event risk

in those patients otherwise considered to be at lower risk by conven-

tional risk stratification, with an estimated likelihood for SCD events

of 6% at 5 years. Performance of the SCD event risk model was

enhanced by LGE. The additive prognostic relevance of LGE extension

has been proven in other scenarios of ischemic and nonischemic cardi-

omyopathies; however, the lack of clear standardization and definition

of %LGE limit its implementation in clinical practice.9,31–34

The novel SCD model has been questioned, in part for the lack

of novel risk markers such as LGE.7 Our study demonstrates that the

amount of LGE is concordant with the new model defining low-risk

and high-risk groups; the balanced presence of extensive areas of

LGE in intermediate-risk patients defines a subgroup of HCM

patients where LGE imaging (its amount) may resolve complex deci-

sions regarding ICDs. Potentially, %LGE may provide additional infor-

mation (none, minimal, or extensive myocardial fibrosis), tilting the

balance in favor of or against an ICD indication.

Although the novel ESC risk-stratification algorithm seems to out-

perform previous strategies, the decision to indicate an ICD or not

remains challenging, and the American College of Cardiology Founda-

tion/American Heart Association (ACCF/AHA) HCM guidelines still

are commonly applied by many HCM clinics in addition to individual

clinical judgment. The evidence of patients scored with lowest risk but

experiencing SCD7 warrants further attention. In our cohort, 4 patients

in this group showed extensive fibrosis, one of them with an apical

aneurysm and 3 of them with ≥1 positive risk factors according to tra-

ditional risk algorithms.3 These patients would probably benefit from

ICD placement, according to latest AHA recommendations.

Furthermore, our results show that the amount of LGE is related

to most of the individual risk factors supported by ACCF/AHA HCM

guidelines and significantly predicts the presence of 1 or ≥2 risk

factors.

Greater insights into the question of myocardial fibrosis and SCD

risk will be investigated through the emergence of novel T1-mapping

techniques. Native T1 can accurately detect diffuse myocardial sub-

strate in HCM, which is underestimated by LGE, allowing the discrim-

ination with other cardiomyopathies; native T1 is a strong and

independent predictor of adverse cardiovascular outcomes in nonis-

chemic cardiomyopathies.35–37 Additional limitations of the model,

such as the use of LA anteroposterior diameter instead of LA volume

index or even LA function, also may be resolved in futures studies.

4.1 | Study limitations

This represents an observational and descriptive study with a rela-

tively small number of patients. Our present initiative does not

attempt to associate LGE with SCD or validate the new ESC method

of risk stratification; rather, it is intended to describe the LGE findings

after applying the new stratification score in a real-world scenario of

HCM. Given the concordance with low- and high-risk groups, our

results suggest that LGE may play the role of arbitrator in subgroups

of HCM patients with ambiguous individual risk. Given the lack of

prognostic data and the small number of patients in this

intermediate-risk group, our results should be confirmed in future

studies. The proportionally low percentage of patients in the

intermediate- and high-risk groups represents the current clinical sce-

nario and may explain the lack of significant differences in the extent

of LGE on regression analysis.

There are different techniques for LGE quantification. The high

grayscale threshold method used in this study has shown high repro-

ducibility and has been validated by histopathology, providing the

best representation of total fibrosis burden.24,38 Most important,

Chan et al, whose results have been used as the background to

define the LGE extension according to the SCD risk, applied this gray-

scale threshold method in their study.18

FIGURE 2 Positive correlation between the amount of LGE and the

estimated risk of SCD at 5 years. Blue, low-risk patients; red,
intermediate-risk patients; green, high-risk patients. Abbreviations:
LGE, late gadolinium enhancement; LV, left ventricular; SCD, sudden
cardiac death.
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5 | CONCLUSION

LGE extension is concordant with the SCD risk model defining low-

and high-risk groups. An extensive area of LGE identifies higher-risk

patients, whereas minimal LGE or the absence of LGE predicts low indi-

vidual risk. In intermediate-risk patients, it may provide additional infor-

mation, allowing better discrimination to support an ICD decision. With

the growing penetration of CMR into clinical cardiovascular practice,

LGE quantification holds promise for SCD stratification in HCM.39
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