Table 1.
No. | Algorithm | Operating principle | Ref. |
---|---|---|---|
Enumerative approach | |||
1 | YMF | (29) | |
2 | DREME | Simple word- based | (9) |
3 | oligonucleotide analysis | (30) | |
4 | CisFinder | (10) | |
5 | By Thomas et al | Simple word-based with Clustering technique | (31) |
6 | POSMO | (32) | |
7 | Weeder | (7) | |
8 | FMotif | (11) | |
9 | By G. Pavesi | (33) | |
10 | MITRA | Tree-based | (34) |
11 | CENSUS | (35) | |
12 | RISOTTO | (36) | |
13 | SLI-REST | (37) | |
14 | DRIMust | (38) | |
15 | MCES | Tree based with clustering technique | (12) |
16 | WINNOWER | (39) | |
17 | Pruner | (40) | |
18 | cWINNOWER | (41) | |
19 | By Sze et al | (42) | |
20 | RecMotif | Graph-theoretic | (43) |
21 | ListMotif | (44) | |
22 | TreeMotif | (45) | |
23 | GWM | (46) | |
24 | GWM2 | (47) | |
25 | Voting | (48) | |
26 | PMS1 | (49) | |
27 | PMS2 | (49) | |
28 | PMS3 | (49) | |
29 | By Sze et al | (50) | |
30 | PMSi | (51) | |
31 | PMSP | Fixed candidates | (51) |
32 | Stemming | (52) | |
33 | PMS4 | (53) | |
34 | PMS5 | (54) | |
35 | PMS6 | (55) | |
36 | PairMotif | (56) | |
37 | iTriplet | (57) | |
38 | PMSPrune | (58) | |
39 | Pampa | (59) | |
40 | PMS3p | (60) | |
41 | Provable | Modified candidate | (61) |
42 | qPMSPruneI | (62) | |
43 | qPMS7 | (62) | |
44 | By Tanaka et al | (63) | |
45 | Random projection | (64) | |
46 | Uniform projection | Hashing | (65) |
47 | Low-dispersion projection | (66) | |
48 | MULTIPROFILER | Extended sample-driven (ESD) | (67) |
49 | Pattern Branching | (68) | |
50 | Ref Select | Reference selection | (69) |
Probabilistic approach | |||
51 | MEME | (14) | |
52 | STEME | EM | (15) |
53 | EXTREME | (16) | |
54 | Profile Branching | (68) | |
55 | APMotif | EM with clustering | (70) |
56 | AlignACE | (17) | |
57 | SPWDM | (71) | |
58 | By Lawrence et al | Gibbs sampling | (72) |
59 | Motif- Sampler | (73) | |
60 | BioProspector | Gibbs Sampling with hidden markov | (18) |
62 | MITSU | (74) | |
63 | MCEMDA | Stochastic Expectation Maximization (sEM) | (75) |
64 | SEAM | (76) | |
65 | By Jensen et al | (13) | |
66 | LOGOS | (77) | |
67 | BaMM | (78) | |
68 | By Jääskinen et al | (79) | |
69 | By Frith et al | Baysian approach | (80) |
70 | SBaSeTraM | (81) | |
71 | By Wakefield et al | (82) | |
72 | MotifCut | (83) | |
73 | MCL-WMR | Graphic based | (84) |
74 | EPP | Entropy-based position projection | (6) |
75 | CONSENSUS | Greedy Algorithm | (85) |
76 | By Huang et al | heuristic algorithm | (86) |
GA | |||
77 | St-GA | (87) | |
78 | GAMI | (88) | |
79 | FMGA | Simple GA | (89) |
80 | MDGA | (90) | |
81 | By Paul et al | (91) | |
82 | By Vijayvargiya et al | Clustering | (92) |
83 | By Gutierrez et al | (93) | |
84 | GARPS | (94) | |
85 | GAEM | (95) | |
86 | GADEM | (96) | |
87 | CompareProspector | (97) | |
88 | By Fatemeh et al | Hybrid | (98) |
89 | GEMFA | (99) | |
90 | MRPGA | (100) | |
91 | By Xiaochun et al | (101) | |
92 | GAME | (19) | |
93 | By Yetian et al | (102) | |
94 | By Li et al | Others | (103) |
95 | MOGAMOD | (104) | |
PSO | |||
96 | PMbPSO | Standard PSO | (4) |
97 | LPBS | (105) | |
98 | PSOMF | (106) | |
99 | Lei et al | (107) | |
100 | Lei et al | (108) | |
101 | DSAPSO | Modified PSO | (109) |
102 | By Karabulut et al | (110) | |
103 | Lei et al | (111) | |
104 | Hardin et al | (112) | |
105 | GSA-PSO | Hybrid | (113) |
106 | SPSO-Lk | (114) | |
ABC algorithm | |||
107 | Multiobjective ABC | (115) | |
108 | MO-ABC/DE | ABC | (116) |
109 | Consensus ABC | (8) | |
ACO algorithm | |||
110 | Machhi et al | ACO with Gibbs sampling | (117) |
111 | MFACO | (118) | |
112 | Cheng et al | ACO with EM | (119) |
CS algorithm | |||
113 | MACS | CS | (120) |
Combinatorial | |||
114 | STGEMS | Enumerative and probalistic approaches | (121) |
115 | MDScan | (122) | |
116 | MUSA | Probabilstic and machine learning approaches | (123) |
117 | EMD | Multiple algorithms | (124) |
118 | MobyDick | Dictionary | (125) |
119 | WordSpy | (126) |