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Abstract: In this paper, we investigated the feasibility of using surface enhanced Raman 
spectroscopy (SERS) and multivariate analysis method to discriminate liver cancer and 
nasopharyngeal cancer from healthy volunteers. SERS measurements were performed on 
serum protein samples from 104 liver cancer patients, 100 nasopharyngeal cancer patients, 
and 95 healthy volunteers. Two dimensionality reduction methods, principal component 
analysis (PCA) and partial least square (PLS) were compared, and the results indicated that 
the performance of PLS is superior to that of PCA. When the number of components was 
compressed to 3 by PLS, support vector machine (SVM) with a Gaussian radial basis function 
(RBF) was employed to classify various cancers simultaneously. Based on the PLS-SVM 
algorithm, high diagnostic accuracies of 95.09% and 90.67% were achieved from the training 
set and the unknown testing set, respectively. The results of this exploratory work 
demonstrate that serum protein SERS technology combined with PLS-SVM diagnostic 
algorithm has great potential for the noninvasive screening of cancer. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Cancer has become a major public health problem around the world. Biopsy remains the gold 
standard method for cancer diagnosis, but it is invasive and impractical for patient with 
multiple suspicious lesions. Tumor markers screening is useful for the early diagnosis, but the 
biomarkers test also has some limitations in sensitivity and specificity [1]. In recent years, 
surface-enhanced Raman scattering (SERS) has been demonstrated to be a non-invasive and 
label-free technique and has great potential for biomedical applications and clinical diagnosis 
[2–5]. Blood serum is an ideal material for noninvasive diagnosis. During the monitoring or 
treatment process, serum samples can be collected conveniently from the patients. In addition, 
at the early stage of cancer, the biomolecules such as proteins contained in serum will 
undergo subtle alterations which can be revealed by SERS spectroscopy [6]. Therefore, it is 
significant to explore serum-based SERS methods for cancer screening. 

Recently, Li et al. have screened prostate cancer [7], bladder cancer [8] and esophageal 
cancer [9] from healthy volunteers using serum-SERS method. Feng et al. have use serum 
SERS technique to distinguish nasopharyngeal cancer patients from normal volunteers [10]. 
And we have also developed a membrane electrophoresis based serum SERS method for 

                                                                      Vol. 9, No. 12 | 1 Dec 2018 | BIOMEDICAL OPTICS EXPRESS 6053 

#346611 https://doi.org/10.1364/BOE.9.006053 
Journal © 2018 Received 28 Sep 2018; revised 26 Oct 2018; accepted 1 Nov 2018; published 7 Nov 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.006053&domain=pdf&date_stamp=2018-11-07


cancer detection. And the results show that gastric cancer samples [11], nasopharyngeal 
cancer samples [12] and colorectal cancer samples [13] can be distinguished well from the 
healthy volunteers, respectively. Moreover, the SERS analysis of serum has also been used 
for tumor stages detection [6]. The above studies demonstrate that noninvasive serum SERS 
analysis technique has great potential for cancer screening. 

Usually, the differences of SERS spectra between cancer samples and normal samples are 
tiny, and it is difficult to differentiate them with direct observation. Therefore, the robust and 
effective spectral data statistical methods are needed to extract effective diagnostic 
information. Principal component analysis (PCA) is the most common statistical method for 
simplifying spectral data set and determining the key components that best explain the 
differences in the spectra [14]. Briefly, the main object of PCA is to reduce the high 
dimension of spectra into a few principal components (PCs) while retaining the most 
diagnostically significant information for classification. However, there are usually many PCs 
after PCA processing (more than 10 components) that make it difficult to understand the key 
differences between cancer samples and normal samples. Moreover, in PCA, the relationship 
between input and output variables is not considered [15]. To solve this problem, partial least 
square (PLS) is employed as a useful method which can detect the input variables that are 
related to the output variables [16]. It has been demonstrated that PLS analysis would be 
better than PCA for dimension reduction and spectroscopic diagnostics since it provides 
group affinity information (class membership) to maximize the variations between groups 
[17]. In addition, support vector machines (SVM), introduced by Vapnik and Burges [18], has 
attracted great attention due to the ability of revealing non-linear relationships and producing 
models that achieve better classification results than traditional methods [19,20]. The 
combination of PCA (or PLS) and SVM has been successfully applied in the fields of cancer 
screening, disease prediction, gene selection, etc [7,19–22]. 

Traditional analysis pays more attention to the classification ability of algorithms. By 
optimizing the statistical method, high diagnostic sensitivity, specificity and accuracy could 
be easily obtained in the classification of known samples [10]. However, the diagnostic 
capabilities of statistical algorithms should be assessed by the prediction accuracy of 
unknown testing samples. In this study, to evaluate the diagnostic capabilities of our 
statistical methods, a quarter of the spectra data were divided into unknown testing set. 
Furthermore, simultaneous screening of various cancers in a single SERS assay is a 
requirement of clinical application. In order to meet this demand, three groups of serum 
samples obtained from liver cancer patients, nasopharyngeal carcinoma patients and normal 
volunteers were introduced. 

In this paper, we explored a data analysis method for the simultaneous screening of two 
different types of cancer. SERS spectra of serum proteins from 104 liver cancer patients (LC), 
100 nasopharyngeal cancer patients (NC) and 95 normal volunteers were recorded using our 
previous method [23]. PLS and PCA were employed to extract the feature of SERS spectra, 
and SVM was then used to form a diagnostic algorithm and classify various cancers 
simultaneously. To the best of our knowledge, this is the first report on serum protein-based 
SERS for simultaneous screening of multi-type cancers. This exploratory work may further 
promote the serum SERS analysis technique into clinical applications. 

2. Material and methods 

2.1 Preparation of Ag nanoparticles 

Ag nanoparticles (NPs) were prepared by the aqueous reduction of silver nitrate with 
hydroxylamine hydrochloride using the method developed by Leopold and Lendl [24]. 
Briefly, 4.5 mL sodium hydroxide (10−1 mol/L) was added to 5 mL hydroxylamine 
hydrochloride (6 × 10−2 mol/L) and then the mixtures were added to 90 mL silver nitrate (1.11 
× 10−3 mol/L). The mixture was kept stirring until a homogenous solution with a milky gray 
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color was obtained. Figure 1 shows the transmission electron microscope (TEM) image and 
the UV-Vis-NIR absorption spectrum of the Ag NPs. The average size of the Ag NPs is 45 ± 
6 nm. The absorption maximum was located at 417 nm. 

 

Fig. 1. The UV-Vis-NIR absorption spectrum of Ag NPs. The inserted picture is the TEM 
micrograph of Ag NPs. 

2.2. Preparation of human serum samples 

Ethical approval was obtained in order to study the human blood samples. Three groups of 
blood samples were provided by the Fujian Provincial Cancer Hospital, including 95 blood 
samples from healthy volunteers as the control group, 104 blood samples from LC patients 
and 100 blood samples from NC patients. Table 1 lists the detailed clinical diagnostic 
information of these patients (e.g. age, gender, and histopathological stage). After 12 hours of 
overnight fasting, 3 mL blood samples were collected from the subjects between 7:00-8:00 
A.M.. Blood samples were stood at room temperature (27°C) for 30 min until the blood clotted. 
Supernatant (including some blood cells and serum) was then centrifuged (1000 rpm, 10 min) 
to separate blood cells from the serum. And then the serum samples were obtained. 

Table 1. Clinical information of liver cancer and nasopharyngeal cancer patients 

 Liver cancer (n = 104) Nasopharyngeal cancer (n = 100) 

Age   

Mean 49.7 54.1 

Median 48.9 52.5 

Gender   

Male 95 71 

Female 9 29 

Cancer stage   

T1-T2 30 37 

T3-T4 34 52 

Undefined 40 11 

2.3 Experiment and SERS measurements 

Figure 2(a) shows the schematic of membrane electrophoresis and SERS measurement. 
Briefly, 2.5 μL serum sample was blotted onto the cellulose acetate (CA) membrane for 

                                                                      Vol. 9, No. 12 | 1 Dec 2018 | BIOMEDICAL OPTICS EXPRESS 6055 



electrophoresis. After electrophoresis, the CA membrane was equally divided into two parts 
along a vertical line. Half of the CA membrane was stained to label the location of proteins 
for reference. And the serum proteins in the remaining half membrane were cut down 
according to the labeled position. The isolated band of protein was collected in a test tube. 
Acetic acid was added to dissolve the membrane and Ag NPs were subsequently added and 
mixed to enhance the Raman signal of proteins. The mixture was incubated at 37°C and kept 
stirred for 5 min. Then SERS measurements were performed, and the raw spectra were 
obtained. The pH value of the final protein-Ag NPs mixture was 2.9. The average 
concentration of proteins in the final solution was 368 ± 45 μg/mL (measured by the Bradford 
Protein Assay Kit (Order no. C503021, Sangon Biotech, Shanghai, China)). More details 
about the process of membrane electrophoresis can be seen in our previous study [23]. 

The SERS spectra were acquired in the range of 500-1700 cm−1 with a 10 s integration 
time using a Renishaw confocal Raman micro-spectrometer (inVia System). A 785 nm diode 
laser was focused through a Leica 50 × objective (NA: 0.75) to excite the samples. The 
incident laser power was about 0.1 mW. The WIRE 3.4 software package (Renishaw) was 
employed for the spectral acquisition. 

2.4 Data analysis 

The schematic diagram of data analysis is shown in Fig. 2(b). The analysis of SERS spectra 
was performed in three steps: (1) data preprocessing; (2) dimensionality reduction; (3) 
classification and prediction. The raw spectra represented a composition of SERS signal and 
autofluorescence background signal. The autofluorescence background were removed from 
the raw spectra by an automated algorithm [25]. All background-removed SERS spectra were 
further normalized to the integrated area under the curve. This normalizing method enabled a 
better comparison of the spectral characteristics among the three groups [26]. The entire data 
set of the serum proteins SERS spectra was divided into two parts: the training set and the 
testing set. The training set was composed of 224 randomized spectra (NLiver = 78, 
NNasopharyngeal = 75, and NNormal = 71) and the testing set was composed of the remaining 75 
spectra (NLiver = 26, NNasopharyngeal = 25, and NNormal = 24). 

PLS was first performed to reduce the spectral dimension by extracting a set of 
components (latent variables). And then, SVM algorithm was used on these components for 
distinguishing various cancer samples from normal samples. To assess the performance of 
PLS-SVM approach, the traditional multivariate statistic analysis method of principal 
component analysis-linear discriminant analysis (PCA-LDA) was also applied to classify the 
same SERS data set. 

2.4.1 Partial least squares 

PLS can be used as a dimension reduction technique similar to PCA [27]. In this study, XN × M 
(N is the number of samples in the training set and M is the number of wavenumbers) is the 
input variables matrix and YN × 1 (grouping variable) is the output variables matrix. PLS 
algorithm establishes the relationship of X and Y by score vectors. For a single response 
variable (grouping information), the PLS model is described as 

 
y

X = SP + E

= Uq + F

′
′

 (1) 

where SN × A and UN × A are the PLS score matrices (A is the number of PLS components); PM × 

A is the loading matrix of XN × M; EN × M is the residual matrix of XN × M; q is the loading matrix 
of y; and FN × 1 is the residuals vector of y. In this study, the PLS score matrices and loading 
matrices were calculated using the SIMPLS [28]. The mean squared error of prediction 
(MSEP) estimated by 10-fold cross-validation was used to determine the number of PLS 
components [29,30]. 
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Fig. 2. (a) Sample preparation and SERS measurement. (b) Schematic overview of the 
procedure for spectra classification and diagnosis. 
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2.4.2 Support vector machine 

Support vector machine (SVM), based on the foundations of Statistical Learning Theory [18], 
is a powerful supervised learning algorithm for classifying complex groups. As a classifier, 
SVM is considered to be superior over traditional linear approaches due to its capability of 
processing classification problem with nonlinear boundary by mapping sample data set into a 
higher dimensional space [31]. 

To obtain a SVM classifier with good classification ability, choice of an appropriate 
kernel function which projects data to the feature space is critical [22]. The most frequently 
used kernel function is the Gaussian radial basis function (RBF): 

 
2

2
( ) exp

2
i j

i j

x x
K x ,x

σ
− −

=
 

 (2) 

where xi and xj are the two generic sample data vectors; and σ is the Gaussian radial width that 
should be optimized. In addition, once the spectra are mapped to the feature space, there are 
countless separating hyperplanes, leading to the risk of over-fitting [19]. To avoid this 
problem, a penalty factor C is introduced to allow some training data to be misclassified. In 

this study, the penalty factor C and the parameter 
2

1

2σ
 were optimized by grid search [22]. 

In addition, the SVM diagnostic algorithm was evaluated by the 10-flod cross validation. All 
SVM analyses were performed in MATLAB using the LIBSVM toolbox 3.23 developed by 
Chang and Lin [32]. 

2.4.3 Testing 

To assess the diagnostic capabilities of the PLS-SVM model, a set of testing data was 
performed. Firstly, the testing spectra data TB × M (B is the number of samples in the testing set 
and M is the number of wavenumbers) was mapped to the feature space using the same linear 
transformation method as the training set: 

 B A B M M AS T P× × ×=  (3) 

where PM × A is the PLS loadings calculated from training set and SB × A is PLS scores of the 
testing set. The SB × A was then used as an input for the SVM model, and the diagnostic results 
were obtained. At the same time, the accuracy, sensitivity and specificity of the diagnosis 
were also calculated. 

3. Results 

3.1 Membrane electrophoresis SERS 

The membrane electrophoresis method was used to extract serum proteins from serum 
samples for cancer screening. The mean SERS spectra and standard deviations (overlying as 
shaded color fill) of serum proteins for each group are shown in Fig. 3. Table 2 lists tentative 
assignments for the SERS peaks, according to some literatures [11,12,23,33,34]. 
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Fig. 3. The mean SERS spectra and standard deviations of serum protein for three groups: (1) 
liver cancer patients (n = 104), (2) nasopharyngeal cancer patients (n = 100) and (3) healthy 
volunteers (n = 95). 

Table 2. The Raman peak potions and tentative assignments of major vibration bands 

Peak positions (cm−1) Tentative assignments 
620 Phenylalanine: C-C twisting mode 
643 Tyrosine: C-C twisting mode 
760 Tryptophan: ring breathing 
828 Tyrosine: ring breathing; 
854 Tyrosine: ring breathing 
878 Hydroxyproline; Tryptophan 
936 proline/valine/protein backbone (α-helix conformation): C-C stretching mode 

1004 Phenylalanine: ring breathing 
1031 Phenylalanine: C-H in-plane bending mode 
1048 Protein: C-N / C-O stretching mode 
1126 Protein: C-N stretching vibration 
1207 Hydroxyproline; Tyrosine 
1260 Amide III 
1340 Tryptophan: CH2/CH3 wagging, twisting and/or bending mode 
1446 Proteins: CH2 bending mode 
1552 Tryptophan: C = C stretching mode 
1685 Amide I 

All three groups have similar SERS spectral profiles, such as Raman peak positions and 
bandwidths. Primary Raman peaks at 620, 643, 760, 828, 854, 1004, 1207, 1260, 1446 and 
1685 cm−1 can all be observed in both cancer and normal groups. However, there are still 
some nuances between different groups, which provides the possibility of constructing 
diagnostic models for cancer detection and screening. 

3.2 Dimensionality reduction of SERS spectra 

For comparably assessing the performance of PLS in the dimensionality reduction of SERS 
spectra, the standard multivariate analysis method of PCA was also applied in the same 
spectra data set. Simply using a large number of components will lead to over-fitting in the 
diagnostic model. The mean squared error of prediction (MSEP) estimated by 10-fold cross-
validation is a more statistically sound method for choosing the number of components in 
either PCA or PLS [29]. 
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Fig. 4. The relationship between the number of components and the mean squared error of 
prediction (MSEP). 

In this study, dimensionality reduction of SERS spectra is the main objective of PLS and 
PCA. Therefore, the adjusted Wold’s R criteria is an appropriate choice for determining the 
number of components [29] and this criteria states that an additional component will not be 
included in the model unless it provides significantly better predictions. As shown in Fig. 4, 
the MSEP curve of PLS shows two different phases of behavior. In the first phase, the MSEP 
decreases rapidly, whilst in the second phase the rate of decrease becomes quite slow. 

According to N=3 N=4

N=3

MSEP  - MSEP
100% <5%

MSEP
×  (N is the number of components), the 4th 

component should be excluded from the model. Therefore the cut-off point of the MSEP 
curve of PLS is located at the third PLS component. In addition, the MSEP curve of PCA also 

shows two different phases of behavior. According to N=6 N=7

N=6

MSEP  - MSEP
100% <5%

MSEP
× , the 

7th component should be excluded from the model and the cut-off point of PCA is located at 
the 6th PCA component. The cut-off point selection method is consistent with previous 
studies [29,35]. Figure 5 shows the PLS loadings of the first three PLS components. 

 

Fig. 5. PLS loadings of the first three PLS components. 
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3.3 Model training and testing 

In this study, the RBF kernel SVM algorithm was used to classify serum protein SERS 
spectra in the feature space. In order to find the best classifier, the penalty factor C and the 
Gaussian radial width σ were optimized by the grid search method [19,22]. The grid search 
method was performed to exhaustively search optimal parameters by trying various pairs of 
parameters. The search range for penalty factor C was implemented from 2−10 to 210 with step 

of power of two. And the search range of parameter 
2

1

2σ
 was from 2−15 to 215 with step of 

power of two. 

 

Fig. 6. 3D map of classification accuracy as a function of parameter C and Gaussian radial 
width σ. 

Figure 6 is the 3D map of diagnostic accuracy as a function of penalty factor C and 

parameter 
2

1

2σ
. This figure clearly shows that the diagnostic accuracy changes with the 

penalty factor C and Gaussian radial width σ. When 2log 9C =  and 2 2

1
log ( ) 1

2σ
= , the 

maximum diagnostic accuracy of 95.08% is achieved. 

Based on the optimal parameters of C = 512 and 
2

1
2

2σ
= , the classification of serum 

protein SERS spectra from LC, NC and normal groups in the training set could achieve a 
diagnostic accuracy of 95.09%. Figure 7(a) shows the classification results of the RBF kernel 
SVM model in the feature space. Circles represent the support vectors. And the serum protein 
samples from LC, NC and normal groups are marked as cross, asterisk, and triangle, 
respectively. A light red separating hyperplane is created in the feature space to distinguish 
LC samples from other samples. Similarly, a light green hyperplane and a light blue 
hyperplane corresponding to the NC samples and the normal samples, respectively, are also 
created. Figure 7(b) shows the results of classifying SERS spectra in the testing set using the 
diagnostic model as shown in Fig. 7(a). 

In order to evaluate the performance of the PLS-SVM method, the PCA-LDA and PCA-
SVM algorithms were also performed. The classification and prediction results of PLS-SVM, 
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PCA-LDA and PCA-SVM methods were summarized in Table 3. With the combination of 
LDA, the first 24 principal components accounted for 95.1% of the total variance were used 
to classify the SERS spectra in the training set, and the classification accuracy of 98.21% was 
obtained with the 10-fold cross-validation. However, the prediction accuracy of the SERS 
spectra in the unknown testing set using the PCA-LDA algorithm is only 85.33%, which is 
lower than that of PLS-SVM algorithm. This result demonstrates that including too many 
components in the diagnostic model may lead to over-fitting. Compared with this, PCA-SVM 
with 6 components performs worse. The classification accuracies of the training set and the 
testing set are 91.96% and 80%, respectively. With a minimum number of components (A = 
3), the PLS-SVM algorithm performs well not only in the classification of the training set but 
also in the prediction of the testing set. As shown in Table 3, high diagnostic sensitivities of 
92.31% and 96%, and specificities of 100% and 88%, respectively, were achieved for 
screening LC and NC simultaneously. These results indicate that SERS combined with PLS-
SVM has great potential for cancer screening. 

 

Fig. 7. (a) SVM classification results for the three groups of samples (cross: liver cancer; 
asterisk: nasopharyngeal cancer; triangle: normal subjects; circle: support vectors). (b) 
Prediction results of the testing set. 

Table 3. Results of classification of SERS spectra 

Methods Number of 
components 

Training 
accuracy 

Testing 
accuracy 

Sensitivity 
of LC 

Specificity 
of LC 

Sensitivity 
of NC 

Specificity 
of NC 

PCA-LDA 24 98.21% 
(220/224) 

85.33% 
(64/75) 

92.31% 
(24/26) 

97.96% 
(48/49) 

96.00% 
(24/25) 

86.00% 
(43/50) 

PCA-SVM 6 91.96% 
(206/224) 

80.00% 
(60/75) 

92.31% 
(24/26) 

95.92% 
(47/49) 

80.00% 
(20/25) 

86.00% 
(43/50) 

PLS-SVM 3 95.09% 
(213/224) 

90.67% 
(68/75) 

92.31% 
(24/26) 

100.00% 
(49/49) 

96.00% 
(24/25) 

88.00% 
(44/50) 

Moreover, analysis of different tumor (T) stages and early detection coupled with timely 
and standard treatment (e.g. chemotherapy and/or radiotherapy) is critical to improving 
patients’ survival. Three groups of SERS spectra from the T1-T2 stage LC (or NC) group, 
T3-T4 stage LC (or NC) group, and the normal group were fed into the PLS-SVM model for 
analysis (using 10-fold cross-validation), and Table 4 summarizes the diagnostic results. For 
LC samples, the accuracy of the classification is 91.82%; the sensitivities of the two different 
cancer stage groups (T1-T2 stage and T3-T4 stage) are 83.33% and 94.12%, respectively; and 
the specificity is 93.68%. For NC samples, the accuracy of the classification is 90.22%; the 
sensitivities of T1-T2 stage group and T3-T4 stage group are 83.78% and 92.31%, 
respectively; and the specificity is 91.58%. Compared with the sensitivity of early stage (T1-
T2) samples, a higher diagnostic sensitivity for advanced T stage (T3-T4) samples is 
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obtained. This result is consistent with previous study of blood plasma SERS [6]. For 
advanced T stage of cancer (T3-T4), the abnormal metabolism is more serious than that of 
early stage (T1-T2). Besides, compared with the normal, advanced T stage cancer is probably 
with distant metastasis, thus resulting in complex changes in serum proteins. 

Table 4. Classification results of the PLS-SVM method using 10-fold cross-validation 

Diagnostic combinations 
Sensitivity Specificity Accuracy 

T1-T2 T3-T4   
Liver cancer 

T1-T2 (N = 30) vs. T3-T4 (N = 34) vs. Noamal (N = 
95) 

83.33% 
(25/30) 

94.12% 
(32/34) 

93.68% 
(89/95) 

91.82% 
(146/159) 

Nasopharyngeal cancer 
T1-T2 (N = 37) vs. T3-T4 (N = 52) vs. Noamal (N = 

95) 

83.78% 
(31/37) 

92.31% 
(48/52) 

91.58% 
(87/95) 

90.22% 
(166/184) 

4. Discussion 

The main object of this paper is to develop a robust SERS spectra analysis method for the 
simultaneous screening of two or more different types of cancer. For this, the membrane 
electrophoresis method was used for the purification of serum proteins from two types of 
cancer subjects (liver cancer and nasopharyngeal cancer) and normal subjects. The serum 
proteins were then mixed with Ag NPs for SERS measurement and the PLS-SVM algorithm 
was employed to build the diagnostic model for SERS spectra classification and prediction. 
Traditional analysis of serum protein SERS is more concerned about the classification effects 
between cancer subjects and normal subjects. This study pays more attention to the diagnostic 
ability of the PLS-SVM model in the unknown testing set. Moreover, in previous studies, 
each type of cancer was discriminated from normal respectively (eg, liver cancer vs. noamal; 
colorectal cancer vs. noamal; gastric cancer vs. noamal) [11,23]. However, simultaneous 
detection of various cancers in a single test is a practical requirement for clinical application. 
In this study, three groups of serum SERS spectra belonging to LC, NC, and normal were 
simultaneously introduced into the PLS-SVM model as input data for analysis. And the 
results demonstrated that the membrane electrophoresis based SERS technique in conjunction 
with PLS-SVM diagnostic algorithm has great potential for simultaneous screening of 
different types of cancer, which is more convenient for clinical analysis and applications. 

PLS and PCA methods were used for dimensionality reduction of SERS spectral data. 
Both of these methods map the SERS spectra to the feature space and extract a few 
components as a combination of the original spectra data, but they yield the components in 
different ways. PCA extracts a set of orthogonal principal components in the 
multidimensional SERS spectra data set that best explains the significant differences in the 
spectra. In PCA, the relationship between input and output variables is not considered, and all 
input variables are given the same weight in the process of normalization (the input spectra 
data set is often scaled to zero mean and unit variance) [36]. Compared with this, PLS pays 
more attention to the relationship between input and output variables and performs better in 
finding the input variables that have the closest relationship with the output variables. PLS 
can yield the PLS components (latent variables) to obtain the maximum group separation. 
Therefore, the PLS components could explain the diagnostic relevant variations rather than 
the significant differences in the spectra. Kettaneh et al. have demonstrated in simulations that 
PLS can achieve its minimum mean square error with fewer components than the PCA 
approach [37], and our findings (as shown in Fig. 4) are consistent with this report. Moreover, 
in Fig. 4, the second component in PCA increases the prediction error of the model, indicating 
that the combination of predictor variables contained in this component is not strongly 
correlated with respond variables. That's because PCA constructs components to explain 
variation in process variables, not respond variables [16]. 

Furthermore, as summarized in Table 3, the diagnostic performance of PLS-SVM is 
superior to that of PCA-LDA algorithm. There maybe two reasons: on one hand, the PCA 
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technique missed some important diagnostic information during the process of data analysis 
such as the relationship between input and output variables; on the other hand, between 
cancer and normal serum SERS spectra, there is nonlinear boundary that could not be easily 
classified by linear algorithms such as LDA [7]. In addition, the analysis results show that the 
diagnostic accuracy of the traditional method (PCA-LDA and PCA-SVM) in the unknown 
testing set is between 80% and 85%, while the diagnostic accuracy of PLS-SVM is 90.67%. 
This result indicates that the PLS-SVM method has great potential for the diagnostic 
screening of new testing subjects. 

5. Conclusion 

In this study, the serum membrane electrophoresis based SERS technology combined with 
PLS-SVM was successfully implemented for the classification and prediction of subjects 
from normal volunteers, LC patients and NC patients. The RBF kernel SVM diagnostic 
model based on the PLS components classified the SERS spectra of normal and two types of 
cancer simultaneously with high accuracy (95.09%). In addition, a diagnostic accuracy of 
90.67% was also achieved by PLS-SVM in the unknown testing set. PCA-LDA and PCA-
SVM algorithms were also applied to classify the same data set for assessing the performance 
of PLS-SVM, and the results demonstrated that the diagnostic performance of PLS-SVM is 
superior to that of PCA-LDA and PCA-SVM algorithms. This exploratory study demonstrates 
that the membrane electrophoresis based SERS combined with PLS-SVM has great potential 
for non-invasive screening of cancer. 

In future, we will collect more samples with different cancer stages to verify the reliability 
of this method and develop more powerful algorithms to improve this SERS analysis method 
for accurate cancer diagnosis. 
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