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Abstract: Hyperspectral stimulated Raman scattering (hsSRS) microscopy has recently 
emerged as a powerful non-destructive technique for the label-free chemical imaging of 
biological samples. In most hsSRS imaging experiments, the SRS spectral range is limited by 
the total bandwidth of the excitation laser to ~300 cm−1 and a spectral resolution of ~25 cm−1. 
Here we present a novel approach for broadband hsSRS microscopy based on parabolic fiber 
amplification to provide linearly chirped broadened Stokes pulses. This novel hsSRS 
instrument provides >600 cm−1 spectral coverage and ~10 cm−1 spectral resolution. We 
further demonstrated broadband hsSRS imaging of the entire Raman fingerprint region for 
resolving the distribution of major biomolecules in fixed cells. Moreover, we applied 
broadband hsSRS in imaging amyloid plaques in human brain tissue with Alzheimer’s 
disease. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Optical microscopy has become a fundamental and indispensable tool for biomedical 
research. Because biological systems are heterogeneous at all scales, chemical imaging 
capable of probing a vast range of molecules in situ is becoming increasingly important [1]. 
Raman spectroscopy is a powerful technique for non-invasive characterization of biological 
material through their intrinsic molecular vibrational contrasts. Extending this capability to 
microscopy, a Raman microscope becomes especially useful for the study of biological 
samples [2–4]. However, the extremely small cross section of spontaneous Raman scattering, 
makes it unsuitable for high-speed imaging. To address this limitation, Coherent anti-Stokes 
Raman scattering (CARS) has been developed, which offers orders-of-magnitude higher 
sensitivity and video-rate imaging [5–7]. However, it has a well-known nonresonant 
background problem which originates from a four-wave mixing process that distorts 
vibrational spectra and causes image artifacts [7,8]. Developments in CARS microscopy have 
mitigated the nonresonant background problem by optimizing experiment procedures and 
post-image data processing [9–11]. In particular, broadband CARS microscopy followed by 
phase retrieval has significantly advanced the capability of CARS imaging [12]. In parallel 
development, stimulated Raman scattering (SRS) microscopy has emerged as an alternative to 
CARS as a powerful non-destructive and label-free chemical imaging technique [13–21]. It 
has shown tremendous potential in detecting tumor margins [22–24], unraveling dysregulated 
lipid metabolism [25,26], and tracing small molecule metabolites and drugs [27–31]. These 
capabilities benefit from the high sensitivity of SRS imaging as well as the molecular 
selectivity of Raman spectroscopy. In both CARS and SRS microscopy, two synchronized, 
ultrashort laser pulses (pump and Stokes) are focused tightly onto a sample. The energy 
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difference between the two pulses coherently excites an intrinsic Raman vibrational mode 
allowing for chemically selective imaging. The growing popularity of SRS microscopy over 
CARS stems from the fact that, unlike CARS, SRS inherently removes the nonresonant 
background and has a strict linear relationship with molecular concentration, thus facilitating 
quantitative chemical imaging [14,21]. In comparison, quantitative CARS through 
background removal (typically using phase retrieval) is a nontrivial task [8]. However, CARS 
has a major advantage over SRS in that broadband Raman spectra can be easily acquired at 
high speed due to its lock-in free detection scheme and resistance to laser intensity noise. In 
fact, this is one of the major limitations of SRS. High resolution and broadband vibrational 
spectra are of paramount importance to resolve minute chemical composition variation in 
biological samples and detect small molecules. To differentiate and quantify different 
molecules based on their unique vibrational signatures, multiple Raman transitions must be 
probed with SRS, necessitating the use of multiplex SRS or hsSRS imaging [32–36]. 

In a typical SRS microscopy setup, transform-limited picosecond lasers with narrow 
bandwidths, which are less than the Raman line widths (<10 cm−1), are used to probe Raman-
active vibrations of interest with high spectral resolution. To probe a different transition, the 
energy difference between the two pulses must be tuned by changing one of the two 
wavelengths. This tuning process typically involves changing the crystal temperature or 
cavity length of the optical parametric oscillator [23,37]. Additionally, only a limited 
wavelength range can be scanned without time-consuming adjustments. In practice, 
wavelength tuning of typical laser sources is usually slow and susceptible to optical power 
and wavelength drifts, which limits the acquisition speed and quantification accuracy of SRS 
imaging. 

Another way to acquire spectroscopic information is to employ a combination of 
picosecond and femtosecond laser sources. This can be achieved with either a grating based 
spectrometer or Fourier-transform spectrometer [38,39]. With this method, imaging at 4 μs 
per spectrum can be achieved, enabling applications in flow cytometry. While pico-femto 
based SRS imaging approaches work well for simple systems, the complicated 
instrumentation and limited sensitivity restrain their use mostly to SRS imaging in the C-H 
imaging for lipids and proteins. One reason for the limited sensitivity is that the optical power 
is distributed among many Raman vibrational modes so that each Raman transition is less 
efficient than that of SRS excitation with picosecond lasers. 

An alternative approach to SRS excitation with picosecond lasers is SRS imaging with 
femtosecond lasers and the “spectral-focusing” approach [35,36,40–45]. The spectral 
focusing approach offers much higher spectral resolution than direct femtosecond laser 
excitation by sending the pulses through a dispersive medium. This introduces linear chirp 
through the temporal spreading of the frequency components of the two femtosecond 
excitation sources, leading to narrower instantaneous bandwidths. Tuning different 
vibrational frequencies within the range of the broad laser bandwidth is done by simply 
varying the temporal delay between the two chirped pulses. Early reports have demonstrated 
the capability of employing the spectral focusing approach for SRS using a femtosecond 
oscillator and a fiber-generated secondary source [35,41]. However, in these reports, the low 
power output from the fiber limited the acquisition sensitivity and imaging speed. 

In either pico-femto or femto-femto SRS imaging, suitable synchronized laser sources are 
required. The introduction of the commercial dual output femtosecond lasers such as the 
Insight DS + (SpectraPhysics) offers a robust and simple solution to the excitation laser 
requirement. Such systems are advantageous compared to Ti:sapphire and fiber based laser 
systems because of their simple tuning, high power, and synchronization stability. Thus, it is 
becoming the leading laser source for hsSRS imaging. The laser outputs a fixed 1040 nm 
laser with ~60 cm-1 bandwidth and a tunable laser with ~150 cm−1 bandwidth. In both pico-
femto and femto-femto hsSRS configurations, the spectral coverage of SRS is limited by the 
spectral bandwidths of the laser sources. With Insight DS + , it is limited to <300 cm−1. 
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Additionally, the spectral resolution of most current systems is limited to ~20-25 cm−1 
[46,47]. While these capabilities are often sufficient for imaging in the high wavenumber 
region (2800-3050 cm−1), they are insufficient for imaging in the fingerprint region (700-1800 
cm−1). 

SRS imaging spanning a large spectral range is under intense technical development. 
Beier et al. demonstrated the acquisition of a reliable Raman spectrum over a large spectral 
range using a supercontinuum generated by a photonic crystal fiber as either the pump or the 
Stokes beam [41]. However, this approach suffers from low signal-to-noise ratio (SNR) due 
to two reasons: (1) large bandwidth mismatch and (2) low power output from the fiber, which 
significantly limit the imaging speed to (3 ms/pixel). Most recently, Karpf et al. developed a 
broadband SRS time-encoded technique using rapidly wavelength-swept continuous wave 
probe lasers combined with a short-duty-cycle actively modulated pump laser [48]. High 
speed, broad spectral coverage (750-3150 cm−1) and high resolution were achieved in this, 
albeit, complex configuration. However, the low power output limited the system’s sensitivity 
and with it the imaging speed to achieve a sufficient SNR (250 μs per spectral point). 

In this manuscript, we present a simple and novel approach for broadband hsSRS 
imaging. based on parabolic pulse amplification, which offers increased spectral range and 
spectral resolution [49]. It has been shown that propagating an ultrashort pulse through a 
sufficiently long, normally-dispersive fiber amplifier results in a linearly chirped parabolic 
pulse, which is the asymptotic self-similar solution of the nonlinear Schrodinger equation 
with gain [50–53]. In addition, it is within this self-similar regime that the seed pulse 
spectrum will be significantly broadened due to self-phase modulation. It is important to note, 
however, that additional higher-order linear or nonlinear effects may occur and ultimately 
limit the propagation length of the parabolic pulses and/or introduce parasitic effects [54–56]. 
Nonetheless, numerous studies have performed numerical and experimental studies which 
provide a series of guidelines in determining the design of fiber amplifiers to operate in the 
asymptotic parabolic pulse regime [52,53,57,58]. 

Besides spectral broadening, parabolic amplification has two noteworthy properties: (1) 
the peak power, duration, and shape of the resulting pulses depend only on the seed pulse 
energy and (2) the output pulse has nearly perfect linear up-chirp. As a result, linearly chirped 
pulses with ~50 nm (or 500 cm−1) bandwidth centered around 1050 nm can be readily 
obtained. In combination with the existing pump pulse provided by the Insight DS + , a 650 
cm−1 spectral range, a 2-fold increase over our previous system, can be covered by hsSRS 
without changing laser wavelength. Due to the increased bandwidth, the Stokes laser will also 
be much longer in pulse duration after chirping, leading to improved spectral resolution. To 
optimize the spectral resolution, the linear chirp of the pump and the Stokes are matched. We 
achieve and demonstrate that a maximum spectral resolution of 10 cm−1 is possible when the 
chirps of the excitation beams are properly matched. We then validate the benefit of 
employing parabolic pulse amplification on our system by the hsSRS imaging of mammalian 
cells and brain tissue. 

2. Materials and methods 

2.1 Chemicals and materials 

Reagent grade methanol, oleic acid, benzonitrile, nitrobenzene, dimethyl sulfoxide (DMSO), 
hydrochloride acid, and insulin were all purchased from Sigma-Aldrich (St. Lous, MO) with 
purity ≥ 95%. Glass slides were purchased from VWR (Radnor, PA). Glass coverslips are 
from Thermo Scientific (Porthsmouth, NH). 

2.1 Cell culture 

Human embryonic kidney (HEK293) cells were maintained at 37° C in a humidified 5% 
(vol/vol) CO2 air incubator and cultured in DMEM (Invitrogen Carlsbad, CA) supplemented 
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with 10% (vol/vol) FBS and 1% (vol/vol) penicillin/streptomycin. Before imaging, HEK293 
cells were seeded on glass cover slips and fixed with 4% paraformaldehyde (PFA) for 30 
minutes. 

2.2 Insulin fibrils control samples 

10 mg of insulin was placed into 4 ml of HCl. The solution was mixed at 300 rpm in a water 
bath kept at a constant temperature of 70° C for 18 hours to induce the fibril formation. The 
final sample was centrifuged for 5 minutes to isolate fibrils from dissolved insulin. The 
insulin fibril sample was mounted on a glass slide and a coverslip was added prior to imaging. 

2.3 Alzheimer’s brain samples 

Brain tissue from a donor was provided by University of Washington Neuropathology Core, 
Seattle, WA. A superior temporal gyrus brain tissue was collected less than 8 hours of 
postmortem interval, fixed in 10% neutrally buffered formalin solution. A cross section 
through cortex and white matter at ~500 μm was mounted on a glass slide and a coverslip was 
added prior to imaging. 

2.4 Hyperspectral SRS imaging with a parabolic fiber amplifier 

A broadband femtosecond dual beam laser system (Insight DS + from Spectra-Physics) was 
used for hsSRS imaging as described in our earlier publication [46,59]. Figure 1 shows our 
experimental setup. The Stokes beam is coupled into a 4-m polarization maintaining Yb-
doped fiber (YB1200-6/125 DC-PM Thorlabs) with a beam collimator and acts as the seed for 
laser amplification. An input pulse seed energy of 25 pJ was used for amplification 
throughout this entire study which ensures convergence to the parabolic regime [51–53,58]. A 
half wave plate was placed at the input to optimize polarization of the seed pulse transmitting 
through the fiber. The gain fiber is then pumped in the counter-propagation pumping scheme 
by a 976-nm high power laser diode (BWT) and combined with the seed using a wavelength 
division multiplexer with a power rating of 7 W (PMC02112340 IFT Technologies). An 
electro-optical modulator is then placed in the amplified Stokes beam, modulating at 20 MHz. 
A motorized delay line is inserted into the Stokes beam to scan the time delay between the 
pump and the Stokes. After collinearly recombining the two beams through the dichroic 
mirror DMSP1000 (Thorlabs), the beams were directed in to a home-built laser scanning 
microscope (NIKON Eclipse FN1). An Olympus microscope objective of 25 ×  
(XLPLN25XWMP2) with 1.05 NA was used to focus the beams onto the samples. On the 
detection side, the Stokes beam is filtered out by a short–pass filter FESH1000 (Thorlabs), 
and the pump beam is detected by a 10 ×  10 mm2 silicon photodiode (Hamamatsu) biased at 
56 V and then amplified by a home-built transimpedance amplifier. Stimulated Raman loss 
(SRL) signal is detected with a Zurich Instruments lock-in amplifier (H2FLI). For SRS 
imaging, the lock-in time constant is at 8 µs and each frame is 512 ×  512 pixels with 0.5 
frame/sec acquisition speed, unless noted otherwise. 

For hsSRS imaging with spectral focusing, the pump beam is chirped by a grating 
stretcher in quadruple-pass configuration [60,61] while the amplified Stokes pulse is chirped 
further by 36 cm of high dispersion H-ZF52A glass rods to appropriately match the chirp of 
the pump beam. To compare the imaging capability of the new laser system versus the old 
laser system, a spectral-focusing SRS setup with outputs directly from the Insight laser was 
employed. In this setup, the pump is chirped by 60 cm of high dispersion glass rods, while the 
Stokes is chirped by a grating stretcher setup. 
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To demonstrate the capability of the improved hsSRS imaging in biological samples, we 
imaged PFA fixed HEK293 cells via the traditional glass rod setup and our parabolic fiber 
amplifier. In most Raman studies of biological samples, the region from 2800 to 3050 cm−1 is 
studied due to the CH2 stretching vibration of lipids (2850 cm−1) and the CH3 stretching 
vibration of proteins (2930 cm−1). Because protein and lipids have distinct SRS spectra in this 
high wavenumber region, visualization of cell morphology can be readily achieved due to 
heterogeneous distribution of biomolecules in different cellular compartments. Figure 5(A) 
shows a SRS frame (512 x 512 pixels) at 2930 cm−1 of fixed HEK293 cells using the glass 
rod setup with an 800 nm pump beam. We imaged PFA fixed HEK293 cells with a total of 45 
spectral frames at wavenumbers ranging from 2795 to 3165 cm−1 at 0.5 frame/sec with a pixel 
dwell time of 8 µs. At every single pixel in the frame, a spectrum can be plotted (equivalent 
to 360 μs per spectral acquisition). Figure 5(C) shows HEK293 cells imaged with the 
parabolic amplifier pumped at 2.5 W. The Stokes bandwidth is ~40nm, which provides nearly 
doubled spectral range (510 cm−1) than the original SRS system. This improvement can be 
readily observed when the SRS spectra of a cell’s lipid droplet, nucleus, nucleolus, 
cytoplasm, and background/water are plotted as points A, B, C, D, and E respectively. 
Because we acquired a larger range from 2745 to 3330 cm−1 with a total of 115 spectral 
images, our equivalent spectral acquisition time increased to 920 μs per spectrum. However, 
depending on the application, the number of spectral points can be reconfigured dynamically 
for faster imaging speed, but it is beyond the scope of this manuscript. In Fig. 5(B), we can 
see that although the spectra of lipid droplet and the nucleolus are distinct from each other, 
the subtler differences between the nucleolus and cytoplasm are harder to discern. However, 
with the increased resolution in Fig. 5(D), we are better suited to resolve not only the fine 
spectral features of lipid droplets, but also those of the nucleolus and the cytoplasm. This 
enhanced capability should prove useful in monitoring cellular processes such as cell 
division, cell differentiation and apoptosis, which involve the redistribution of lipids, proteins, 
and nucleic acids [64,65]. Additionally, with this improved bandwidth, we start to see the 
detectable signal from water, which can be very useful for studying the intracellular 
hydrodynamics in single cells [66,67]. 
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can be covered with two separate scans at two different pump wavelengths. In addition to 
increased spectral coverage, we demonstrate an improvement in spectral resolution compared 
to traditional spectral-focusing hsSRS setups. The resolution is currently limited to ~10 cm−1, 
close to the natural linewidth of the Raman peak measured. It can be further improved by 
incorporating prism pairs or pulse shapers to correct the higher order chirp on the amplified 
Stokes beam. We demonstrated fast hsSRS imaging in the fingerprint region with the 
parabolic amplifier which offers much richer spectral features than our original SRS system. 
At the current stage, our data acquisition speed is mostly limited by the delay line stage 
movement, scanning mirrors, and software setup for a minimum pixel dwell time of 4 us. 
Even with an 8 us pixel dwell time that was used for imaging, the equivalent acquisition time 
per spectra in the fingerprint region is 1.6 ms/spectra, which enables acquisitions speeds 
faster than references [40] and [46], but comparable to broadband CARS imaging, which has 
achieved spectral acquisition time of 3.5 ms with a spectral coverage of ~425 – 2,000 cm−1 
[12]. However, we note that quantitative spectral measurement of CARS requires phase-
retrieval, and therefore it is necessary to acquire the full spectrum at high spectral resolution. 
In contrast, because hyperspectral SRS does not have the non-resonant background problem 
and the signal is strictly linearly proportional to concentration, it is not necessary to sample 
the entire spectrum. In fact, discrete sampling at selected wavenumbers via feature selection 
is more effective in quantitative analysis of a multicomponent system [73,74]. This has been 
illustrated in SRS imaging of nucleic acids using only three wavenumbers in the C-H region 
[16]. In our spectral focusing SRS configuration, discrete sampling can be readily achieved 
by programming delay stage positions to sequentially perform SRS imaging at predetermined 
wavenumbers. This will signicantly speed up SRS imaging and is a unique advantage over 
quantitative CARS imaging. We anticipate broad biomedical imaging applications of our 
proposed platform. Label-free chemical mapping of individual cells by hsSRS microscopy 
opens new opportunities of quantitative chemical imaging of metabolites and small molecule 
drugs in cells, tissues, and animals. Future studies will focus on improving spectral resolution, 
removing higher order chirp, improving sensitivity, and applying hsSRS imaging via 
parabolic pulse amplification to study lipid metabolism and tissue diagnosis. 
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