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Abstract: Optical coherence tomography angiography (OCTA) images rely on en face data 

projections for both qualitative and quantitative interpretation. Both maximum value and mean 

value projections are commonly used, and many researchers consider them essentially 

interchangeable approaches. On the contrary, we find that maximum value projection achieves 

a consistently higher signal-to-noise ratio and higher image contrast across multiple vascular 

layers, in both healthy eyes and for each disease examined. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Optical coherence tomography angiography (OCTA) adds to the value of the structural OCT 

[1] by acquiring detailed images of vasculature [2–4]. OCTA has become a powerful clinical 

tool in the evaluation of retinal vascular disorders [5]. By using the flow of erythrocytes as 

intrinsic contrast, OCTA can show details of capillaries that have low inherent contrast in 

structural OCT images [6–9]. Compared to the traditional angiography modalities such as 

fluorescein or indocyanine-green-based angiography, OCTA is non-invasive, fast, convenient, 

and mitigates risks related to dye injection [10–12]. 

Another significant advantage of OCTA over these modalities is its three-dimensional 

nature. With segmentation, volume scans can reveal details of multiple layers of the retinal and 

choroidal vasculatures, identifying key features of major eye diseases such as diabetic 

retinopathy and age-related macular degeneration [13–20]. En face angiograms offer the most 

intuitive way of evaluating such data. They present images that are analogous to traditional 

angiograms, while the segmented slabs show previously unseen details of individual capillary 

plexuses, which are thin laminar structures with little overlap. While shadowgraphic projection 

artifacts can affect the slabs in the deeper layers, algorithms that resolve these artifacts have 

been developed to produce useful en face images for interpretation and quantification [21]. And 

more complex computational approaches to understand OCTA data based on, for example, 

machine learning often appropriate en face images as primary data [22–24]. 

The production of an en face image is, by necessity and by construction, a reduction (i.e. a 

projection) in the dimensionality of the OCTA data set (in this case, from 3 to 2 dimensions). 

The quality of the resultant image determines the quality of any subsequent analysis. Several 

innovations have improved the OCTA image quality, such as bulk motion correction [25,26] 

and artifact suppression [21]. The frontier of OCTA research utilizes such algorithms to reduce 

artifacts, but more basic decisions about image processing can profoundly influence OCTA 

image quality. One such example is the method used to construct the en face representation. 

Currently, both maximum and mean value projections are widely used [25,27]. Here, we 

quantitatively compare the projection schemas, and show that the maximum value projection 

produces better en face representations of several anatomical slabs and retinal pathologies. 
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As seen in Fig. 1, slabs are of differing thickness and contain different relative amounts of 
signal and noise. Concisely, the task for en face projection is to determine what decorrelation 
value ( , )D x y  within a certain slab will lead to the most informative and interpretable en face 

image. While many algorithms interpret en face data, the specifics of various analytic 
techniques are not in general conserved, which means that the “best” metric for determining 
image quality may be context dependent. We therefore limited our analysis to metrics that are 
of broad interest and essentially agnostic with respect to analytic detail; specifically, the 
signal-to-noise ratio (SNR) and root-mean-square contrast (RMS contrast). We calculated 
both of these for en face projection images obtained by either mean or maximum value 
projection. The former, SNR, can be conveniently defined in OCTA as 

 
parafovea FAZ

2
FAZ

SNR  
−= D D

σ
  

where parafoveaD  and FAZD  represent means of the decorrelation in the parafovea and foveal 

avascular zone (FAZ), respectively, and 2
FAZσ  is the variance in decorrelation in the FAZ. 

Since, in healthy subjects, the FAZ is avascular 2
FAZσ  serves as an excellent estimate of the 

background in OCTA images. In the present study we manually demarcated a region within 
the FAZ to serve this purpose (Fig. 3). RMS contrast is a similarly simple metric obtained by 
calculating the RMS value across all pixels ( , )x y  in a region of interest A: 

 ( ) 2

( , )

1
RMS Contrast ( , )  

∈

= × −
x y A

D x y D
A

  

In the present study we take as the region of interest the entire en face projection. An image 
may have high SNR but low RMS contrast, for instance if the signal strength is strong but 
within signal regions pixel values are similar; alternatively, a low SNR image with high 
contrast may have sharp variation between pixels, yet this variation may be due in part or 
totally to noise. RMS contrast and SNR are thus complimentary measures, and in conjunction 
they provide a versatile description of image quality. 

To investigate the impact of the projection technique on clinically relevant metrics, we 
also calculated vessel density (VD) from en face projections. VD is quantified as the 
percentage VD = (vascular pixels)/(total pixels) × 100. To identify vascular vs. avascular 
pixels we employed an Otsu threshold. The Otsu threshold is a common approach that 
determines a threshold value by minimizing the intraclass variance. From this threshold an 
effectiveness metric can be calculated. The effectiveness metric runs from 0 to 1, with 0 
indicating completely ineffective segmentation (as would result from attempting 
segmentation on an image in which all pixels shared an identical value) and 1 indicating 
perfect segmentation (for instance from two totally distinguishable pixel populations, i.e. a 
binary image). 

We conducted this research with custom software written in Matlab 2018a (Mathworks, 
Natick, MA). 

3. Results 

We examined a total of 46 OCTA images from healthy eyes, calculating the SNR and RMS 
contrast values for both maximum and mean value en face projections in 3 different retinal 
slabs, the SVC, ICP and DCP. To elucidate the results, we plot binned (12 points/bin, 
average) SNR and RMS contrast by signal strength index (SSI), a proprietary metric output 
by the RTVue-XR instrument. SSI is based on the average tissue reflectance amplitude of the 

                                                                      Vol. 9, No. 12 | 1 Dec 2018 | BIOMEDICAL OPTICS EXPRESS 6414 



OCT image on a logarithmic scale; it is broadly indicative of OCTA image quality and runs 
on a scale of 1 (poor) to 100 (excellent). 

In this data set of healthy eyes maximum value projection achieves on average a better 
SNR and RMS contrast across every slab and SSI value. The difference between maximum 
value and mean value SNR and RMS contrast is greatest in the SVC and least in the ICP; not 
coincidentally, these are the thickest and thinnest slabs examined in Fig. 2 (mean thickness 
52.9 and 31.8 µm, respectively). In thick slabs the maximum value will make up 
proportionally less, and in thin slabs proportionally more, of the measurements used to 
construct the mean value projection. We expect, then, that as slab thickness decreases the 
correlation between maximum and mean value projection will increase. In the limiting case 
where a slab is just a single pixel thick the two measurements coalesce. 

This suggests that the relative advantage of the en face projection techniques depends on 
the thickness of the region being projected. To investigate this hypothesis, we examined the 
image quality metrics across the nerve fiber layer plexus (NFLP) [30]. The NFLP is thickest 
in the peripheral retina but tapers near the FAZ, providing an opportunity to examine 
anatomically similar material with varying thickness. In Fig. 3 we show SNR and RMS 
contrast against slab thickness in the NFLP; the SNR and RMS contrast values were 
calculated for concentric regions extending increasingly further from the FAZ in 20 pixel 
intervals (Fig. 3(a)). Here again the maximum value projection outperforms the mean value, 
and we also observe the convergence of SNR and RMS contrast for the projection as the slab 
thins. Yet even at a relatively thin slab (4.78 pixels) maximum value projection continues to 
achieve superior performance. And, perhaps more importantly, each projection technique 
yields metrics that are correlated with slab thickness (to two significant figures, mean 
projection: RMS contrast correlation coefficient = 0.89, SNR correlation coefficient = 0.93; 
maximum value projection: RMS contrast correlation coefficient = 0.97, SNR correlation 
coefficient = 1.00). Since the correlation is stronger for maximum projection in both cases, 
we can expect that the thicker the slab, the more maximum projection will outperform mean 
value projection; or, similarly, we would need extremely thin slabs (i.e. somewhat less than 
approximately 5 pixels thick) to expect mean value projection to perform as well as maximum 
value projection in similar tissue. 

We also examined en face projections in eyes with diabetic retinopathy (DR). DR often 
degrades OCTA quality, as evidenced by lower average SSI scores. Unfortunately DR affects 
decorrelation signal in more acute and pernicious ways than simply the reducing image 
quality, since disruptions like hyperreflective materials associated with exudation, such as 
hard exudates and suspended scattering particles in cysts, can introduce extravascular 
decorrelation signal into even otherwise avascular regions like the FAZ. For this reason the 
FAZ no longer serves as an adequate estimator for background in DR- the decorrelation 
signal in the FAZ can approach and indeed sometimes exceed the average decorrelation 
signal in the parafovea. Therefore restricting our analysis to just RMS contrast, we continue 
to find that maximum value projection outperforms mean value- yet by a smaller increment. 
Even given these diminishing returns in RMS contrast, DR is an example in which specific 
techniques may benefit from maximum value projection: vessel dilation can be used to 
accurately differentiate normal and DR eyes [31], and the higher contrast in maximum value 
projection is well-suited to this purpose. 

                                                                      Vol. 9, No. 12 | 1 Dec 2018 | BIOMEDICAL OPTICS EXPRESS 6415 



Fig. 2
Colum
2), an
projec
percen
image
and m
show 

2. En face projectio
mns (1-3): the supe
nd deep capillary p
ction. For each se
ntile of pixels will
es are similarly lev

mean value (blue) p
standard error of t

ons (3 × 3-mm) in
erficial vascular co

plexus (DCP, 3). R
et of projections, 
l be black, and the
veled for objectiv
projection SNR fo
the mean. Row d: R

n healthy eyes. Col
omplex (SVC, 1),

Row a: maximum v
color scales were
e top 10th percent

ve comparison. Ro
or these layers, app
RMS contrast. 

lorbars indicate de
 intermediate capi
value projection, r
e chosen such tha
tile will be white 

ow c: Binned max
proximately 12 po

ecorrelation value
illary plexus (ICP,
row b: mean value
at the lowest 10th
in order to ensure

ximum value (red)
oint/bin. Error bars

 

. 
, 
e 
h 
e 
) 
s 

                                                                      Vol. 9, No. 12 | 1 Dec 2018 | BIOMEDICAL OPTICS EXPRESS 6416 



Fig. 3
3 × 3
estima
varyin
edge e
parts 
region
en fac
mono
succes
Equiv

One area 
neovasculariz
region with l
segmented pr
region of int
background, 
phenomenon 
Example CNV
does not resp
discussed abo
contrast; in th
better contras
borne out qu
identifiable b
interrupt of th

The chori
maximum and
suited for this
of variable sla
it is difficult 
physiological 
analysis to R
diseases pres
choroideremia
to examine sin
adjacency to 
enhance signa
pixels sample
capillaries in 
investigate, w
contrast mean

Another q
SNR and RM

. SNR and RMS c
 mm en face ima
ation (gray) and c
ng width used to c
effects can influen
(b) and (c). The c
ns as in (a) for the 
ce projection. Err
tonically with dis
ssive points from

valent averages for

that mean p
zation (CNV), 
large decorrela
recisely or acc
terest. While m
mean value p
where mean 

V images for e
pect FAZ ava
ove is again im
he 9 images a
st (0.045 ± 0.0
ualitatively, as 
by visual inspe
he CNV vascul
iocapillaris (C
d mean value p
s study because
ab thickness (c
to obtain an a
structure like

RMS contrast. 
sent in the C
a [34,35]. At th
nce it is prone 
the retinal pi

al (rather than 
e the same un
the CC, and w

we performed b
n value still lag
question concer

MS contrast but 

contrast variation w
ge of a healthy ey
concentric circles 
alculate SNR and 
nce data in any of
colorbar indicates 

46 images examin
ror bars show sta
tance from the FA

m left to right co
r RMS contrast. 

projection may
since CNV d

ation signal. T
curately enoug
maximum valu
rojection coul
value projecti
each projection
scularity, obta
mpossible. We
nalyzed maxim
004 vs. 0.015 

CNV in the 
ection. Maxim
ature less. 

CC) itself is a
projection. Fro
e its thickness i
c.f. Fig. 3) are n
accurate measu
e the FAZ with

In terms of d
CC, including
he same time, 
to persistent im
gment epithel
simply suppre
nderlying flow

would render th
both projection
gs maximum va
rns not the rel
the repeatabili

with slab thicknes
ye showing the re
defining boundar
RMS contrast. Th

f the measurement
decorrelation valu
ned after maximum
andard error of th
AZ, so the leftmo
orresponding to t

y be useful i
develops adjac

This means tha
gh decorrelatio
ue projection 
ld suppress it. 
on might be e
n is shown in 

aining SNR us
e therefore lim
mum value pro

± 0.002, resp
maximum va

mum value rep

another intrigu
m a methodolo
is relatively un
not operative h
urement of flow
h which to est
diagnostics it i
g age-related 
it requires inte
maging difficu
ium [36–38]. 
ss randomly br

w- a condition
his advantage t
ns on the data 
alue projection
ative magnitud
ity of these me

ss in the nerve fibe
egion demarcated 
ries between sepa

he series is truncat
ts used to constru

ue. (b) SNR avera
m value (red) and 
he mean. Slab th
st point is the inn
thicker slabs and

is in the visu
cent to the ch
at if the boun

on signal may 
will detect an
 CNV, then, 
expected to p
Fig. 5. Unfor

sing a compar
mit quantitative
ojection achiev
pectively). Thi
alue projection
presentation of

uing target fo
ogical point of 
niform, and so 
here. But, unfor
w background
timate it. Onc
is also obviou
macular deg

elligent and oft
ulties and artifa

However, in 
right pixels), w
n that probabl
to mean value 
set of healthy 

n (Fig. 6). 
de of max and

etrics. To inves

er layer plexus. (a)
as FAZ for noise

arate regions with
ted before possible
uct the averages in
ages for concentric

mean value (blue)
hickness increases
nermost ring, with
d wider rings. (c)

ualization of 
horiocapillaris

ndary to the C
intrude into 

nd amplify th
is a clinically

perform relativ
rtunately, becau
rable techniqu
e analysis to j
ves almost a t
is quantitative 

n appears mor
f CNV also ap

or comparison 
f view, the CC 
the confoundin
rtunately, as w

d since we aga
e again we re
usly important
eneration [32

ften complex te
acts due to its d
order for aver

we require that
ly does not p
projection obs
eyes. In terms

d mean value p
stigate we calcu

 

) 
e 
h 
e 
n 
c 
) 
s 
h 
) 

choroidal 
 (CC), a 

CC is not 
the CNV 

his strong 
y relevant 
vely well. 
use CNV 

ue to that 
ust RMS 

three-fold 
 result is 

re readily 
ppears to 

between 
is ideally 

ng effects 
with CNV, 
ain lack a 
estrict our 
t. Several 
,33] and 

echniques 
depth and 
raging to 
t adjacent 
pertain to 
solete. To 
s of RMS 

projection 
ulated the 

                                                                      Vol. 9, No. 12 | 1 Dec 2018 | BIOMEDICAL OPTICS EXPRESS 6417 



intra-visit coe
results by slab
the table, the
elsewhere sig
While naively
projection si
surprisingly, m
perhaps the m
projection ach

Fig. 4
indica
maxim
scales
percen
projec
the m

The result
metrics. How
vessel density
which can be 
of these calcu
particular algo
such quantitat

efficient of va
b considered in
e coefficient o
gnificantly. Thi
y we may the
ince averagin
mean value SN

more salient obs
hieves a lower 

4. En face projec
ate decorrelation 
mum value projec
s were chosen such
ntile will be whi
ction RMS contra
ean. 

ts presented ab
wever, in OCTA
y [39,40] and v
quantified but

ulations may m
orithm than th
tive features is

ariation for the
n the text. The
of variation in
is is likely a m
erefore have e
g over pixel

NR coefficient 
servation is tha
coefficient of v

tion (3 × 3 mm)
value. Column 1
tion, row b: mean
h that the lowest 10
ite. Row c: Binn
st, approximately 

bove all concer
A we are usual
vessel fractal d
t, as noted prev

make a far large
e projection te
not tractable i

e data set of h
e results are sh
ncreases with s
manifestation o
expected a low
l values shou
of variation inc
at for both RM
variation and t

 in eyes with dia
: SVC, column 

n value projection
0th percentile of p
ned maximum va
7 data points/bin

rn SNR and RM
lly most intere
dimension [41]
viously, are cal
r difference in 

echnique emplo
in the context o

healthy individ
hown in Table
slab depth, so

of signal degra
w coefficient 
uld suppress 
creases the mo

MS contrast and
therefore better

abetic retinopathy
2: ICP, column 

n. For each set of 
pixels will be black
alue (red) and m
. Error bars show

MS contrast, w
ested in diagno
] or avascular 
lculated in diff
 values of the q
oyed, and an e
of this study. N

duals and aver
1. As can be r

ometimes mod
adation with sl

of variation f
random fluc

ost with slab de
d SNR, maxim
r repeatability. 

y (DR). Colorbars
3: DCP. Row a:
projections, color

k, and the top 10th
mean value (blue)
w standard error of

which are imag
ostic parameter

area [42,43] e
ferent ways. Th
quantities obta

exhaustive disc
Nonetheless, we

raged the 
read from 
destly but 
ab depth. 
for mean 
ctuations, 
epth. And 

mum value 

 

s 
: 
r 
h 
) 
f 

ge quality 
rs such as 
etc., all of 
he details 

ained by a 
cussion of 
e can still 

                                                                      Vol. 9, No. 12 | 1 Dec 2018 | BIOMEDICAL OPTICS EXPRESS 6418 



glean some in
from sample 
(VD), since a
arduous comp
more apparen
both mean an
entire en face
effectiveness 
rank sum tes
vessel density
impact on the
achieves sligh
reported for m

Fig. 5
Color
showi
region
line), 
pigme
Row b

Fig. 6
3-mm
projec
top 10
purpo

nsight as to th
calculations op

an estimate of 
putation, so we
nt in the output
nd maximum v
e image, exclu
metric for Ot
t p<.05 for ea

y. The choice 
e results obtain
htly higher effe
maximum value

5. Three example
rbars indicate deco
ing segmentation 
ns are segmented b
the inner nuclear l

ent epithelium (gre
b: Another exampl

6. En face projectio
m Maximum value
ction, color scales 
0% will be white

oses of comparison

he efficacy of 
perating on en

f VD can be o
e might expect 
t. Here we app

value projection
uding the FAZ
tsu thresholdin
ach layer), wi
of projection t

ned from the s
ectiveness metr
e projection. 

s of 3 × 3-mm e
orrelation value. R
of vasculature. P

by the following b
layer/outer plexifo
een line). (a2) ma
le of CNV, here in

on in the choriocap
e projection en fa
were chosen such
. (c) RMS contra

n. 

both projectio
n face images. 
obtained by sim
the difference 

ply an Otsu thr
n in the health
Z. Results are 
ng. The results
ith maximum 
technique, at l
ame algorithm
rics, we can be

en face projection
Row a: CNV pres
Purple: inner retin
boundaries vitreous
orm layer (yellow l
aximum value proj
n a thicker vascular

pillaris. Colorbars 
ace projection. (b)
h that the lowest 1
st. Axes in (c) ar

on methods by
We chose to 

mple threshold
between the p
reshold to segm
hy eye populat

reported in T
s are statistica
value projecti
least in this co

m. It is also wo
e slightly more

ns of choroidal n
senting in a thin l
na, yellow: CNV
s/internal limiting 
line), and Bruch’s
jection, (a3) mean

ar layer. 

indicate decorrela
) Mean value pro
10% of pixels will
re preserved from

y comparing th
examine vesse

ding and needn
projection meth
ment vascular 
tion from Fig. 
Table 2, as we
ally significant
ion producing 
ontext, has a n
orth noting that
e confident in t

neovascularization
layer. (a1) B-scan

V, red: CC. These
membrane (violet
 membrane/retinal

n value projection

ation value. (a) 3 ×
ojection. For each
l be black, and the

m Fig. 1 row d for

he results 
el density 
n’t be an 

hods to be 
pixels in 
1 for the 

ell as the 
t (Wilcox 

a higher 
noticeable 
t, since it 
the values 

 

. 
n 
e 
t 
l 
. 

 

× 
h 
e 
r 

                                                                      Vol. 9, No. 12 | 1 Dec 2018 | BIOMEDICAL OPTICS EXPRESS 6419 



Table 1. Coefficient of variation in healthy eyes for maximum and mean value projection 
by slab considered in the text. 

 SNR RMS Contrast 
Layer Max Projection Mean Projection Max Projection Mean Projection 

SVC 0.17 0.28 0.029 0.031 
ICP 0.18 0.37 0.038 0.052 
DCP 0.18 0.56 0.039 0.058 

Table 2. Vessel density and Otsu effectiveness metric (mean ± standard deviation) in 
healthy eyes calculated by Otsu threshold from maximum and mean value projection. 

 Vessel Density (%) Otsu Effectiveness Metric 
Layer Max Projection Mean Projection Max Projection Mean Projection 

SVC 0.46 ± 0.05 0.36 ± 0.06 0.84 ± 0.02 0.83 ± 0.04 
ICP 0.51 ± 0.09 0.45 ± 0.08 0.85 ± 0.04 0.84 ± 0.06 
DCP 0.46 ± 0.06 0.42 ± 0.04 0.87 ± 0.03 0.87 ± 0.04 

 

Fig. 7. Projection by average over different populations of voxels in healthy eyes. Colorbars on 
the right indicate the percentile of brightest pixels averaged over to form en face projections. 
Colors run from orange (maximum value projection) through purple (top 40 – 60th percentile 
of voxels) to blue (all voxels included, which is equivalent to mean projection). (a-c) SNR, (d-
f) RMS contrast. 

Although we so far limited our analysis to just maximum and mean value projection, it 
should be noted that these are only the most common techniques used to produce en face 
images in the literature, and not the only projection techniques possible or employed. 
Averaging suprathreshold voxels only or averaging the top 10the percentile, say, are also 
reasonable (and similar) approaches that are sometimes encountered. Actually we can 
consider any projection technique that averages successively larger populations of voxels as 
lying along a spectrum from mean projection (in which all voxels are averaged) to maximum 
value projection (in which just top voxel is “averaged”). In Fig. 7 we show results of 
projection achieved by averaging over cohorts in an A-scan in 20th percentile increments; i.e., 
projection in which all of voxels are included, then the top 80th percentile, then top 60th, etc. 
As the figure indicates, SNR and RMS contrast increase monotonically as the population of 
averaged voxels is reduced. This monotonic increase indicates that in terms of these metrics it 
is always best to include fewer members of the A-scan to form the projection. The limit of 
this series, of course, being to take just the maximum valued voxel. 
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4. Discussion and conclusion 

Parenthetically, it should be noted that even the list of projection techniques just provided is 
not exhaustive. Vascular pixels need not be colored according to decorrelation value after 
projection at all. Depth mapping is a common approach in which vascular pixels are colored 
according to location along an A-scan (possibly with pixel brightness still indicative of 
decorrelation value). In this particular instance the location of the brightest voxel along the A-
scan is physically meaningful, in contrast to something akin to a “center of mass” (i.e. a 
weighted sum of decorrelation values) that might select a location that does not correspond to 
any real feature in the slab. Depth mapping then is best performed as a sort of pseudo-
maximum value projection, in which the location of the maximum decorrelation voxel- rather 
than its value- is used to color the image. Of course pixels can convey more information that 
even just depth or decorrelation value, but other such pixel encodings are contextual and 
difficult to address in a systematic fashion. 

Projections that select the value of a pixel from an operation over the voxel values are 
amenable to a general comparison, though. The en face OCTA image quality in terms of SNR 
and RMS contrast is clearly superior with maximum value projection across the tissue slabs 
and the disease states examined. Since both of these metrics are important for most if not all 
image analysis tasks, the maximum value en face projection should be used in absence of 
competing concerns. 

Yet SNR and RMS contrast are just two quantitative metrics out of many that can and are 
used to characterize images. And, furthermore, as noted above, we are ultimately more 
interested in diagnostic parameters such as vessel density. Quantifying how the choice of 
projection techniques affects any specific calculation is beyond the scope of this report, but 
our results for vessel density give some indication that maximum value projection is also 
producing images in which we can be slightly more confident of further quantification. 
Examining just this single metric is suggestive but far from conclusive. We can, however, still 
take note of several qualitative features that may be important for image analysis. Qualitative 
features also usually lend themselves to maximum value projection. For instance, as indicated 
by the higher RMS contrast value captured by maximum value projection, capillaries are 
more easily demarcated from surrounding tissue- a considerable advantage for maximum 
value projection. Furthermore, capillaries appear to have their full length interrupted less by 
apparent noise fluctuations, indicative of a more accurate rendering of vasculature. And, 
finally, even when maximum value projection does incorporate noise in avascular regions 
into the flow signal, this noise is in general still easily discernable from the true flow signal 
(c.f. noisy pixels in the FAZ, Fig. 2 and 4). 

Such qualitative concerns cannot be conclusively addressed in absence of concrete metrics 
to interrogate. One question is whether there exists a regime in which mean value projection 
may be useful or even outperform maximum value projection. Actually, we know that in 
individual images mean value projection can achieve superior SNR; it is only after averaging 
over populations that maximum value projection emerges a clear winner. But such 
pathological cases where the mean value projection obtains better SNR are typically low 
quality images anyway. From a logical standpoint, one should only be tempted by mean value 
projection in cases where most, if not all, of the A-scan is sampling just signal in the region of 
interest- else, using the mean projection only deteriorates signal quality by conflating it with 
measurements of noise. Alternatively, if the region of interest includes significant background 
(for instance when the vasculature is difficult to segment precisely) OCTA image quality will 
not be jeopardized by intrusions from randomly large decorrelation signal. Both of these 
conditions can pertain in CNV cases, were vasculature can be dense and background 
sampling of the CC (which abuts the CNV region of interest) can be problematic. And the CC 
itself may be an even better example- signal is plentiful and the anatomical layer is not thick. 
Still, at least in terms of RMS contrast, mean value projection underperforms maximum value 
projection even for imaging CNV or the CC, and, furthermore, features in both are just as 
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easily discernable with maximum value projection. Actually, visual inspection reveals little 
intelligible variation between maximum and mean projection in the CC. In absence of a 
concrete qualitative difference between the approaches, the advantage of maximum projection 
in terms of RMS contrast offers a means to decide between otherwise seemingly equivalent 
choices. Ultimately, our results indicate that ideal conditions for mean projection do not 
pertain frequently enough in OCTA imaging to warrant much consideration, and even when 
they do, they do not render an obviously superior OCTA image. 

Our investigation used the decorrelation signal obtained from the SSADA algorithm to 
construct en face angiograms, but SSADA is of course not the only OCTA algorithm 
available. A natural question is whether our results are transferrable to other OCTA images 
constructed using different algorithms (for instance optical microangiography, OMAG [7]). 
Although we did not investigate these alternative algorithms directly, the underlying logic 
that supports our conclusions is unaltered, and so we expect that maximum value projection 
should perform better in general, independent of the specific OCTA algorithm. It would be 
interesting to test this hypothesis in future work. 

Since so many OCTA algorithms and diagnostic measures are concerned in the end with 
the vasculature it is paramount in most cases to construct the representation that can most 
readily distinguish between flow and non-flow pixels. SNR and RMS contrast are both 
excellent metrics to characterize this goal, and both indicate that maximum intensity 
projection is simply best suited to this task. 
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