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Abstract

Purpose: To investigate tri-component analysis of human cortical bone using a multi-peak fat 

signal model with 3D ultrashort echo time (UTE) Cones sequences on a clinical 3T scanner.

Methods: Tri-component fitting of bound water, pore water, and fat content using a multi-peak 

fat spectra model was proposed for 3D UTE imaging of cortical bone. 3D UTE Cones acquisitions 

combined with tri-component analysis were used to investigate bound and pore water T2*s and 

fractions, as well as fat T2* and fraction in cortical bone. Feasibility studies were performed on 

nine human cortical bone (HCB) specimens with regions of interests (ROIs) selected from the 

endosteum to the periosteum in four circumferential regions. Microcomputed tomography (μCT) 

studies were performed to measure bone porosity and bone mineral density (BMD) for comparison 

and validation of the bound and pore water analyses.

Results: The oscillation of the signal decay was well-fitted with proposed tri-component model. 

The sum of the pore water and fat fractions from tri-component analysis showed a high correlation 

with μCT porosity (R=0.74, P<0.01). Estimated bound water fraction also demonstrated a high 

correlation with BMD (R= 0.70, P<0.01).

Conclusion: Tri-component analysis significantly improves the estimation of bound and pore 

water fractions in human cortical bone.
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Introduction

Bone fracture is a widespread problem that affects over 75 million people worldwide and 

that results in more than 2.3 million osteoporotic fractures per year globally [1]. Historically, 

investigations into factors which underlie bone fracture risk have focused on evaluation of 
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areal bone mineral density (aBMD) [2, 3]. However, numerous studies have pointed to other 

more complex factors at multiple scale lengths as contributors to bone fragility [4], including 

bone geometry and microarchitecture [5,6], and, of increasing focus, water content. Most 

water in cortical bone exists in the ‘bound’ form, either loosely bound to the organic matrix 

or tightly bound to mineral [7,8]. A smaller fraction of water exists in the ‘free’, or ‘pore’, 

form, residing within the pores of the Haversian canals, as well as within the lacunae and 

canaliculi systems [9]. The loosely bound water (BW) provides information on bone organic 

matrix density, whereas the pore water (PW) provides information on cortical porosity [10]. 

It is of critical importance to separate these two water components during analysis, as they 

provide complementary information about bone biomechanics [11].

In recent years, based on both two-dimensional (2D) and 3D ultrashort echo time (UTE) 

sequences, bi-component exponential T2* fitting has been extensively studied as a method 

to separate bound and pore water in order to quantify matrix density and porosity [12–14]. 

T2* of BW is about 10 times shorter than that of PW, and can therefore be separated using 

UTE acquisitions combined with bi-component analysis [9]. Bae et al. reported a moderate 

correlation between human bone PW fraction and micro-computed tomography (μCT) 

porosity (R2= 0.31) [15]. More recently, Seifert et al. reported a good correlation between 

the long T2* fraction and μCT porosity (R2= 0.70 at 1.5 T and R2= 0.50 at 3 T), as well as 

between short T2* fraction and organic matrix density (R2= 0.63 at 1.5 T and R2= 0.44 at 3 

T) [16]. Other UTE-based biomarkers have also been reported to correlate well with μCT 

based results, such as effective T2* [17], dual UTE magnitude ratio [18], magnetization 

transfer ratio [19], and macromolecular proton fraction [20].

In addition to the bound and pore water components, human cortical bone may possess a 

considerable amount of fat that contributes to the total MRI signal. Several studies have 

observed oscillation of the multi-echo MRI signals during the bi-component fitting 

procedure [21,22]. Li reported observing oscillation of the signal when using bi-component 

fitting for human cortical bone, a phenomenon most likely due to the chemical shift caused 

by the fat in human cortical bone (HCB) [23]. Therefore, to improve the accuracy of bound 

and pore water quantification and evaluation in cortical bone, we propose a tri-component 

fitting method that incorporates a multi-peak spectral modeling of fat content.

In this study, the effects of fat on the quantifications of bound and pore water were first 

simulated using bi- and tri-component models. Then, HCB specimens were scanned using 

UTE MRI technique, and the results were analyzed by bi-component and tri-component 

fittings. The bi- and tri-component results were compared, then statistical correlations were 

calculated between MRI results and μCT-based porosity, and between MRI results and bone 

mineral density (BMD).

Methods

Pulse sequence

MRI of the specimens was performed on a 3T MR750 scanner (GE Healthcare, Waukesha, 

Wisconsin, USA) using a previously reported 3D UTE Cones sequence [24,25]. An eight-

channel transmit/receive knee coil was used for signal excitation and reception. Scanning 
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parameters included: field of view (FOV)=12 cm, sampling bandwidth=125 kHz, sampling 

window=1504 μs, flip angle=10°, TR=50 ms, voxel size= 0.5×0.5×2.0 mm3. UTE images 

were acquired with a series of 18 TE delays (9 sets of dual echo UTE acquisitions with 18 

TEs of 0.032, 0.2, 0.4, 0.6, 0.8, 1.2, 1.6, 2.4, 3.0, 3.6, 4.4, 5.2, 6.0, 6.8, 7.6, 15, 20, 25 ms). 

Scan time was 108 minutes for all sequences.

Multi-component signal model

T2* can be measured through exponential fitting of UTE images acquired at progressively 

increased TEs. For bi-component fitting, two components, namely a short T2* component 

and a longer T2* component, were assumed. With this model, the UTE MR signal is given 

by equation (1),

S* t = Fs × e
− t

T2S*
+ FL × e

− t
T2L*

+ noise (1)

where S*(t) is the normalized UTE MR signal, FS and FL are the fractions of the short and 

long T2* components, respectively (FS + FL = 1), and noise is white Gaussian noise. To 

better describe the component fractions, RSL is defined in equation (2) as the ratio between 

short and long component fractions.

RSL = FS FL (2)

However, for HCBs, equation (1) is not correct for most cases since it does not consider fat 

in the model. Therefore, in our study, we proposed a new tri-component fitting model, which 

includes a fat component in addition to the water component. Specifically, multi-spectral 

lipid peaks in bone were considered in the tri-component model, as shown in equation (3),

S* t = Fs × e
− t

T2S*
+ FL × e

− t
T2L*

+ FF × e
− t

T2F* ∑
n

αne
−i2π f nt

+ noise (3)

where αn is the relative amplitude of the nth spectral peak of fat, fn is the corresponding 

multi-spectral peak frequency shift, and FF is fat fraction, such that FS + FL + FF = 1. In this 

study, we assumed that there was no significant difference between the fat in bone marrow 

and fat present in other adipose tissue models based on Ren’s study [26]; therefore, we 

adopted a 9-peak fat model [27].

Simulation

Many factors may affect the final results of bi-component or tri-component fitting, such as 

the signal-to-noise ratio (SNR) and the number of fitting components [28]. To observe the 

effects of fat on different components proportions, free induction decay signals for different 
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RSL and FF values were simulated, as shown in Figure 1. Numerical simulation studies were 

also performed on both the bi-component and tri-component models and compared together, 

as presented in Supporting Information Figures S1 and S2.

In vitro study

Nine cortical bone specimens were harvested from fresh-frozen human tibial midshafts 

(n=9, 63±19 years old, 5 females and 4 males) provided by a nonprofit whole-body donation 

company (United Tissue Network, Phoenix, AZ). Bone specimens were cut to 25 mm in 

length using a Delta Shop Master band saw (Delta Machinery, Tennessee, USA). Bone 

specimens were stored in phosphate buffered saline (PBS) solution for 2 hours prior to 

imaging.

Data Fitting Analysis

The bi- and tri-component analysis algorithms were written in MATLAB (The Mathworks 

Inc., Natick, MA, USA) and executed offline on the DICOM images (only containing MRI 

magnitude signals). Bi-exponential and tri-exponential signal decay fittings, described 

above, were performed for T2* and fraction measurements of shorter and longer T2* water 

components, with additional fat fraction and fat T2* measurements obtained for tri-

exponential fitting. For both the simulation and in vitro datasets, the initial FF, FS, and FL 

values were equal to 0.33, while initial T2F* , T2S* , and T2L*  values were 5, 0.3, and 10 ms, 

respectively. The program allowed manual placement of regions of interest (ROIs) on the 

first image of the series. ROIs were then copied to each subsequent image. The mean 

intensity within each of the ROIs was used for subsequent curve fitting. The fitting was 

based on a least square curve fitting algorithm (lsqcurvefit in MATLAB).

μCT image analysis

A 5-mm thick section was cut from each of nine bone specimens at their middle length using 

a precise low speed saw (Isomet 1000, Buehler, USA). The short specimens were scanned 

all together using a Skyscan 1076 μCT scanner (Kontich, Belgium) at 8.78 μm isotropic 

voxel size. Other scanning parameters were as follows: 0.05 mm aluminum plus 0.038 mm 

copper filter, 100 kV, 100 mA, 0.4° rotation step, 4 frame averaging, 6 hours total scan time.

MRI results from one 2-mm slice were compared with the average calculated from 222 

slices of μCT data (8.87 μm thick). Twelve ROIs were selected at three cortical bone bands 

(from the endosteum to the periosteum) and at four anatomical sites (anterior, mid-medial, 

mid-lateral, and posterior). For each bone specimen, the MRI image was registered to the 

μCT-based porosity map by deriving the affine transform using four manually selected 

matched points in both datasets.

All data analyses were performed using MATLAB. The μCT data were processed to 

calculate the average porosity map for an axial 2-mm slice of the bone samples. A single 

gray level threshold was used for image segmentation to distinguish between bone and 

pores. This threshold was selected for each dataset using the peaks of gray level histograms 

and visual inspection of the raw images. The porosity pixel maps were generated by 

superimposing all 222 binary images. BMD was calculated for each voxel by comparing its 
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gray level with the average gray level of the scanned hydroxyapatite phantom with known 

density (0.25 and 0.5 gr/cm3).

Statistical analysis

For all 100 ROIs from 9 bones (4 ROIs from 1 bone sample, 12 ROIs from other 8 bone 

samples), the following comparisons were made: (1) fraction of the longer T2* component 

from bi-component analysis (FL_2com) with μCT porosity, (2) fraction of the longer T2* 

component from tri-component analysis (FL_3com) with μCT porosity, (3) the sum of fat 

fraction and fraction of the longer T2* component from tri-component analysis (FF

+FL_3com) with μCT porosity, (4) fraction of the shorter T2* component from bi-

component analysis (FS_2com) with μCT-based BMD, and (5) fraction of the shorter T2* 

component from tri-component analysis (FS_3com) with μCT-based BMD. For more 

detailed investigations, the Pearson’s correlations coefficients between all bi-component and 

tri-component parameters against the μCT-based results were calculated within the four 

studied tibial regions (anterior, mid-medial, mid-lateral, and posterior).

Results

Comparisons between bi- and tri-component simulation results are shown in Figure 1. The 

simulations in Figure 1 (a) illustrate the fat fraction impact on the signal decay pattern, such 

that increasing the fat fraction enhances the oscillation levels. Figure 1 (b) shows the impact 

of RSL on the signal decay pattern. Figure S1 presents a comparison between the estimated 

fractions and T2* values obtained from bi- and tri-component fittings on the simulated 

signals.

Figure 2 shows typical mapping results for a representative bone specimen. Figures 2 (b), 

(e), and (j) demonstrate the porosity maps from μCT, FL_2com, and FL_3com, respectively. 

Local maxima in both FL_2com (e) and FL_3com (f), as shown by red arrows, correspond to 

void regions in the porosity map (b), indicating that PBS resided in the pores of bone during 

MRI scanning. Figures 2 (c), (f), and (k) show the μCT-based BMD mapping, FS_2com, and 

FS_3com, respectively. FS_3com clearly demonstrates more similarity to BMD mapping 

compared with FS_2com.

A selection of typical ROIs for one bone specimen is shown in Figure 3 (a), where the bone 

is divided into four zones: anterior, posterior, mid-medial, and mid-lateral. Each zone is also 

separated into three bands: inner, middle, and outer band. Figures 3 (b, d) show bi-

component and tri-component fitting results for the ROI at the middle band of the anterior 

zone. Additionally, the zoom-in fitting curve shows that the tri-component model fit the 

actual data points better than the bi-component model did. The UTE image SNR (mean 

signal in ROI divided by signal standard deviation in background) at four representative 

ROIs selected in the bone middle band were 65.5, 36.3, 37.5, and 34.5, respectively.

Figures 4 (a)–(c) show the correlations of FL_2com, FL_3com, and (FL + FF)_3com with 

μCT porosity for all analyzed ROIs, respectively. The Pearson correlation coefficient 

between (FL + FF)_3com and μCT porosity (R=0.74) was much higher than FL_2com and 

FL_3com correlation coefficients with porosity (R=0.37 and R=0.69, respectively).
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Figures 5 (a) and (b) show the regression analyses of FS_2com and FS_3com versus μCT-

based BMD, with correlation coefficients equal to 0.28 and 0.70, respectively.

Table S1 presents the Pearson’s correlations between bi-component and tri-component 

parameters against the μCT results. Considering all studied ROIs, the correlations 

coefficients between μCT results and tri-component fractions were higher compared with 

those between μCT and bi-component fractions. Figure S3 shows how the average FF

+FL_3com correlated with average μCT based porosity where both demonstrated decreasing 

patterns from inner band towards outer band. However, the average FL_2com did not 

decrease progressively from inner band towards outer band.

Discussion

In this study, a tri-component model for T2* analyses in human cortical bone was proposed 

to include consideration of the chemical shift from fat. Oscillation of the MRI signal was 

well-fitted using the proposed tri-component model, with improved correlation coefficients 

over conventional bi-component fitting. As Biswas et al. and Li et al. [13, 23] have both 

shown, signal oscillation caused by fat in human cortical bone is inevitable. Although the fat 

content in bone marrow has been extensively studied, the effect of fat in the middle and 

outer layers of the cortical bone is still unclear. As highlighted in this study with 3D UTE 

Cones sequence, the fat content in all cortical bone layers must be considered when 

analyzing the bone water fractions.

MRI correlations with μCT-based porosity suggested that the tri-component model provides 

a more accurate estimation of the pore water (FL) and bound water (FS) fractions compared 

with bi-component model. A large number of ROIs (i.e., 100) from nine human cortical 

bone specimens were analyzed with both MRI and μCT. MRI data with 18 different TEs 

using 3D UTE cones sequences were fitted with both bi-component and tri-component 

models. The (FL + FF)_3com revealed the highest correlation with porosity measured by 

μCT (R=0.74), which suggests that the bone pores not only contain a pore water component, 

but also a fat component.

Ex vivo experiments of human cortical bones showed that short T2* component fraction 

(FS) estimated from tri_component fitting was much lower than that of bi-component fitting, 

especially in the inner and middle bands of the bone (Figures 2 (f) and (k)). This 

phenomenon is well explained in the simulation study results. As seen in Figure 1, the signal 

from a tri-component fitting model drops sharply at ultrashort echo times (0–8 ms). In bi-

component fitting models, much of the contributions from fat are counted as bound water, 

resulting in a higher BW fraction and, consequently, a higher estimate of RSL. This 

overestimation of bound water (FS) in bi-component fitting is inevitable even with optimized 

TE selection.

The large offset and change in slope between μCT and MR measures of porosity, as shown 

in Figure 4, were mainly due to the huge difference in spatial resolution, or voxel size, in 

μCT and MR imaging. In μCT, the porosity is calculated as the ratio of pore volume and 

total bone volume, whereas in MR imaging, the porosity is calculated as the pore water 
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fraction. Our μCT imaging system had a limited spatial resolution with a voxel size of 9 μm. 

Therefore, small pores (e.g., lacunae and canaliculi, smaller than 9 μm in diameter) could 

not be detected by μCT. However, by using UTE MRI, pore water in both large and small 

pores could be estimated by separating pore water and bound water signal via bi-component 

or tri-component fitting. Consequently, although the small pores themselves did not 

contribute to μCT porosity, pore water which was present in those small pores contributed to 

UTE MRI porosity. As a result, pore water fraction measured by MRI was always higher 

than μCT porosity. Similar offset between μCT volume-based porosity and MRI signal-

based porosity can be seen in the literature [29].

This study had several limitations. Firstly, UTE images with 18 different TEs required 108 

minutes. Reduced echo numbers and optimized TE selection for tri-component fitting will 

be needed for future clinical studies. Secondly, intra-voxel dephasing caused by background 

gradients, which can bias T2* quantification, was not considered in this study, since the 

main focus was to investigate the tri-component model and its advantages over the bi-

component model. In the next stage, we will explore how spatial resolution affects T2*s and 

relative fractions in bi-component and tri-component analyses and will explore potential 

techniques to correct for intra-voxel dephasing [30]. Thirdly, a relatively small number of 

human cortical bone samples (n = 9) were investigated, although a relatively large number of 

ROIs (n = 100) were analyzed in this study. More human cortical bone samples from 

different donors are likely to further increase the statistical significance of this study. 

Fourthly, the multi-peak fat spectra model was adopted from the fat model in liver, with 

reference to the fat model in marrow at 7T, based on an assumption that the fat in the cortical 

bone has no significant difference from other adipose tissue. The literature lacks a 

comprehensive report on fat peak modelling in cortical bone.

Conclusion

The 3D cones UTE tri-component T2* fitting method proposed in this study was based on a 

multi-peak spectroscopy fat model. The presented tri-component model was able to 

accurately quantify T2* and fractions of bound and pore water in cortical bone. The 

increased accuracy of tri-component analysis over bi-component analysis was demonstrated 

using μCT-based porosity and BMD measurements in 9 human tibial bone samples. The 

oscillation of the signal decay for selected ROIs was well-fitted with the proposed tri-

component model. The sum of pore water and fat fractions from tri-component fitting 

resulted in the highest correlation with porosity measured, suggesting a new potential 

biomarker for evaluation of bone quality for future clinical practice.
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Figure 1. 
Signal simulation based on a tri-component model (without noise). (a) shows how the signal 

changes for different fat fractions (FF), while the ratio between the short T2* (bound water) 

and long T2* (pore water) components (RSL) is fixed as 2. (b) shows how the signal changes 

for different RSL values, while FF is fixed as 0.2.
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Figure 2. 
Typical mapping results for one bone specimen (73-year-old male). (a) is the μCT image. (b) 

and (c) are the porosity maps and BMD maps obtained from the μCT results. (d) is the 

magnitude of the corresponding UTE image with echo time of 0.032ms. (e) and (f) are the 

short and long T2* component fraction maps obtained from bi-component fitting analysis. 

(i), (j), and (k) are fat, short, and long T2* component fraction maps obtained from tri-

component fitting analysis. Red arrows in (a) and (b) indicate pores in bone, while arrows in 

(d), (e), and(j) indicate residual PBS in the pores, which resulted in high MRI signal, as well 

as high fraction of long T2* component.
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Figure 3. 
ROI selection for one human cortical bone specimen MRI image at echo time of 0.032ms (a) 

and typical fitting results of both bi-component and tri-component analyses for anterior 

middle band (b, d). (c) is the enlarged view of the fitted results of the oscillation area.
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Figure 4. 
Scatter plots and linear regressions of μCT porosity on pore water fractions estimated with 

bi-component and tri-component fittings. (a) shows μCT porosity versus pore water fraction 

estimated with bi-component fitting (FL_2com), (b) shows μCT porosity versus pore water 

fraction estimated with tri-component fitting (FL_3com), and (c) shows μCT porosity versus 

the sum of pore water fraction and fat fraction estimated with tri-component fitting ((FL

+FF)_3com).
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Figure 5. 
Scatter plot and linear regression analyses of μCT-based BMD on bound water fractions 

estimated with bi-component and tri-component fitting. (a) shows μCT BMD versus bound 

water fraction estimated with bi-component fitting (FS_2com), while (b) shows μCT BMD 

versus bound water fraction estimated with tri-component fitting (FS_3com).
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