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Abstract

The biosynthetic route to the napyradiomycin family of bacterial meroterpenoids has been fully 

described 32 years following their original isolation and 11 years after their gene cluster discovery. 

The antimicrobial and cytotoxic natural products napyradiomycins A1 and B1 are produced using 

three organic substrates (1,3,6,8-tetrahydroxynaphthalene, dimethylallyl pyrophosphate, and 

geranyl pyrophosphate), and catalysis via five enzymes: two aromatic prenyltransferases (NapT8 

and T9); and three vanadium dependent haloperoxidase (VHPO) homologues (NapH1, H3, and 

H4). Building upon the previous characterization of NapH1, H3, and T8, we herein describe the 

initial (NapT9, H1) and final (NapH4) steps required for napyradiomycin construction. This 

remarkably streamlined biosynthesis highlights the utility of VHPO enzymology in complex 

natural product generation, as NapH4 efficiently performs a unique chloronium-induced terpenoid 

cyclization to establish two stereocenters and a new carbon−carbon bond, and dual-acting NapH1 

catalyzes chlorination and etherification reactions at two distinct stages of the pathway. Moreover, 

we employed recombinant napyradiomycin biosynthetic enzymes to chemoenzymatically 

synthesize milligram quantities in one pot in 1 day. This method represents a viable 

enantioselective approach to produce complex halogenated metabolites, like napyradiomycin B1, 

that have yet to be chemically synthesized.

The napyradiomycins are a diverse set of meroterpenoid natural products originally isolated 

from the actinomycete Streptomyces ruber (formerly Chainia rubra) in 1986,1,2 and today 

number in excess of 50 members.3 Initially isolated for their broad-spectrum Gram-positive 

antibacterial activities, additional studies of these hybrid polyketide-terpenoid compounds 
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have identified promising anticancer and antiangiogenic activities. Select few 

napyradiomycins have been synthesized in a racemic manner,4,5 and only one 

enantioselective synthetic route to napyradiomycin A1 has been achieved to date (Figure 1).6 

No chemical syntheses of cyclohexane-containing napyradiomycins have however been 

reported. The main challenge relating to the construction of the napyradiomycins, and 

similar molecules, is the limited methodology for stereospecific installation of their 

halogenated stereocenters. Recent pioneering advances have dramatically accelerated the 

field of asymmetric halogenation.7 As recently reported, over 2000 natural products that 

possess a chiral chlorinated or brominated stereocenter have been isolated, while only 12 

have been synthesized via a catalytic, enantioselective halogenation strategy.8 Many of these 

chiral halogenated metabolites have biological activities with significant therapeutic and 

chemical interest,9 necessitating development of viable strategies to perform this challenging 

chemical transformation.

Nature’s methodology for installing halogenated stereo-centers has been developed through 

a few unique approaches.10 Among the families of natural halogenating enzymes, the 

vanadium-dependent haloperoxidases (VHPOs) are remarkable biological catalysts that 

perform a two-electron oxidation of aqueous halide ions in the presence of vanadate (VO4
3−) 

and H2O2, generating the traceless byproduct water. Moreover, these enzymes have garnered 

significant interest as potential biocatalysts due to their robust thermostability and oxidative 

activity without the need for costly cofactors or redox regenerating systems.11 VHPOs can 

be divided into two major categories: the more extensively studied macroalgal and fungal 

VHPOs that produce diffusible hypohalous acid capable of reacting with electron-rich 

substrates;12 and Streptomyces VHPOs that perform regio-and enantioselective 

halogenations, suggestive of enzymatic capture of halenium ions.13

In 2007, the 43 kb napyradiomycin biosynthetic gene cluster (nap) was reported from the 

marine isolate Streptomyces sp. CNQ-525.14 Three VHPO homologues (napH1, H3, H4) 

were annotated within this cluster, suggestive of the first dedicated involvement of this 

family of enzymes in secondary metabolism.14,15 Moreover, the napH genes were localized 

in close proximity to those capable of producing napyradiomycin biosynthetic precursors 

identified from stable isotope incorporation experiments, including mevalonate-derived 

isoprene pyrophosphates and the polyketide 1,3,6,8-tetrahydroxynaph-thalene (THN, 1).16 

Subsequent in vitro validation of NapH1 demonstrated its ability to facilitate a stereospecific 

chloronium-induced cyclization of the prenyl moiety to form a 7-methylated 

napyradiomycin A1 derivative.17 Over the past decade, VHPO homologues were discovered 

and shown to catalyze many key bond-constructing reactions within Streptomyces sp. THN-

derived meroterpenoid biosyntheses, including the merochlorins,18–20 naphterpin, and 

marinone.21 These diverse chemical transformations include chlorination-induced 

dearomatization, cyclization, and isomerization reactions that proceed in regio-and 

stereospecific manners. We recently reported two unique transformations within the 

napyradiomycin biosynthetic pathway: the Mg2+-dependent NapT8 prenylation of 

monochlorinated 5 with dimethylallyl pyrophosphate (DMAPP); and the subsequent α-

hydroxyke-tone rearrangement of NapT8 product 6 to naphthomevalin (7) via VHPO 

homologue NapH3.5 This result rationalized the vicinal diprenylation motif unique to the 

napyradiomycins that formerly defied biosynthetic logic. While this study further expanded 
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the repertoire of biological activities from VHPO enzymes, the transformations for the 

generation of 5 from 1 and the enzymes required for the formation of the cyclized geranyl 

moiety in napyradiomycin B1 (3) remained unknown. Our studies aimed to understand the 

total biosynthetic logic of the entire pathway, while identifying these new enzymatic 

reactions. Herein we report the characterization of VHPO and prenyltransferase enzymology 

related to the biosynthesis of 3, and subsequent application of this streamlined five-enzyme 

pathway to enantioselectively synthesize milligram quantities of these complex 

napyradiomycin meroterpenoids.

Many napyradiomycins contain additional structural complexity via presumed halogenation-

induced cyclization of the geranyl moiety. Because of the functional assignments of two 

napH homologues, we suspected that NapH4 catalyzes this reaction. Previous attempts to 

obtain soluble protein expression in Escherichia coli were unsuccessful;17 however, 

reassignment of the napH4 open reading frame, and subsequent recloning and heterologous 

production in Streptomyces lividans TK23 resulted in soluble NapH4 (Figures S1, S2). 

Application of the model monochlorodimedone assay to detect hypohalous acid formation 

indicated that recombinant NapH4 was properly folded and active, albeit only showing 

activity in the presence of bromide ions; an unusual characteristic of these stereospecific 

Streptomyces sp. VCPO enzymes (Figure S3).13

We initially surmised that NapH4 would produce the chlorinated cyclohexanol moiety 

observed in napyradiomycin B4, a 7′-demethylated variant of the major metabolite isolated 

from heterologous expression of the nap cluster (Figure S4).14 Instead, when incubated with 

2 in the presence of Na3VO4, KCl, and H2O2, NapH4 catalyzed the formation of a single 

product with a dehydrated mass compared to napyradiomycin B4. Following scale up, 

isolation, and NMR characterization, the product was identified as 3, possessing an 

exomethylene-containing chlorinated cyclohexane ring (Figure 2), which matched the 

original isolation spectra.2 Although alteration of the reaction pH can have a significant 

impact on the biochemistry of Streptomyces VHPOs, as best exemplified with Mcl24 from 

the merochlorin biosynthetic pathway,5,13,18,19 we only observed a decrease in the relative 

formation of 3 at a lower pH (Figure S4).

An analogous bromonium-based cyclization reaction was previously reported with marine 

red algal VBPO enzymes when incubated with terpenoid substrates.22 Despite suffering 

from poor regioselectivities, broad substrate specificities, and the generation of multiple 

products in low yields, these enzymes showcased the first example of enantioselective 

halogenation and concomitant carbon−carbon bond formation by a VHPO. This biological 

reactivity has been paralleled chemically in the halonium-induced polyene cyclizations that 

have been employed asymmetrically via stereoselective iodonium/bromonium formations.23 

Only two racemic polyene cyclizations of chloronium ions have been reported;24 however, 

these reactions generally occur in much lower yield and diastereoselectivity than bromo-and 

iodo-cyclizations.25 In contrast, NapH4 catalyzes a remarkably high yielding, 

diastereoselective, and stereospecific chloronium-induced terpenoid cyclization.

With the completion of the pathway from 5 to 7, we next turned our attention to the start 

point from 1 to 5. As prenyltransferase (PTase) NapT8 had previously been assigned 
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function in the prenylation of 5,5 we suspected the second predicted ABBA aromatic PTase 

NapT9 as the enzyme responsible for installing the geranyl moiety. This function would be 

analogous to the prenylation of 1 by Mcl23 and NphB (originally Orf2) in merochlorin18 

and naphterpin26 biosyntheses, respectively. Following heterologous expression and 

purification of NapT9, we observed the Mg2+-dependent conversion of 1 and geranyl 

pyrophosphate (GPP) to 4-geranyl 1,3,6,8-tetrahydroxynaphthalene (4-geranyl THN, 4) 

(Figures 3, S5). The reversed-phase HPLC and extracted ion chromatograms of this reaction 

exhibited a unique elution profile, likely due to keto−enol tautomers formed under the 

weakly acidic conditions.27 This unique chromatogram mirrored that of synthetic 4,21 but 

due to significant oxygen sensitivity, isolation was not attempted.

We suspected the conversion of 4 to 5 to be catalyzed by a VCPO based on related 

transformations in other 1-derived meroterpenoid pathways.5,18,19,21 Incubation of in situ 
NapT9-generated 4 with nap VCPO enzymes in the presence of Na3VO4, H2O2, and KCl 

showed that NapH1 catalyzed the production of 5 as the major chlorinated product. This was 

further confirmed by preparative scale up and NMR characterization (Figures 3, S6). The 

NapH1 activity was particularly surprising given its previous role in alkene 

halofunctionalization to cyclize 7 to 2.17 NapH4 was also able to form 5 albeit in a 

substantially lower quantity compared to NapH1 (Figure S6). Analogous to marinone 

biosynthetic VCPO enzyme MarH1,21 NapH1 catalyzes the monochlorination of prenylated 

THN molecules even with excess H2O2. This diverges from the in vitro activities of other 

VCPO enzymes (MarH3,21 Mcl245) that facilitate dichlorination and subsequent α-

hydroxyketone rearrangements with comparable substrates. We are presently exploring the 

biophysical understanding of these divergent activities.

Identification of the activities of NapT9 and NapH4, and the dual functionality of NapH1, 

allowed us to complete the napyradiomycin biosynthetic pathway (Scheme 1). Briefly, 

prenyltransferase NapT9 catalyzes the Mg2+-dependent ger-anylation of 1 at the 

nucleophilic 4-position. Prenylated product 4 is subsequently oxidatively dearomatized and 

monochlorinated via NapH1 in the presence of Na3VO4 and H2O2 to afford 5. NapT8 then 

catalyzes a Mg2+-dependent prenylation with DMAPP to form 6, which undergoes a 

NapH3-catalyzed α-hydroxyketone rearrangement, producing 7.5 Next, NapH1 performs an 

enantioselective chlorination-induced cyclization reaction to form 2,5,17 which is further 

transformed by a novel asymmetric, chlorination-induced terpenoid cyclization by NapH4 to 

3.

Following complete elucidation of the biosynthetic pathway to 3, analysis of the individual 

enzymatic activities suggested that only two types of enzymes were present with orthogonal 

redox and metal cofactor requirements. We hypothesized that a controlled addition of all 

Nap biosynthetic enzymes to one pot could be employed to generate useful quantities of 

napyradiomycin family members in an enantioselective and protecting group-free strategy. 

In vitro interrogation identified maximal activity of NapH4 in HEPES-KOH, pH 8.0 (Figure 

S4), so this was selected as the one-pot reaction buffer for scale up and optimization. A 5 

mM reaction scale (∼1 mg/mL of 1) was chosen to generate maximal quantities of 

napyradiomycins despite the increasing hydrophobicity of these complex halogenated 

meroterpenoid products.
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An initial division of the NapT9 reaction with subsequent H2O2-dependent VHPO steps was 

required to maximize the amount of oxygen-sensitive 4 for downstream catalysis. Initial 

attempts to transform 1 in one pot with excess GPP, H2O2, and multiple enzyme additions 

were successful in producing 2 albeit as a very minor component of a complex reaction 

mixture (Figure S7). The high abundance of oxidized byproducts of 1 and 4 in the one pot 

reaction mixture implied that significant optimization of the NapT9 and NapH1 reactions 

would be necessary to improve yields to 5. Major contributors to yield improvement (45% 

isolated yield of 5) included: reducing GPP to 1.1 mol equiv; adding commercial E. coli 
inorganic pyrophosphatase to minimize PTase inhibition; and sequentially adding H2O2 to 

the reaction mixture (Figure S7).

Following the two-step optimization to 5, the addition of DMAPP (1.1 equiv), H2O2, and 

additional biosynthetic enzymes at once enabled production of intermediates along the 

napyradiomycin biosynthetic pathway that directly correlated to the Nap enzymes added 

(Figures 4, S8). Multiple 1 mL replicates were set up following identical reaction conditions 

and times, as larger volume reactions generated an increased number and intensity of 

byproducts. After the threestep addition of the first four Nap biosynthetic enzymes, 

inorganic metal cofactors and organic pyrophosphate and hydrogen peroxide cosubstrates to 

1 (9.6 mg, 50 μmol, divided over 10 × 1 mL) in one pot, 2 (5.4 mg, 22%) was isolated after a 

24 h reaction time; analogous reaction conditions with the inclusion of NapH4 produced 3 

(4.6 mg, 18%), which has yet to be chemically synthesized in an enantioselective or racemic 

strategy. Moreover, the chemoenzymatic application of the napyradiomycin biosynthetic 

pathway established all five stereocenters of 3, three of which are chlorinated, using 1.1 mol 

equiv of organic pyrophosphates and 0.2−1 mol % of biological catalysts over a reaction 

time of 24 h.

Many impressive syntheses of complex natural products have been recently reported using 

enzymes from their biosynthetic pathways, highlighting the synthetic utility of this 

methodology.28 While challenges still exist in the application of chemoenzymatic synthesis, 

it represents a complementary approach to overcome some of the biological challenges in 

microbial secondary natural product production (long culturing times, low production yields, 

reliance on naturally occurring biosynthetic precursors), while offering exquisite catalysis of 

regio-and stereospecific chemical reactions that would be difficult to mirror in a round-

bottomed flask. We are particularly encouraged by the application of NapH1 and NapH4 

enzymology in the chiral installation of halogenated stereocenters and aim to further extend 

the utility and scalability of VHPO catalysis within the challenging field of catalytic 

asymmetric halogenation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Total chemical syntheses of napyradiomycin A1 and comparison with chemoenzymatic 

approaches described herein.
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Figure 2. 
NapH4-catalyzed chloronium-mediated cyclization of the geranyl moiety of 2 to form 3.
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Figure 3. 
Negative mode extracted ion chromatograms showing conversion of 1 to 4 (blue trace, 327.1 

m/z) and 5 (red trace, 377.1 m/z) by NapT9 and NapH1 activities, respectively.
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Figure 4. 
Chemoenzymatic strategy to the one pot, three-step formation of napyradiomycin 

biosynthetic intermediates from metabolic precursors.
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Scheme 1. 
Biosynthetic Pathway from 1,3,6,8-Tetrahydroxynaphthalene (1) to Napyradiomycin B1 (3)
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