Skip to main content
. 2018 Nov 6;38(7):1103–1119. doi: 10.1002/sim.8022

Table 4.

Optimal allocation matrices for cross‐sectional designs with D = 3. Several optimal allocation matrices in the case I={2,,6}, C={C2,,C6}, CT={2,,6}, MC,T={2,,48/T}, σ 2 = 1, ρ = 0.05, α = 0.05 with the Bonferroni correction, and β = 0.12 for the individual power when δ=(1.5σ,0.75σ) are shown. Specifically, the optimal design for the optimality criteria is given for w ∈ {0,0.5}. Restrictions are placed on X such that Equation (1) is identifiable and that each cluster must receive each of the interventions. Each allocation matrix was identified via our exhaustive search method. The utilized design is also shown for comparison

Design
Factor Proposed D‐Optimal: w  = 0 D‐Optimal: w  = 0.5 A/E‐Optimal: w  = 0 A/E‐Optimal: w  = 0.5
C 6 6 6 6 6
T 6 6 6 6 6
m 8 8 5 8 5
X
000112000112001122001122011222011222
000012000012000122001222012222012222
000012000012001122011222012222012222
000012000012001122001222012222012222
000012000012001122001222012222012222
P(RejectH01|δ1)
1.0000 1.0000 (±0%) 1.0000 (±0%) 1.0000 (±0%) 1.0000 (±0%)
P(RejectH02|δ2)
0.8815 0.9528 (+8.1%) 0.8507 (−3.5%) 0.9570 (+8.6%) 0.8440 (−4.3%)
f(𝒟)
288 288 (±0%) 180 (−37.5%) 288 (±0%) 180 (−37.5%)
det(Λ𝒟)
3.090 × 10−3 1.670 × 10−3 (−46.0%) 3.881 × 10−3 (+25.6%) 1.712 × 10−3 (−44.6%) 3.973 × 10−3 (+25.6%)
(D1)1tr(Λ𝒟)
5.696 × 10−2 4.264 × 10−2 (−25.1%) 6.392 × 10−2 (+12.2%) 4.160 × 10−2 (−27.0%) 6.373 × 10−2 (+11.9%)
maxDiag(Λ𝒟)
5.696 × 10−2 4.264 × 10−2 (−25.1%) 6.531 × 10−2 (+14.7%) 4.160 × 10−2 (−27.0%) 6.373 × 10−2 (+11.9%)