Skip to main content
. 2018 Nov 6;38(7):1103–1119. doi: 10.1002/sim.8022

Table 6.

Optimal allocation matrices for cross‐sectional designs with D = 4. Several optimal allocation matrices in the case I={8}, C={C6}={8}, M6,8={8}, σ 2 = 1, ρ = 0.05, α = 0.05 with the Bonferroni correction, w = 0, and β = 0.12 for the individual power when δ=(1.5σ,0.75σ,0.75σ) are shown. No restrictions are placed on X other than the identifiability of Equation (1). Each allocation matrix was identified via our stochastic search method. The proposed design is also shown for comparison

Design
Factor Proposed D‐optimal A‐optimal E‐optimal
X
000112230001122300112233001122330112233301122333
000000110000112300122333011112221222333322333333
000000110000113300111222111122221122233322233333
000000130000112200011333111122221122333322333333
P(RejectH01|δ1)
1.000 1.000 (±0%) 1.000 (±0%) 1.000 (±0%)
P(RejectH02|δ2)
0.852 0.992 (+11.6%) 0.996 (+11.7%) 0.989 (+11.6%)
P(RejectH03|δ3)
0.852 0.990 (+11.6%) 0.984 (+11.6%) 0.989 (+11.6%)
det(Λ𝒟)
1.559 × 10−4 1.985 × 10−5 (−87.3%) 2.108 × 10−5 (−86.5%) 2.090 × 10−5 (−86.6%)
(D1)1tr(Λ𝒟)
5.590 × 10−2 2.873 × 10−2 (−48.6%) 2.806 × 10−2 (−49.8%) 2.886 × 10−2 (−48.4%)
maxDiag(Λ𝒟)
5.590 × 10−2 3.024 × 10−2 (−45.9%) 3.085 × 10−2 (−44.8%) 2.893 × 10−2 (−48.2%)