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Abstract
Acute respiratory distress syndrome (ARDS) is the often fatal sequelae of a broad range of precipitating conditions.
Despite decades of intensive research and clinical trials there remain no therapies in routine clinical practice that
target the dysregulated and overwhelming inflammatory response that characterises ARDS. Neutrophils play a
central role in the initiation, propagation and resolution of this complex inflammatory environment by migrating
into the lung and executing a variety of pro-inflammatory functions. These include degranulation with liberation
of bactericidal proteins, release of cytokines and reactive oxygen species as well as production of neutrophil
extracellular traps. Although these functions are advantageous in clearing bacterial infection, the consequence of
associated tissue damage, the contribution to worsening acute inflammation and prolonged neutrophil lifespan at
sites of inflammation are deleterious. In this review, the importance of the neutrophil will be considered, together
with discussion of recent advances in understanding neutrophil function and the factors that influence them
throughout the phases of inflammation in ARDS. From a better understanding of neutrophils in this context,
potential therapeutic targets are identified and discussed.
© 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Acute respiratory distress syndrome (ARDS) is the often
fatal final sequalae to a broad range of direct and indirect
pulmonary insults that include both infective and sterile
aetiologies such as pneumonia, aspiration of gastric
contents, sepsis, acute hepatic failure and acute pancre-
atitis. ARDS is defined by an acute onset of respiratory
symptoms; profound systemic hypoxaemia; diffuse,
bilateral infiltrates on chest X-ray and the exclusion
of cardiac failure or fluid overload as a precipitant [1].
Despite decades of intensive research, the mortality
rate for ARDS remains approximately 40%, with no
effective pharmacological therapies in routine clinical
practice [2]. The failure to translate a large number of
promising therapeutic agents from preclinical studies is
well described [3]. Challenges arise when attempting to
develop drugs that span the diverse and heterogenous
conditions that precipitate ARDS, the differences in
the inflammatory phenotypes and underlying genomic
variation within this patient population, as well as the
difficulties in the translation of observations in animal
models into human inflammatory disease [3]. Distinct

from interindividual variation is also the complexity
of redundancy and dysregulation of the inflammatory
environment that characterises ARDS. Despite these
challenges, the need to develop novel therapeutics is
pressing.

ARDS is characterised by an overwhelming, dys-
regulated and self-perpetuating pro-inflammatory
environment; there is a significant increase in a range
of pro-inflammatory mediators accompanied by rapid
recruitment of neutrophils into the alveolar space,
endothelial injury and dysfunction, platelet aggregation
and microthrombus formation, interstitial and alveolar
oedema, alveolar epithelial cell death and macrophage
activation [4]. Diffuse alveolar damage is the typical
histological hallmark of this exudative phase, although
the histological appearances can be very variable
between individuals who have died from severe ARDS
[5]. Following alveolar damage, there is a proliferative
phase with resolution of pulmonary oedema, type II
alveolar cell hyperplasia, early collagen deposition and
release of pro-resolving mediators, including lipoxins
and resolvins [6,7]. Although inflammation and injury
completely resolve to leave no clinical, radiological or
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physiological impairment in some individuals, there
remains a substantial cohort who subsequently develop
diffuse pulmonary fibrosis and chronic lung disease [8].

Within this inflammatory milieu there are multiple
cell types with direct roles in disease pathogenesis,
including macrophages, epithelial and endothelial cells.
There is, however, an established body of literature
that implicates the neutrophil as central to driving this
inflammatory state [9,10]. Increased neutrophil num-
bers, the presence of neutrophil-derived proteases and
the chemotactic factors that drive neutrophil recruitment
are associated with increased disease severity and higher
mortality rates [9,11]. Similarly, neutrophil depletion,
inhibition of key chemokines and signalling molecules,
or acceleration of apoptosis to shorten neutrophil lifes-
pan, results in improvement in oxygenation, reduction in
inflammation and accelerated inflammation resolution in
preclinical models [12–15]. To date, however, clinical
trials targeting neutrophil function in ARDS have failed
to show benefit in overall survival [3,16].

Although much has been written on the detailed
mechanisms of neutrophil migration and function in
inflammation [17–19], this review focuses on those
observations that have been demonstrated within the
context of ARDS and preclinical models of acute lung
injury. In doing so we hope to provide a focus on those
pathological mechanisms that are of potential clinical
relevance and may therefore represent therapeutic tar-
gets of the future (Table 1).

Neutrophil recruitment and function

The recruitment of neutrophils to the lung makes them
a key factor in the pathogenesis of ARDS. In response
to inflammatory mediators, either originating from
the lung or distant organ injury, circulating neutrophils
become primed and alter their cytoskeletal architec-
ture with retention in the pulmonary capillary bed.
They then migrate out of postcapillary venules across
the endothelium, through the interstitium and epithelium
and into alveoli, with associated local tissue dysfunction
and destruction due to release of histotoxic mediators,
such as neutrophil extracellular traps (NETs), reactive
oxygen species (ROS) and proteases (Figure 1). This
induction of epithelial and endothelial injury contributes
to the development of alveolar oedema and hypoxaemia,
as well as exacerbating the pro-inflammatory state. It
should be recognised that neutrophil migration into the
lung without concomitant activation does not induce
tissue injury [13]. However, there are conflicting mod-
els with regards to the mechanisms by which initial
neutrophil activation occurs. It has been proposed that
activation of the intravascular immune system, through
an increase in circulating pro-inflammatory media-
tors, results in neutrophil priming, adhesion and/or
trapping in lung capillaries. Subsequent migration
along a variety of chemotactic gradients into the lung
parenchyma therefore results in secondary lung injury

[20]. The alternative hypothesis is that the release of
pro-inflammatory mediators by alveolar macrophages
plays a vital role in the initiation of inflammation [21],
triggering an inflammatory cascade by activating sur-
rounding tissues and resulting in chemotaxis of inflam-
matory cells, such as neutrophils, to the airways [21]. It
is likely that the exact mode of initial neutrophil recruit-
ment and activation varies depending on the inciting
stimulus and whether this is intrapulmonary or systemic.
However, the end result in both cases is the recruitment
of neutrophils to the lung, resulting in tissue injury.

Pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns
(DAMPs)

Both sterile and infective tissue injury result in neu-
trophil recruitment into the lung through complementary
mechanisms. In the context of infection, PAMPs includ-
ing lipopolysaccharide (LPS), lipoteichoic acid, DNA,
RNA and proteins such as formylated peptides are
released and recognised by the immune system [22].
PAMPs can bind to, and are sensed by, a variety of
pathogen recognition receptors, including Toll-like
receptors (TLRs) and Nod-like receptors [23]. Pathogen
recognition receptors and their downstream signalling
pathways drive chemotaxis, as well as priming and
activating both intravascular and transmigrated neu-
trophils in order to fulfil their bactericidal functions
[22,24]. TLRs play an important role in regulating
the response to pro-inflammatory mediators and are
rapidly upregulated in mouse models of sepsis-related
acute lung injury [25]. In early sepsis-related ARDS,
downregulation of TLR1, TLR4 and TLR5 transcripts
in mononuclear cells correlates with increased sur-
vival [23], whereas in a pulmonary contusion mouse
model of lung injury, alveolar neutrophil recruitment
is TLR4/MyD88-dependent [26]. Similarly, TLR4
deficiency is associated with a reduction in sterile
pulmonary inflammation and more rapid resolution
of injury through alterations in downstream synthesis
of cysteinyl leukotrienes and subsequent induction of
SOCS3 within the lung. In this context, a reduction in
TLR4-mediated oxidative stress was observed but, sur-
prisingly, alveolar neutrophil numbers were increased
[27]. Although this suggests an important role for
TLRs in acute lung injury, the functional importance of
neutrophils in this model is limited, thereby serving to
emphasise that understanding the neutrophil-mediated
TLR function in ARDS requires further investigation.

Sterile tissue injury, either in the context of direct
injury to lung parenchyma or distant organ injury,
results in necrotic cell death with the release of a range
of DAMPs into the extracellular environment. These
DAMPs serve to induce a pro-inflammatory response,
which drives neutrophil recruitment into the lung
[25,27]. A number of DAMPs have been described in
ARDS, including high mobility group box 1 (HMGB1),
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heat shock proteins 60 and 72, hyaluronan and a range
of mitochondrial-derived factors, including DNA,
formylated peptides and cardiolipin [28]. Due to com-
mon evolutionary ancestry and relative structural and
sequence homology with bacteria, it appears that these
mitochondrial factors play an important role in driving
the development of neutrophil-mediated lung injury.
Mitochondrial DNA is elevated in patients with ARDS
and, through interaction with endosomal TLR9, medi-
ates neutrophil recruitment [29]. Importantly, it has also
been shown to be a predictive biomarker of mortality in
patients in intensive care, including those with ARDS,
and therefore further studies with regards to both its
role as a clinically significant predictive biomarker in
ARDS and as a therapeutic target are needed.

Mitochondrial formylated peptides play a crucial role
in neutrophil recruitment in ARDS, as well as alter-
ing epithelial and endothelial cell function [29–31].
Elevated levels of these peptides are found in bron-
choalveolar lavage fluid (BALF) and serum of ARDS
patients [31]. The importance of formyl peptide receptor
1 (FPR1, the cognate receptor for formylated peptides)
in influencing acute inflammation is well established
[32]. Genetic deletion of Fpr1 in mice is associated
with reduced survival in infection but an attenuated
inflammatory response in the context of sterile tissue
injury [29,31,33]. FPR1, a G-protein coupled receptor,
activates a variety of intracellular signalling pathways,
including PI3K, MAPKs and Akt pathways [34]. This
serves to directly alter neutrophil migration, ROS pro-
duction, degranulation and transcriptional activity [32].
In sterile lung injury in mice, neutrophil chemotaxis,
together with other indices of pulmonary inflammation,
were diminished in Fpr1−/− mice or in the presence of
an FPR1 antagonist delivered either prior to or follow-
ing acid-induced lung injury. This suggests that FPR1
may represent a therapeutic target in sterile ARDS
but, as with many other therapies targeting neutrophil
function, the challenge of concurrent infection needs to
be addressed [31].

Chemokines and cytokines

Chemokines, a family of chemotactic cytokines, play a
crucial role in neutrophil migration to sites of inflam-
mation [35]. CXC chemokines, in particular CXCL8
(IL-8), play an important role in neutrophil chemotaxis
in ARDS, with elevated levels associated with poor
disease prognosis and increased severity and mortality
[36–38]. Produced by local immune cells and epithe-
lial cells, CXCL8 is not the only chemokine respon-
sible for the recruitment of neutrophils to the lung,
as blockade results in only partial reduction in alve-
olar neutrophil number [13,35]. CCL2 and CCL7 are
also elevated in the BALF of both LPS-challenged vol-
unteers and ARDS patients while neutralising either
chemokine reduces neutrophil chemotactic responses in
vitro [39]. Interestingly, CCL2 and CCL7 also potentiate
the activity of CXCL8, suggesting that a synergistic
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Figure 1. Initiation and resolution of neutrophil-mediated inflammation in ARDS. (A) The healthy alveolar unit facilitates rapid gas transfer
with the presence of resident alveolar macrophages providing rapid response to pulmonary infection and injury. (B) Following infection
and/or tissue injury, release of PAMPs and/or DAMPs directly induces neutrophil recruitment into the alveolar space in addition to a range
of chemokines and mediators secreted by macrophages and epithelial cells. (C) Neutrophils exert multiple pro-inflammatory functions with
the release of ROS, proteases, NETs and cytokines, as well as phagocytosis of bacteria. This is accompanied by accumulation of oedema
within the alveolus, endothelial dysfunction and epithelial cell death. (D) Resolution of inflammation occurs through neutrophil apoptosis
and macrophage clearance of apoptotic cells (efferocytosis) and inflammatory debris. The role of neutrophil reverse migration remains to
be fully characterised in ARDS.

activity between these chemokines drives neutrophil
recruitment in ARDS. The CXCL8 receptor, CXCR1,
is more highly expressed on circulating neutrophils
from ARDS patients relative to the CCL2/7 receptors
CCR1, CCR2 and CCR3 [39]. However, a significant
increase in neutrophil CCR2 expression in BALF has
been observed, with the authors postulating that this con-
fers an increased sensitivity to cognate ligands CCL2
and CCL7 in the alveolar space and therefore suggesting
an important role in neutrophil chemotaxis within the
lung. Other chemokines, including CXCL5, and medi-
ators such as C5a and leukotriene B4 (LTB4), have also
been shown to have a role in driving neutrophil chemo-
taxis in ARDS [40].

Although most cytokines are produced by other cell
types, neutrophils also secrete a range of cytokines that
potentiate the inflammatory response. These include

TNF, which has been associated with microvascular
plasma protein leakage [41], and IL-1β, which poten-
tiates the pro-inflammatory cycle by inducing further
cytokine and chemokine release and thereby recruit-
ing more neutrophils to the lung [42]. Furthermore,
antibody-mediated inhibition of TNFR1 reduced alve-
olar neutrophil recruitment, inflammatory cytokine
release and biomarkers of endothelial injury in BALF
and serum samples in experimental acute lung injury.
As a result, inhibiting TNFR1 could be considered as a
potential option in the treatment of ARDS [43].

After a non-pulmonary acute injury, such as traumatic
brain injury, burn injury or sepsis, mediators includ-
ing IL-1β, IL-6, CXCL8, IL-18 and TNF, as well as
a variety of DAMPs, are released into the systemic
circulation [23,36,44–47]. For example, intravascular
neutrophil priming and activation, as part of a systemic
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inflammatory response syndrome that occurs following
traumatic brain injury, results in neutrophil migration
into the lung [47] and other organs, including the liver
and kidney [48,49], inducing tissue injury and dysfunc-
tion. Similarly, the pro-inflammatory cytokines TNF and
IL-1β were found to be elevated in the BALF of ARDS
patients alongside the natural antagonists IL-1RA and
soluble TNF receptors [50]. It appears, however, that
an imbalance between agonists and antagonists exists,
which drives the acute phase inflammatory response
[51].

At present, there have been no specific clinical tri-
als investigating the pharmacological manipulation
of the majority of chemokines, although steroids
effecting their function through suppression of
chemokine/cytokine axis have been proposed. Current
clinical trial data on the use of steroids in ARDS are
mixed and there is no definitive evidence for improved
survival and in some cases has been found to worsen
outcome. Although improved effects on ventilator-free
days have been described, the return to mechanical
ventilation is increased among those receiving steroids,
as are significant side-effects, including neuromyopathy
and hyperglycaemia [52–56].

Selectins and integrins

In order for neutrophils to enter the alveolar space,
selectins play an important role in initiating the process
of neutrophil tethering and rolling along the endothelial
surface. L-selectin, one such adhesion molecule present
on neutrophils, has been found (in its soluble form) to be
reduced in the plasma of ARDS patients, which directly
correlated to ventilation requirements, degree of respira-
tory failure and mortality[57,58]. Conversely, elevated
plasma levels of E-selectin and P-selectin, expressed
by endothelial cells, correlated with increased mortality
[58–60]. Most recently, through genome-wide associa-
tion studies, three non-synonymous SNPs in the selectin
P ligand gene (SELPLG) have been identified to be
associated with sepsis-related ARDS [61]. PSGL1 (the
encoded protein) acts as an important ligand for both
L-selectin and P-selectin. In LPS-induced lung injury,
inflammation is attenuated in Selplg−/− mice, while an
inhibitory antibody to PSGL-1 also limits inflamma-
tion in LPS- and ventilator-induced lung injury models
[61]. The exact mechanisms through which the SELPLG
SNPs exert their functional effect is not known. It was
postulated that alteration in amino acid sequence may
result in altered P-selectin binding affinity and therefore
alter neutrophil rolling [61].

Once tethering and rolling are initiated, integrins
play a role in slowing down and immobilising neu-
trophils to allow transendothelial migration and activa-
tion [62]. Surprisingly, neutralising antibodies to the β2
integrin CD18 in the context of sterile lung inflamma-
tion results in increased alveolar neutrophils but a reduc-
tion in neutrophil-mediated pulmonary injury, suggest-
ing that its predominant role is in neutrophil activation

rather than chemotaxis [13]. β2 integrins on the surface
of activated neutrophils induce heparin-binding pro-
tein (HBP) release through PI3K-dependent signalling
[63]. Antibody-mediated blockade of β2 integrin func-
tion resulted in lower levels of circulating HBP and a
subsequent reduction in pulmonary oedema, which the
authors proposed was principally through a reduction in
vascular leak and endothelial dysfunction [46]. The β2
integrin binds to ICAM-1 on endothelial cells to aid in
neutrophil transmigration [64]. Soluble ICAM-1 is ele-
vated in ARDS patients and its inhibition reduces sterile
lung injury in mice [65,66].

NETosis

NETosis, the process through which neutrophils release
extracellular DNA in order to trap and contain bacteria,
is an important defence mechanism against invading
pathogens. Increased NET production has recently
been associated with increased ARDS severity [67,68].
Lefrançais et al [68] demonstrated that circulating
neutrophils from ARDS patients produce significantly
more NETs upon phorbol myristate acetate stimulation
than those from healthy donors. As NETs contain and
can release neutrophil elastases (NE), myeloperoxi-
dase, DNA and histones, they can also potentiate the
tissue damage observed in ARDS, in part through
cytotoxic effects on epithelial and endothelial cells
[69]. Reducing NETs either by intratracheal DNase I
treatment or the partial deficiency of protein arginine
deiminase 4 (PAD4+/−; a protein involved in the pro-
jection of NETs) increased survival in a mouse model
of severe bacterial pneumonia/acute lung injury [68].
Although partial deficiency of PAD4 reduces lung
injury, complete knock out increases bacterial burden.
This suggests that a NET balance is necessary and that
the potential deleterious or beneficial effects of NETs in
ARDS may relate to the presence of microbial infection
[68]. Furthermore, a phase III clinical trial is currently
investigating the effectiveness of inhaled dornase alfa
recombinant human DNAse 1, in reducing the incidence
of moderate to severe ARDS in severe trauma patients
through accelerated degradation of extracellular DNA,
including NETs (Table 1) [70].

Granule proteins

The release of various granule proteins, including elas-
tases, matrix metalloproteinases (MMP) and cationic
polypeptides, has been associated with the propaga-
tion of ARDS [71]. NE are implicated in lung injury,
although it is unclear whether the damage is principally
to endothelial or epithelial cells or as a result of degrada-
tion of the alveolar basement membrane [72,73]. Plasma
levels of NE and the endogenous proteinase inhibitor
elafin are predictors of ARDS mortality [74], whereas
inhibition of NE reduces lung injury in various animal
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models [75–79]. Mice deficient in NE are more sus-
ceptible to Gram-negative bacteria, suggesting that NE
are required for adequate host defence against invading
pathogens and complete inhibition of NE can be harmful
[80]. Despite data from preclinical models, sivelestat, a
selective NE inhibitor, did not alter 28-day mortality in a
number of clinical trials (Table 1) [81]. Although alter-
ation in oxygenation has been observed, the small sam-
ple sizes of the majority of clinical trials and heteroge-
nous patient populations potentially mask any benefit in
subgroups of patients with ARDS [81]. It is difficult to
separate challenges in clinical trial design from limita-
tions of biological importance in this context. Therefore
further study is required to clarify both aspects of this
problem.

MMPs are zinc-dependent endopeptidases with
numerous biological functions, such as tissue remod-
elling, wound healing and angiogenesis [82]. Fligiel
and colleagues [83] investigated numerous MMPs and
their natural antagonists, tissue inhibitor of metal-
loproteinases (TIMPs), in BALF of ARDS patients.
MMP-2, MMP-8 and MMP-9 are proteases secreted
by neutrophils and their levels were elevated in all
patients together with neutrophil number. Furthermore,
elevated MMP-1 and MMP-3 were associated with
increased mortality [83]. Although neutrophils do not
produce MMP-1 and MMP-3, they can induce MMP-1
secretion in human vascular smooth muscle cells, which
in turn acts in an autocrine feedback loop to produce
CXCL8 and induce neutrophil chemotaxis [84]. Con-
sistent with this, MMP-3-deficient mice have reduced
neutrophil migration into the lung and attenuated
neutrophil-mediated epithelial and vascular damage in
the context of immune complex-mediated pulmonary
injury [85]. MMP-13 has been shown to play a role in
the development of sepsis-mediated acute lung injury
[86]. Hypertonic saline has been shown to reduce the
production of MMPs, such as MMP-9 and MMP-13,
in mouse models of acute lung injury, thereby reducing
disease progression and inflammation; an open-label
clinical trial is currently underway to evaluate efficacy
in post-traumatic acute lung injury (Table 1) [86–88].

As mentioned previously, HBP is a cationic peptide
that plays an important role in neutrophil-mediated vas-
cular leakage through increased endothelial permeabil-
ity [89]. In trauma patients admitted to intensive care,
early elevation of HBP after admission was a predic-
tor for the development of ARDS, suggesting that HBP
may be a potential biomarker for the early detection of
ARDS, although further work is required [90]. Plasma
HBP has also been shown to be an independent predic-
tor for 30-day mortality in ARDS [91]. Administration
of simvastatin to patients with acute lung injury reduced
HBP plasma levels [92]. Simvastatin did not improve
overall survival in ARDS patients, but secondary anal-
ysis has identified improvement in 28- and 90-day sur-
vival in patients with a hyper-inflammatory subpheno-
type relative to placebo control (Table 1) [93].

Defensins are arginine-rich cationic proteins that
have antimicrobial properties [94]. Divided into two

subgroups, α-defensins and β-defensins exhibit different
roles. Neutrophils store α-defensins in their granules
and release them in an attempt to eradicate microbes,
with β-defensins primarily expressed by mucosal sur-
face epithelial cells. However, defensins can also result
in tissue damage, as observed in ARDS [95]. Elevated
levels of α-defensins were found in BALF of ARDS
patients and higher levels correlate with increased sever-
ity of lung injury [95]. Although plasma α-defensin was
also elevated it did not correlate with prognosis; it has
been proposed that circulating α-defensin originates
from the bone marrow rather than directly from neu-
trophils and therefore has different functional effects
in this context. Although not known to be produced by
neutrophils, β-defensins are implicated in the patho-
genesis of ARDS. β-defensin-3 inhibits neutrophil
apoptosis by downregulating Bid, a pro-apoptotic
protein, and upregulating the anti-apoptotic protein
Bcl-xL in neutrophils [96]. This delay in apoptosis is
dependent upon the interaction of β-defensin-3 with the
chemokine receptor CCR6, with the effect attenuated
in the presence of a CCR6-specific blocking antibody
[96]. As discussed below, delay in neutrophil apoptosis
is associated with an increased severity in lung injury.

LL-37 is another cationic protein with antimicrobial
properties released from neutrophil granules [97]. It also
carries the ability to activate neutrophils and augment
the inflammatory cascade [98] and LL-37 is elevated in
BALF samples of ARDS patients relative to healthy vol-
unteers [97]. Interestingly, although elevated LL-37 cor-
related with increased lung injury, LL-37 did not corre-
late with neutrophil counts, suggesting that neutrophils
are not the only source of LL-37, with macrophages and
epithelial cell production also described [97].

Reactive oxygen species

ROS play an important role in eliminating pathogens
within phagosomes and for the generation of NETs, but
also act as chemoattractants for immune cells, resulting
in tissue repair [99]. However, excess ROS production
results in oxidative stress and plays a major role in
lung damage through the release of pro-inflammatory
cytokines, enhanced recruitment of immune cells
and consequently the progression of ARDS [99].
Neutrophils have been shown to produce ROS when
activated and contribute to oxidative stress [99]. Fur-
thermore, increased permeability of the endothelial
and epithelial barrier is observed, increasing neutrophil
transmigration to the alveolar space [99]. Additionally,
an increase in oxidised molecules and a reduction in
antioxidant proteins are observed in BALF of ARDS
patients, which serves to perpetuate lung damage [100].
Glutathione plays a vital role in neutralising hydrogen
peroxide, a major contributor to oxidative damage,
through the enzyme glutathione peroxidase, by con-
verting glutathione to glutathione disulphide [101].
Administration of the antioxidant N-acetylcysteine
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restores the oxidant balance by increasing glutathione
levels in erythrocytes. Several clinical trials have
investigated the role of N-acetylcysteine as a therapeu-
tic strategy in ARDS with variable results. A recent
meta-analysis concluded that, although the duration
of intensive care admission is shortened, there is no
demonstrable effect on overall outcome or 30-day
survival [102].

Mechanisms of cell death

In addition to marked inflammatory cell activation
and recruitment, the pathogenesis of ARDS is charac-
terised by alterations in a variety of forms of cell death.
Death and damage to the alveolar epithelial and alveolar
endothelial cells are thought to play a key role in the ini-
tiation and progression of the disease process [103,104],
whereas inflammatory cell apoptosis and subsequent
clearance is an important step in inflammation resolu-
tion [105,106]. Although apoptosis (described further
below) is undoubtedly the most studied form of cell
death, there has also been a recent ‘-osis explosion’ with
increased knowledge of alternative cell death pathways,
such as pyroptosis, necroptosis, ferroptosis, entosis and
NETosis [107]. Although some of these non-apoptotic
pathways probably have relevance to the pathogenesis
of ARDS, this is an as yet understudied area that will
hopefully lead to future novel avenues for therapeutic
intervention.

Targeting apoptosis

Apoptosis occurs through two distinct but converging
pathways. The intrinsic pathway is activated in response
to diverse stimuli, including DNA damage, ROS expo-
sure and endoplasmic reticulum stress. The central event
in intrinsic apoptosis is mitochondrial outer membrane
permeabilisation that allows escape of pro-apoptotic
molecules such as cytochrome-c, which then form a
caspase-activating complex. Active caspases act as the
executioners of apoptosis, leading to cellular disassem-
bly of the cell, DNA degradation, cell surface phos-
phatidylserine exposure and pannexin channel activa-
tion, all hallmarks of apoptotic cell death. Mitochon-
drial outer membrane permeabilisation is itself con-
trolled by intracellular Bcl2 family proteins, which
include both pro- and anti-apoptotic members (such
as Bid and Bcl-xL, described above). In contrast, extrin-
sic apoptosis is usually activated by a cell surface death
receptor upon interaction with its cognate ligand, which
then leads to caspase activation. The multiple steps
and checkpoints involved in apoptotic cell death allow
this to be dysregulated at multiple steps in human dis-
eases such as ARDS, but also allow the potential for ther-
apeutic intervention at several levels [108].

Neutrophil apoptosis in ARDS has been shown
to be delayed by several groups, including our own

[109–112], and correlates with disease severity in
sepsis and sepsis-related ARDS. Interestingly, BALF
from patients with early ARDS (days 1 and 3 of dis-
ease) but not late ARDS directly inhibits apoptosis
of healthy donor neutrophils [109]. This effect has
been attributed to soluble factors, including GM-CSF,
G-CSF, CXCL8 and IL-2 [109,113]. Recent detailed
characterisation of ARDS neutrophils has revealed
multiple phenotypic alterations alongside delayed
apoptosis [112]. Interestingly, ARDS BALF-induced
delay of healthy neutrophil apoptosis could be over-
come by PI3K inhibition, whereas the anti-apoptosis
phenotype of ARDS patient neutrophils was resistant
to PI3K inhibition [112]. This suggests that additional
PI3K-independent mechanisms are in play within the
complex pro-inflammatory milieu experienced during
human ARDS.

Several other preclinical strategies targeting neu-
trophil apoptosis have also shown promise in the
treatment of lung injury. Targeting of the extrinsic
pathway of apoptosis has been achieved by TNF-related
apoptosis-inducing ligand (TRAIL), part of the TNF
family of ligands that can initiate apoptosis by activating
cell surface receptors [114]. TRAIL appears to have no
role in constitutive neutrophil apoptosis nor neutrophil
chemotaxis (in contrast to the TNF family ligand FasL,
which is a potent neutrophil chemoattractant). How-
ever, in response to LPS-induced lung injury, TRAIL
acts to limit inflammation and enhances neutrophil
apoptosis [115]. Furthermore, recombinant TRAIL
was able to induce an anti-inflammatory response,
suggesting that such strategies may have therapeutic
potential in human ARDS. Targeting of the intrinsic
pathway of neutrophil apoptosis, such as with CDK
inhibitor drugs, has also been shown to have potent
anti-inflammatory effects in animal models of neu-
trophil dominant inflammation [14,15]. CDK inhibitor
drugs principally induce neutrophil apoptosis by inhibit-
ing CDK9-mediated transcription of the short-lived Bcl2
member Mcl-1 [14,116]. As neutrophils have limited
expression of the main anti-apoptotic Bcl2 homologue,
Bcl2 itself, this leaves them sensitive to alterations
in Mcl-1, leading to apoptosis. CDK inhibitor drugs
enhance the resolution of several lung injury models,
including bleomycin-induced, endotoxin-induced and
bacteria-induced lung injury [14,117]. Interestingly,
in an Escherichia coli-induced model of acute lung
injury, a CDK inhibitor drug administered after the
onset of inflammation augmented the resolution of lung
inflammation without detrimentally reducing clearance
of the bacteria. Indeed, there was increased bacte-
rial clearance, possibly resulting from lipid-mediated
enhanced bacterial phagocytosis by macrophages [14].
Furthermore, and in contrast to that observed with
PI3K inhibition [112], CDK inhibitor has recently been
shown to override the delayed neutrophil apoptosis in
sepsis-induced human ARDS concurrent with reduced
expression of Mcl-1 [111]. This suggests that Mcl-1
targeting approaches (either with CDK inhibitor or with
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the use of novel small molecule Mcl-1 inhibitors) may
have therapeutic potential in human ARDS.

Other strategies to modulate neutrophil apoptosis
warrant further investigation in the context of ARDS.
Potential strategies include the use of a p21 (Cdnk1a)
peptide, which binds and sequesters proliferating cell
nuclear antigen PCNA, an important endogenous neu-
trophil anti-apoptotic factor [118]. Although p21 pep-
tide is able to induce apoptosis of neutrophils isolated
from patients with lung inflammation [119], testing in
in vivo models of ARDS is awaited. Several fami-
lies of anti-inflammatory lipid mediators that influence
neutrophil lifespan and their clearance (among other
pleiotropic effects) have also been delineated. These
include the lipids 15-epi-lipoxin A4 and resolvin E1,
which drive neutrophil apoptosis and attenuate experi-
mental lung injury [120,121].

Lung parenchymal cell death

In contrast to the potential benefits of inflammatory cell
apoptosis during lung injury, there is also evidence that
damage and death of the lung epithelium and endothe-
lium can contribute to disease pathogenesis [109]. Alve-
olar epithelial apoptosis has been observed in exper-
imental lung injury caused by bleomycin, endotoxin
and acid [31,122], while alterations in Bcl2 members
(including increases in pro-apoptotic Bax) have been
observed in lung epithelium from human lung injury
cases [123]. In addition, BALF from human ARDS
patients contains FasL, which activates Fas receptor to
induce extrinsic pathway apoptosis [124]. Lung epithe-
lium expresses Fas, with ARDS BALF able to induce
epithelial apoptosis in a Fas/FasL-dependent manner
[124], but abolished Fas activity was unable to pro-
tect in experimental virus-induced ARDS [125]. Fur-
ther work is needed to clarify the role and timing of
Fas/FasL strategies, especially as Fas can also influ-
ence macrophage dynamics during resolution of lung
injury [126].

Similarly, death of pulmonary endothelium has
recently been demonstrated to be a pathogenic response
in endotoxin-induced lung injury [127]. This ele-
gant study demonstrated that endotoxin exposure led
to activation of caspase-4/5 (caspase-11 in mice) in
endothelium and a consequent pro-inflammatory, lytic
form of cell death (termed pyroptosis). Conditional dele-
tion of caspase-11 specifically in endothelial cells (using
a Cre/lox system) led to reduced endotoxin-induced
lung oedema, neutrophil accumulation and death.
Caspase-11 inhibitors, such as wedololactone, sup-
press endotoxin-induced caspase-11 in vitro [128],
but their role in lung injury in vivo remains to be
tested. In summary, any potential anti-inflammatory
strategy based on modulation of inflammatory cell
death has to carefully balance potentially deleterious
off-target effects should cell death be induced in lung
parenchymal cells.

Clearance of apoptotic cells

Macrophages play a crucial role in limiting excessive
inflammation and augmenting tissue repair, not only
in the clearance of apoptotic and necrotic cells, but
also in the removal of neutrophils undergoing NETo-
sis [129,130]. In ARDS, however, macrophage phago-
cytic function is impaired [130]. Grégoire and col-
leagues [130] observed enhanced NET formation and
reduced neutrophil apoptosis coupled with a reduction
in macrophage clearance of apoptotic cells (efferocyto-
sis) in BALF from ARDS patients. AMP-activated pro-
tein kinase (AMPK) has been associated with increasing
macrophage phagocytosis and reduced TNF and IL-6
production [131]. The addition of metformin, an AMPK
activator, to ARDS BALF samples resulted in removal
of NETs and increased efferocytosis by macrophages
[130]. Additionally, AMPK activators administered in
an LPS-induced mouse lung injury model reduced alve-
olar neutrophil accumulation, pulmonary oedema and
BALF TNF and IL-6. Furthermore, retrospective anal-
ysis of diabetic patients on metformin for the 3 months
prior to developing ARDS had a non-significant reduc-
tion in 30-day mortality from 55.32 to 42.42%. Little is
known about the exact anti-inflammatory mechanism of
metformin in this context and therefore it requires fur-
ther study [132].

A similar observation was made using a neutralising
antibody against HMGB1 to increase macrophage effe-
rocytosis [130]. HMGB1, which is increased in ARDS
[133], inhibits efferocytosis by interfering with the bind-
ing between the phosphatidylserine bridging molecule
milk fat globule EGF factor 8 (MFG-E8) and the αvβ3
integrin on the surface of macrophages [134]. Impor-
tantly, MFG-E8 knockout mice have increased apop-
totic alveolar neutrophils in the alveolar space follow-
ing LPS-induced injury, an effect that can be rescued by
recombinant MFG-E8 [135].

Another potential mechanism that some have spec-
ulated may be involved in neutrophil clearance is the
relatively recently described concept of reverse migra-
tion. This is the process by which neutrophils migrate
in the opposite direction to the chemotactic gradi-
ents that initially recruited them [136,137]. As yet,
this process has only been demonstrated in zebrafish
and mouse models, with no firm data demonstrating a
direct role in human disease. In animal models, PGE2
is an important mediator of neutrophil reverse migra-
tion, with macrophage depletion resulting in inhib-
ited reverse migration and therefore delayed resolu-
tion of inflammation due to reduced PGE2 produc-
tion [138]. Additionally, PGE2 depletion has a simi-
lar effect, further validating its importance in resolu-
tion. PGE2 signals through the EP4 receptor, increas-
ing Alox12 production and consequently lipoxin A4, an
important pro-resolving mediator that enhances reverse
migration [138]. In the context of the resolution of
pulmonary inflammation in mice, LTB4 released by
neutrophils promotes NE release, which subsequently
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cleaves junctional adhesion molecule-C (JAM-C) from
the endothelium of post-capillary venules, facilitating
reverse migration of neutrophils [139]. Although the
departure of neutrophils from sites of inflammation
can be considered a sign of inflammatory resolution,
reverse migration also has the potential to propagate
inflammation. Local ischaemia–reperfusion to the ear
skin or cremaster muscle in mice can progress to a
systemic inflammatory response in numerous organs,
including the lung, heart and liver [139]. Pharmacolog-
ical or genetic interference to either enhance or inhibit
reverse migration led to a parallel increase or decrease
in secondary inflammation in the lung distant organs
[139]. In humans, increased levels of soluble JAM-C
were detected in the plasma of ARDS patients, hinting
that reverse migration may be occurring, with a signifi-
cant direct correlation observed between soluble JAM-C
and the severity of multi-organ failure [139]. These data
therefore suggest that neutrophil reverse migration may
not be simply a clearance mechanism, but has the poten-
tial to cause dysregulated systemic pro-inflammation
in ARDS.

Conclusion

Neutrophils are both a hallmark and a driver of ARDS,
acting in concert with other resident and recruited
inflammatory cell types to induce a dysregulated,
overwhelming and often fatal pro-inflammatory state
within the lung (Figure 1). To conclude that a simple
‘one size fits all’ approach in the context of both the
pathogenesis and potential therapeutics is perhaps
naive and out-dated. This conclusion is supported by
the identification of distinct subpopulations of ARDS
patients who respond differently to fluid management,
ventilation strategies and some pharmacological thera-
pies [93,140,141]. Recognition of these different hypo-
and hyper-inflammatory phenotypes within the ARDS
cohort, as well as ever-increasing numbers of predictive
and prognostic biomarkers, is leading to a shift in
clinical trial design to reduce clinical and biological
heterogeneity [3]. New combination therapies that target
a variety of inflammatory components in ARDS are also
being considered to address issues of redundancy, as are
cell-based therapies, including bone marrow-derived
myeloid suppressor cells in infection-related ARDS [3].

It is therefore essential that variations in neutrophil
phenotype and function, as well as understanding of
neutrophil behaviour in different patient cohorts, are
explored and characterised. As has been outlined,
the difficulties of neutrophil-specific therapies in the
context of infection-related ARDS warrant further
exploration but, as in the context of induction of
neutrophil apoptosis, this should not stop further inves-
tigation, particularly in the context of combination
therapies. Further research is also required on the com-
plex chemokine networks, NETosis, mechanisms of
inflammation resolution as well as strategies that aim

to protect or enhance the repair of damaged epithelial
and endothelial beds. It is now over 50 years since
ARDS was first described [142] and much has been
learnt about its pathogenesis and beneficial supportive
ventilation and fluid management strategies but the era
of effective pharmacological treatments is yet to dawn.
Targeting aspects of neutrophil biology will probably
have a place among those therapies.
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