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Abstract Grain yield is a highly polygenic trait that is
influenced by the environment and integrates events
throughout the life cycle of a plant. In wheat, the major
grain yield components often present compensatory effects

among them,which alongside the polyploid nature ofwheat,
makes their genetic and physiological study challenging. We
propose a reductionist and systematic approach as an initial
step to understand the gene networks regulating each
individual yield component. Here, we focus on grain weight
and discuss the importance of examining individual sub-
components, not only to help in their genetic dissection, but
also to inform our mechanistic understanding of how they
interrelate. This knowledge should allow the development of
novel combinations, across homoeologs and between
complementarymodes of action, thereby advancing towards
a more integrated strategy for yield improvement. We argue
that this will break barriers in terms of phenotypic variation,
enhance our understanding of the physiology of yield, and
potentially deliver improved on-farm yield.
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INTRODUCTION

There is consensus that urgent action is needed to
sustainably increase global food production (Godfray
et al. 2010). Among the major crops, wheat (Triticum
aestivum) accounts for over 20% of the calorific intake of
humans and provides more protein (�23%) than all animal
sourcescombined(FAO2017). Increases inwheatyieldcould
have amajor impact on global food and nutritional security.
However, current trends will be insufficient to meet future
demands (Ray et al. 2013), and this could be exacerbated by
changing weather patterns (Asseng et al. 2016).

Final grain yield is the ultimate result of plant growth
and therefore most, if not all, genes will contribute

towards yield either directly or indirectly. As a result,
achieving increased yield is a non-trivial task, and the
cumulative knowledge from wheat breeding suggests
we will require simultaneous improvements of both
the ‘source’ and ‘sink’ tissues. Several strategies can be
used to achieve these improvements, although there
are fundamental differences in the rationale behind
these approaches (Reynolds et al. 2009; Foulkes et al.
2011; Parry et al. 2011).

Some strategies are based on a reductionist
approach, where one seeks to describe final grain yield
by studying and understanding the individual constitu-
ent parts (e.g. spikes/m2, grain number/spike, and
grain weight). Alternatively, the complexity of the
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biological system is such that an integrated approach is
warranted, where final grain yield needs to be studied
within the framework of a whole system, rather than by
the study of the individual components.

Here, we argue that a reductionist approach is

required as an entry point to understand the gene

networks and mechanisms regulating individual sub-

components underlying yield. This will require dissec-

tion beyond the traditional yield components (spikes/

m2, grain number/spike, and grain weight), which are

themselves highly complex and polygenic traits.

Importantly, this reductionist approach should not be

confused with studying sub-components in isolation.

We suggest that, by understanding the precise mecha-

nisms bywhich individual genes regulate individual yield

components, we will be better positioned to under-

stand, and potentially decouple, negative correlations

between yield components.

The mechanistic knowledge acquired can then be

used to assemble allele combinations in an informed

and targeted manner. These combinations will effec-

tively exploit the polyploid context present in wheat

and optimize individual, or multiple yield components

across different environments, which can then be

tested under local farm management practices. This is

becoming increasingly possible due to the availability of

novel genomic sequences and resources (Borrill et al.

2016; Zhang et al. 2016b; Krasileva et al. 2017; Mascher

et al. 2017; IWGSC 2018) and our knowledge of pathways

from model species and wheat itself (Li and Li 2015; Li

and Yang 2017).

Here we focus on grain weight, an important yield
component, which is stably inherited (Kuchel et al.
2007) and is, itself, comprised of multiple sub-compo-
nents, including carpel size, grain morphometric
parameters (length, width, height), and the rate of
grain filling. We provide a general overview of the
multiple processes occurring during grain development,
both across the spike as well as within an individual
grain. We then discuss the importance of focusing on
specific grain weight sub-components, not only to help
in the genetic dissection of grain weight, but also to
inform our mechanistic understanding of how they
operate and interact with other factors. We argue that
this knowledge is essential to modulate grain weight
and additional yield components to ensure they deliver

improved on-farm yield. Finally, we discuss some of the
future challenges and opportunities.

Throughout the review, we focus primarily on

studies from wheat, but also refer to insights from

other cereals and model species, including barley

(Hordeum vulgare), rice (Oryza sativa) and Arabidopsis

thaliana. It is important to note that there are

fundamental differences between the cereal grain

(e.g. wheat, barley, rice) and the seeds of other model

species, such as Arabidopsis. All seeds are surrounded

by a layer of cells, known as the seed coat, which is

derived from the maternal integuments. In the case of

cereals, however, the grain is a fruit rather than a true

seed. This fruit, called a caryopsis, has its seed coat

fused to the pericarp, another tissue of maternal origin,

which is derived from the ovary wall. The cereal

caryopsis is a dry, single seeded fruit, formed from a

single carpel and is indehiscent, meaning that it does

not open and release the true seed at maturity. The

Arabidopsis seed, on the other hand, is a true seed

contained within a dehiscent fruit, which in turn is

formed from two carpels and houses many individual

seeds.

Therefore, while some processes and mechanisms

will be conserved across species, there will also be

differences in the ways in which grain and seed

development are regulated (for more detailed compar-

isons see Linkies et al. 2010; Taiz and Zeiger 2014). For

the purpose of this review, we will use the term ‘grain’

to refer explicitly to the cereal caryopsis and ‘seed’ to

refer to the Arabidopsis seed. When it is necessary to

refer to the two, simultaneously, we will use the term

‘seed’.

GRAIN WEIGHT ACROSS A SPIKE

Each wheat plant will produce multiple inflorescences,
commonly referred to as spikes, and each spike is
comprised of flowers arranged in specialized branches,
termed spikelets, which are attached to a main axis
(rachis), on opposite sides, and in an alternating
pattern. A typical wheat spike will have between 15
to 20 spikelets and each spikelet is comprised of two
outer glumes and between four to six fertile florets that
have the potential to hold grain (Figure 1; Kirby and
Appleyard 1987). Each floret in turn has two sheathing
structures, the lemma and palea, which envelop the
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carpel and three stamens (Kirby and Appleyard 1987). It
is within this floral structure, surrounded by the lemma
and palea, that the carpel will be fertilized and a grain
will develop.

Final grain weight is influenced by many factors,
both genetic and environmental. Indeed, there is a
high level of variation in grain weight within a single
genotype, and even across a single wheat spike. Not
all spikes and spikelets initiate and develop at the
same time, and there can be several days or weeks
between the initiation of the first and last spikelet.
However, the primordia grow and develop at different
rates, meaning that anthesis (flowering) will occur
within a few days across a single spike. Within a single
spike, spikelet differentiation and development begins

in the middle of the spike and continues, bi-direction-
ally, towards the top and bottom (Bonnett 1936; Kirby
1974). As a result, several studies have shown that
grain weight is higher in the central spikelets
compared to the apical (top) and basal (bottom)
spikelets (Figure 1B–D; Calderini and Ortiz-Monasterio
2003; Liu et al. 2006).

Floret development within a single spikelet also
occurs sequentially, but in a uni-directional manner,
starting at the bottom with floret 1 and proceeding
upwards on alternating sides of the spikelet meristem.
In general, the later initiated florets produce smaller
grains. The initiation of the two most basal florets
(floret 1 and 2) occurs at roughly the same time resulting
in grains of similar size, however, the largest grain is

Figure 1. Grain weight across a wheat inflorescence (spike) and structure of mature grain
The wheat inflorescence, known as the spike (A) consists of multiple spikelets, each comprising two outer glumes
and multiple florets (E) that have the potential to hold grain. Each floret has two sheathing structures, the lemma
and palea, which enclose the carpel and three stamens. Grain weight is non-uniform across the spike, with spikelets
in the apical (B) and basal (D) sections of the spike having smaller grains than the central spikelets (C). Grain weight
is also non-uniformwithin a single spikelet. At all spikelet positions, floret 2 contains the largest grain and the size of
the grain from floret 1 is similar, but slightly smaller (B–D). Grains produced from floret 3 and 4 are smaller than
those in florets 1 and 2 (C). F illustrates longitudinal (upper) and cross (lower) sections of amature wheat grain, with
a representation of the cell types found in a cross section (left). The aleurone, transfer cells and starchy endosperm
are differentiated endosperm cell types and the maternal layers shown consist of the outer pericarp, cross cells and
seed coat (top to bottom). Data for panels B–D from (Calderini and Ortiz-Monasterio 2003; Liu et al. 2006; Lizana
et al. 2010).
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consistently produced by floret 2 (Figure 1B–D; Calderini
and Ortiz-Monasterio 2003; Liu et al. 2006; Lizana et al.
2010; Xie et al. 2015).

Each spikelet will initiate between 8 and 12 floret

primordia, although usually just the first four to six

florets are potentially fertile and produce a carpel,

consisting of the ovary, style and stigma (Kirby and

Appleyard 1987; Evers and Millar 2002). A strong

association has been observed between carpel size

and final grain weight, suggesting that grain weight can

be determined, maternally, even before grain develop-

ment per se has started (Calderini et al. 1999; Hasan

et al. 2011; Guo et al. 2015; Reale et al. 2017).

OVERVIEW OF GRAIN DEVELOPMENT

Grain development in wheat and barley begins with the

fertilization of the ovary, a maternal structure contain-

ing the ovule, and ends with the mature grain

composed of three main tissues; the embryo, endo-

sperm and maternal outer layers (Figure 1F). These

tissues contain large amounts of starch, proteins and

other nutrients which are accumulated during grain

development. We discuss below the processes underly-

ing grain development and we summarize their

dynamics in Figure 2.

These data originate from multiple independent

studies that mostly report these values as days post
anthesis (dpa). This makes direct comparisons difficult

due to genetic differences between cultivars tested and
varying environmental conditions (e.g. temperature)

which affects the rate of these processes. Our aim here

is to provide a schematic overview of the general
relationships among these processes and, therefore,

we have combined the data into Figure 2. However, this

argues for the need for a more standardized reporting
of data related to grain development, for example using

thermal time after anthesis in degree days (Xie et al.

2015).
The ovule in both wheat and barley comprises the

haploid embryo sac, surrounded by diploid nucellus
tissue and two integuments (Wilkinson et al. 2018).
Upon pollen release, also referred to as anthesis, a
“double fertilization” event takes place in the embryo
sac, during which the triploid endosperm nucleus (a
single pollen nucleus fused with two polar nuclei in the
embryo sac) and the diploid embryo (the second

pollen nucleus fused with the egg nucleus) are
formed. These structures are enclosed by several
layers of maternal tissue, including the seed coat,
derived from the integuments and the pericarp, which
originates from the ovary wall (Olsen 2001; Shewry
et al. 2012).

In the first few dpa, the grain increases in size
relative to the ovary, but the overall shape remains
similar (“a blunt inverted cone”; Drea et al. 2005).
During this time, the endosperm nuclei undergo several

Figure 2. Dynamics of grain dimensions and contents
during wheat grain development
Schematic summarizing the changes in wheat grain
weight anddimensions (A) and grain contents (B) across
development, expressed as days post-anthesis (dpa).
Curves show the level of each parameter relative
to the maximum level at any point during grain
development. Shading indicates the phases of
grain development: Divisionþ expansion (0–14 dpa),
Grain filling (14–28 d) and Maturationþ desiccation
(28 dpa onwards; from Shewry et al. 2012). ABA¼
abscisic acid, T6P¼ trehalose 6-phosphate. Data
summarized from (Sofield et al. 1977; Rogers and
Quatrano 1983; Dominguez and Cejudo 1996; Hess
et al. 2002; Nadaud et al. 2010; Mart�ınez et al. 2011;
Shewry et al. 2012; Xie et al. 2015).
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rounds of mitosis, in the absence of cytokinesis or cell
wall formation. This process gives rise to the endosperm
coenocyte, a multinucleate cell with a large vacuole
(Olsen 2001; Drea et al. 2005). At this time, cells in the
outer layers of the grain are actively proliferating (Drea
et al. 2005). Cytokinin levels in the grain are at their
highest during this early stage (0–7 dpa) and may act to
initiate the period of rapid cell division (Hess et al. 2002).
Likewise, the sugar signal metabolite trehalose-6-
phosphate (T6P), which regulates growth and develop-
ment in response to assimilate availability, is at its
highest in both maternal and filial tissues at these early
stages of grain development and pre-grain filling
(Mart�ınez et al. 2011; O’Hara et al. 2013).

After an initial period of isotropic growth, the length
of the developing grain increases significantly, reaching
maximum length at around 15 dpa (Rogers and
Quatrano 1983; Xie et al. 2015; Brinton et al. 2017).
Cellularization of the endosperm begins by 6 dpa and
from this point onwards the endosperm expands
rapidly due to both cell division and expansion.
Conversely, cell proliferation in the outer layers of the
grain has declined by 6 dpa and, subsequent, growth in
these tissues is mainly due to cell expansion (Drea et al.
2005; Radchuk et al. 2011).

Concurrent with endosperm cellularization, the
endosperm also undergoes differentiation into the
main cell types: starchy endosperm, aleurone and
transfer cells (Figure 1F). The presence of multiple
different cell types is one major difference between the
endosperm of cereal grains and some dicots, including
Arabidopsis, which only retain one major cell type in the
endosperm of mature seeds (reviewed by Olsen 2001).

After the basic structure of the grain has been
established, the grain filling period begins. This involves
the accumulation of multiple storage components,
including starch and proteins, such as gliadins and
glutenins, in addition to micronutrients, such as iron,
zinc and calcium (Sofield et al. 1977; Mecham et al. 1981;
Johansson et al. 1994; Dominguez and Cejudo 1996;
Gupta et al. 1996; Shewry et al. 2009). While the grain
filling rate is at its highest (�14–28 dpa; Shewry et al.
2012) the dry weight of the grain approximately
doubles, and the grain volume continues to increase,
but not in the longitudinal direction (Yang et al. 2006;
Shewry et al. 2012; Xie et al. 2015).

Abscisic acid (ABA) content of the grain is positively
correlated with grain filling rate, peaking while the grain

filling rate is maximal andmay be important for nutrient
remobilization and grain filling processes, such as starch
accumulation (Yang et al. 2006; Seiler et al. 2011). The
water content of the grain also reaches its maximum
during this time and is maintained until the grain
reaches a maximum dry weight at around 40 dpa.
Shortly after the grain has reached maximum dry
weight and volume, i.e., physiological maturity, desic-
cation and maturation of the grain begins. This is
characterized by rapid water loss from the grain,
resulting in a decrease in overall grain volume,
attributable to slight reductions in all grain size
parameters (Xie et al. 2015).

In addition to cell division and expansion, pro-

grammed cell death (PCD) also plays an important role

throughout grain development, occurring in various

tissues at different stages. Shortly after fertilization,

most of the nucellus undergoes PCD and the remaining

tissue differentiates into the nucellar projection, a

tissue critical for the delivery of nutrients from the

mother plant to the endosperm, via the transfer cells

(Figure 1F; reviewed in Radchuk and Borisjuk 2014). PCD

also occurs in the pericarp from as early as 4 dpa when

the tissue is formed of many different layers (Radchuk

et al. 2011). By approximately 15 dpa, the pericarp

consists of fewer layers and is significantly reduced in

thickness due to PCD. Conversely, PCD in the endo-

sperm takes place slightly later, occurring in certain

areas from 16 dpa and across the whole endosperm by

30 dpa (Young and Gallie 1999). Some tissues in the

grain remain alive atmaturity, such as the aleurone layer

and embryo (reviewed in Dom�ınguez and Cejudo 2014).

GENETIC CONTROL OF GRAIN WEIGHT

While most phases of grain development have been
extensively characterized phenotypically, the genetic
basis of how these processes are controlled and how
they influence final grain weight is not well understood
in wheat. Transcriptomic and proteomic studies have
provided a global overview of the types of genes that
are involved in grain development. These remain largely
descriptive, however, and often focus on the middle
and later stages of grain filling, despite the importance
of early events during carpel and grain development.
For example, genes enriched for ontologies, including
cell division, photosynthesis, nucleic acid and protein
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metabolism, are preferentially expressed at the very
early stages of grain development, consistent with the
ongoing cellular processes (Laudencia-Chingcuanco
et al. 2007; Wan et al. 2008; Yang et al. 2017; Brinton
et al. 2018).

As grain development progresses, genes associ-
ated with transport, proteolysis, carbohydrate metab-
olism and starch synthesis are upregulated, in addition
to genes encoding storage proteins (Laudencia-
Chingcuanco et al. 2006; Pellny et al. 2012; Ma et al.
2014; Pfeifer et al. 2014; Yu et al. 2016). Interestingly,
many studies have shown that genes with stress and
defense-related ontologies are also upregulated dur-
ing grain development (Laudencia-Chingcuanco et al.
2006; Nadaud et al. 2010; Capron et al. 2012; Ma et al.
2014; Brinton et al. 2018). Tissue-specific expression
studies also highlight the ongoing process of differen-
tiation during grain development. For example,
aleurone and endosperm tissues have similar gene
expression profiles, at the early stages of grain
development, but by later stages the expression
profiles are very distinct (Gillies et al. 2012).

Quantitative trait loci (QTL) for grain weight have
been identified on almost every wheat chromosome
(Huang et al. 2003; Breseghello and Sorrells 2007; Gegas
et al. 2010; Kumar et al. 2016). However, only a subset of
these QTLs have been validated and none have yet been
cloned (R€oder et al. 2008; Simmonds et al. 2014; Huang
et al. 2015; Farr�e et al. 2016; Brinton et al. 2017). One of
the major challenges to cloning grain size QTL in wheat
is the subtle nature of the phenotypic effects, whereby
single loci often increase average grain weight by
<10%, and to an even lesser degree for the individual
sub-components (Figure 3A).

This is exacerbated by the variation in grain weight
that can exist within a single genotype, as discussed
above, making unambiguous classification of individual
lines as either high or low grain weight difficult. This
ambiguity severely hampers genetic mapping, which
relies on the clear separation between phenotypic
categories. Some insight has been gained by breaking
grain weight down into its individual morphometric sub-
components; e.g., grain length and width, which are
under independent genetic control (Gegas et al. 2010).

Figure 3. Genetic control of grain weight in wheat
(A) The percentage effect of quantitative trait loci (QTL) for grain weight (measured as thousand grain weight;
TGW), length and width in wheat and rice. The effect of single grain weight QTL in wheat is usually<10%, whereas in
rice the effects are larger (mean¼ 25.9%). Values in brackets are the number of different QTL used to create the
boxplots. Data used detailed in Table 1. (B) Effects of deleterious mutations in TaGW2 (adapted from Wang et al.
2018b). Twenty representative grains are shown for each line. Combining mutations in multiple homoeologs has an
additive effect on TGW compared to the wild type (single¼ 5.3%, double¼ 10.5%, triple¼ 20.7%) suggesting that
there is functional redundancy amongst TaGW2 homoeologs. (C) Effect of a natural loss of functionmutation of GW2
in rice (adapted from Song et al. 2007). This loss of function mutation results in both increased grain weight (49.8%)
and grain width (26.2%) compared to the wild type.
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Table 1. Effects of grain weight and size QTL in Wheat and Rice

Species Trait Chromosome/QTL name % difference Reference

Wheat TGW 2A 2.29 Farr�e et al. 2016

Wheat TGW 5A 6.66 Farr�e et al. 2016

Wheat TGW 6A 5.30 Farr�e et al. 2016

Wheat TGW 5A 6.92 Brinton et al. 2017

Wheat TGW 6A 3.96 Simmonds et al. 2014

Wheat TGW 7D 10.00 R€oder et al. 2008

Wheat TGW 2D 6.80 Wu et al. 2014

Wheat TGW 2D 10.30 Huang et al. 2003

Wheat TGW 4D 11.70 Huang et al. 2003

Wheat TGW 5B 4.80 Huang et al. 2003

Wheat TGW 7A 3.80 Huang et al. 2003

Wheat TGW 7B 4.90 Huang et al. 2003

Wheat TGW 7B 5.80 Huang et al. 2003

Wheat TGW 7D 6.60 Huang et al. 2003

Wheat TGW 2D 4.25 Huang et al. 2015

Wheat TGW 4B 4.45 Huang et al. 2015

Wheat TGW 5A 5.50 Huang et al. 2015

Wheat TGW 2B 7.16 Sukumaran et al. 2018

Wheat TGW 2D 7.16 Sukumaran et al. 2018

Wheat TGW 3B 4.50 Sukumaran et al. 2018

Wheat TGW 5A 2.85 Sukumaran et al. 2018

Wheat TGW 6A 1.70 Sukumaran et al. 2018

Wheat TGW 7D 5.90 Sukumaran et al. 2018

Wheat TGW 6A 3.71 Zhang et al. 2017b

Wheat TGW 3D 7.23 Zhang et al. 2012

Wheat TGW 2D 4.00 Breseghello and Sorrells 2007

Wheat length 5A 2.14 Farr�e et al. 2016

Wheat length 6A 0.85 Farr�e et al. 2016

Wheat length 5A 4.04 Brinton et al. 2017

Wheat length 7D 4.60 R€oder et al. 2008

Wheat width 5A 2.28 Farr�e et al. 2016

Wheat width 6A 2.24 Farr�e et al. 2016

Wheat width 6A 2.00 Simmonds et al. 2014

Rice TGW TGW6 10.00 Ishimaru 2003

Rice TGW SRS3 29.40 Kitagawa et al. 2010

Rice TGW GS3 46.29 Fan et al. 2006

Rice TGW GW5 22.90 Weng et al. 2008

Rice TGW GL3 43.50 Qi et al. 2012

Rice TGW SW5 12.80 Shomura et al. 2008

Rice TGW GIF1 24.00 Wang et al. 2008

Rice TGW GW8 13.90 Wang et al. 2012

Rice TGW GS5 6.98 Li et al. 2011b

Rice TGW GW2 49.80 Song et al. 2007

(Continued)
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Several studies in wheat have also identified

associations for grain weight in naturally occurring

variants of genes with demonstrated roles in model

species, such as Arabidopsis. Many of these genes relate

to starch metabolism, including ADP-glucose pyrophos-

phorylase, sucrose synthase 2, and invertase genes

(Jiang et al. 2011; Jiang et al. 2015; Hou et al. 2017),

whereas other genes are predicted transcription factors

(TFs; Zhang et al. 2015; Zhang et al. 2017a). While

important as an initial step towards defining the

commonality across species and for use in breeding,

in most cases further functional validation would

be warranted. This could be achieved using multiple

independent mutants (Uauy et al. 2017), now available

in silico (Krasileva et al. 2017), or gene-edited or

transgenic lines with the appropriate modification for

each case.

This is important to conclusively show that the

candidate genes and the proposed beneficial haplo-

types are directly responsible for influencing grain

weight, rather than being associated with increased

grain size or weight, due to linkage disequilibrium with

an unrelated nearby gene. This is especially relevant in

species with uneven recombination across chromo-

somes, such as wheat and barley (Akhunov et al. 2003),

as the decay in linkage disequilibrium could encompass

dozens, if not hundreds, of genes.
An example of this is the centromeric region of

chromosome 6A in wheat which has been associated
with grain weight and yield in several studies and to
which thewheat ortholog of rice GRAINWEIGHT 2 (GW2)
gene has been mapped (Song et al. 2007; Simmonds
et al. 2014; Sukumaran et al. 2015; Sukumaran et al. 2018;

Zhang et al. 2018a). TaGW2 has been validated as a
negative regulator of grain size and weight in wheat
through gene editing and mutant analysis (Yang et al.
2012; Simmonds et al. 2016; Wang et al. 2018b; Zhang
et al. 2018b). However, care must be taken to associate
haplotypes of GW2 with these yield effects (Su et al.
2011; Zhang et al. 2013), given that linkage disequilibrium
in this region is extensive. Sukumaran et al. (2018)
reported a linkage block in this region between
77–81 cM, which encompasses 63% of the entire 6A
chromosome (!) based on the physical wheat genome
sequence (IWGSC 2018). Several studies have suggested
the presence of alternative genes in the region
influencing grain size and weight across environments
(Simmonds et al. 2014; Avni et al. 2018; Sukumaran et al.
2018). Likewise, SNPs associated with increased grain
weight in one panel, are not always validated in an
independent association panel (e.g., TaGS5; Ma et al.
2015; Zhang et al. 2018a).

Despite the limitations outlined above, studies in

model species do provide a valuable starting point for

the functional characterization of genes and under-

standing their effect on grain weight in wheat. In rice,

over 400 grain weight QTL have been identified, and

several of the underlying genes have been cloned

(reviewed in Xing and Zhang 2010; Huang et al. 2013).

Studies in Arabidopsis have also provided a deep

molecular insight into the control of seed size (reviewed

in Li and Li 2015, 2016).

The gene underlying the rice GW2 QTL (Song et al.
2007) mentioned previously provides a good case
study of how knowledge from model species is being
translated into wheat and used to inform our

Table 1. Continued

Species Trait Chromosome/QTL name % difference Reference

Rice length SRS3 14.70 Kitagawa et al. 2010

Rice length GS3 40.03 Fan et al. 2006

Rice length GL3 16.10 Qi et al. 2012

Rice length SRS5 23.40 Segami et al. 2012

Rice width GW5 19.60 Weng et al. 2008

Rice width SW5 17.90 Shomura et al. 2008

Rice width GW8 14.90 Wang et al. 2012

Rice width GS5 8.70 Li et al. 2011b

Rice width GW2 26.20 Song et al. 2007

TGW, thousand grain weight
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understanding of grain weight. GW2 is an E3 ubiquitin
ligase that negatively regulates grain width, and this
mechanism appears to be conserved across species,
including wheat, Arabidopsis and maize, on both a
cellular and molecular level (Li et al. 2010; Xia et al. 2013;
Simmonds et al. 2016). The wheat ortholog, TaGW2, was
shown to affect cell number in maternal tissue and to
have ubiquitination activity, as in rice and Arabidopsis
(Bednarek et al. 2012; Xia et al. 2013; Dong et al. 2017;
Zhang et al. 2018b).

Another example is KLUH, an Arabidopsis cyto-
chrome P450 shown to positively regulate seed size
through the promotion of cell proliferation in the
integuments (Adamski et al. 2009). Virus induced
gene silencing (VIGs) in the grain of a wheat gene
from the same cytochrome family, TaCYP78A5, resulted
in a reduction in grain size of 11%, due to reduced cell
proliferation in the ovary and developing seed,
suggesting a conserved mechanism (Ma et al. 2016).

Caution should be exercised, however, when
transferring knowledge between species, as there are
fundamental differences in seed development and,
therefore, not all gene functions will be conserved. For
example, heterotrimeric G-protein complexes consist of
three subunits: Ga, Gâ and Gg and roles in seed/grain
size regulation have been identified for examples of all
subunits in Arabidopsis and rice (reviewed in Botella
2012). However, it is not clear if function is completely
conserved across species. For example, an Arabidopsis
Ga subunit, AGG3, positively regulates seed size, while
the most similar rice Ga subunits, DEP1 and GS3 appear
to be negative regulators of seed size (Fan et al. 2006;
Huang et al. 2009; Li et al. 2012). It is not yet clear what
role this pathway plays in regulating grain weight in
wheat.

One major difference between the grain weight QTL
identified in species such as rice, compared to those
identified in wheat, is the magnitude of the effects. As
mentioned previously, the average effect of a single
locus in wheat is usually <10%, whereas major grain
weight QTL in rice often increase grain weight by >20%
(Figure 3A). The same is true in Arabidopsis, with the
knockout of single genes routinely modulating seed size
by approximately 20% (Garcia et al. 2005; Adamski et al.
2009; Xia et al. 2013).

It has been proposed that the subtlety of these
effects in wheat is due to its polyploid nature,
compared to the diploid status of rice and Arabidopsis

(Borrill et al. 2015). Bread wheat is a hexaploid,
consisting of three homoeologous genomes (A, B and
D) and, as such, most genes exist as three closely-
related copies sharing �95% sequence similarity.
Functional redundancy between homoeologs can,
therefore, result in the effects of variation in a single
gene being masked, completely or in part, by the
effects of the remaining functional copies. Indeed,
variation in the GW2 gene in rice leads to grain weight
differences of up to 50%, whereas a similar mutant in a
single genome of the wheat ortholog (TaGW2-A)
affects grain weight by only approximately 7% in
wheat (Song et al. 2007; Simmonds et al. 2016). This
hypothesis is supported by the fact that downregulat-
ing multiple homoeologs of TaGW2 has an additive
effect, with simultaneous downregulation of all three
homoeologs, by gene editing and mutants, increasing
grain weight by 16.3% and 20.7%, respectively (Figure
3B; Wang et al. 2018b).

MECHANISTIC CONTROL OF GRAIN
WEIGHT

In addition to understanding the genetic basis of grain

weight, determining the mechanism by which these

genes work is critical to inform strategies for yield

improvement. Studies in model species have revealed

that seed size is controlled by genes with a diverse

range of molecular functions. TFs belonging to many

different families have been shown to be involved in the

control of seed size; e.g., the rice SQUAMOSA PRO-

MOTER-BINDING LIKE (SPL), OsSPL16. This TF was cloned

as the gene underlying the rice GRAIN WIDTH 8 (GW8)

QTL and positively regulates grain size (Wang et al.

2012).

Genes involved in the ubiquitin pathway are also
important regulators of grain weight in many plant
species, including GW2 (reviewed in Li and Li 2014).
Genes with deubiquitinating activity have also been
shown to influence seed size, such as WIDE AND THICK
GRAIN 1 (WTG1) in rice and UBIQUITIN SPECIFIC PROTEASE
15 (UBP15) in Arabidopsis, which act as negative and
positive regulators of seed size, respectively (Du et al.
2014; Huang et al. 2017). Genes involved with phytohor-
mone signaling are also important regulators of seed
size, with roles being demonstrated for auxin, brassi-
nosteroid and cytokinin biosynthesis and signaling
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components (Riefler et al. 2006; Schruff et al. 2006;
Jiang et al. 2013).

Components of many other pathways have also

been shown to influence grain and seed size in multiple

species, including the heterotrimeric G-protein signaling

pathway (discussed above; Botella 2012), MAP-kinase

cascades (Xu et al. 2018), epigenetic factors (Xiao et al.

2006) and sugar metabolism (Ohto et al. 2005; Ohto

et al. 2009). Here, we discuss some of the mechanisms

through which seed size can be regulated, both on a

molecular level considering the mechanistic action of

specific genes and on a whole organ level. Where

possible we refer to studies in wheat, but also draw

from work performed in model species such as rice and

Arabidopsis.

CELL SIZE vs CELL NUMBER

Grain weight and its individual morphometric parame-

ters are determined by the modulation of cell size and

cell number. A range of genes with different molecular

functions influence seed size through either the positive

or negative regulation of cell number. GW2 exerts its

control over seed size through limiting cell division in

rice, wheat and Arabidopsis (Song et al. 2007; Xia et al.

2013; Zhang et al. 2018b). DA1, a downstream target of

the Arabidopsis GW2 ortholog, also negatively regulates

cell number and the two genes work to influence seed

size in a synergistic manner (Xia et al. 2013; Dong et al.

2017). On the other hand, OsSPL16 positively regulates

grain size through the promotion of cell proliferation

(Wang et al. 2012).
Cell size in the seed can be modulated either directly

or indirectly. Some genes act to physically modify the
cell wall and alter its properties (reviewed in Cosgrove
2005). Expansins and XTH genes disrupt cross links in
the cell wall, allowing for increased turgor driven cell
expansion, and the expression of these genes has been
associated with cell and grain length in wheat and
barley (Lizana et al. 2010; Radchuk et al. 2011; Munoz
and Calderini 2015). In Arabidopsis, the WRKY TF TTG2
regulates some steps of the tannin biosynthesis
pathway. ttg2 mutants have smaller seeds due to
smaller cells in the seed coat, likely due to altered tannin
levels in the cell wall, resulting in a reduced capacity for
elongation (Johnson et al. 2002; Garcia et al. 2005).
Microtubule dynamics are also important determinants

of cell size and shape (Li et al. 2011a; Fujikura et al. 2014).
The rice grain weight gene SRS3 was shown to be a
kinesin 13 protein, a family of genes which regulate
microtubule depolymerization (Kitagawa et al. 2010).

Other genes regulate cell size in the seed through

more indirect mechanisms, for example, through the

regulation of sugar metabolism and subsequent

accumulation in the vacuole, and endoreduplication

(Ohto et al. 2005; Ohto et al. 2009; Chevalier et al. 2014).

We recently showed that a grain weight QTL, on wheat

chromosome 5A, is associated with increased grain

length due to increased cell size in the pericarp.

Whether this is a direct or indirect effect remains to

be determined (Brinton et al. 2017).

MATERNAL CONTROL OF GRAIN SIZE

Many of the genes shown to regulate seed size in rice

and Arabidopsis appear to act maternally, either pre- or

post-fertilization (reviewed by Li and Li 2015). A strong

association between carpel size and final grain weight

has been documented in wheat (Calderini et al. 1999;

Calderini and Reynolds 2000; Hasan et al. 2011; Xie et al.

2015; Reale et al. 2017). TaGW2 acts maternally, with

10% increased carpel size in the A-genome knock-out

mutant lines compared with wild-type (Simmonds et al.

2016). The rice and Arabidopsis ortholog of GW2 also act

maternally to modulate seed size (Song et al. 2007; Xia

et al. 2013).

The mechanisms by which the carpel and its

component tissues influence final grain size are not
well understood in wheat and barley. Reale et al. (2017)
established that the size of both the ovary wall and the
ovule itself were associated with larger carpels and
grains, largely due to cell number, rather than size.
However, the two tissueswere not affected to the same
extent, resulting in an increased ovule:ovarywall ratio in
larger grains. The ovule and its component tissues play

an important role during fertilization and subsequent
grain development (reviewed in Wilkinson et al. 2018).
Variation in nucellus size has been observed between
barley cultivars but if and how this influences final grain
size remains to be determined (Wilkinson and Tucker
2017).

Maternally acting genes may not necessarily
increase carpel size, but instead, may affect tissues of
maternal origin, later during grain development. For
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example, the sucrose transporters SUT1 and SUT2 are
highly expressed in nucellar tissue and the nucellar
projection in the days immediately following fertiliza-
tion, and downregulation of these genes in barley has
been associated with decreased grain weight (Radchuk
et al. 2017). PCD in the pericarp tissue, arising from
the maternal ovary wall has also been shown to be
important for the maternal control of grain size.
Downregulation of VACUOLAR PROCESSING ENZYME 4
(VPE4) by RNAi in barley resulted in delayed PCD in the
pericarp and consequently smaller grains (Radchuk
et al. 2018). PCD is thought to be an important step for
enlargement of the pericarp to accommodate endo-
sperm growth (Radchuk et al. 2011; Radchuk et al. 2018),
highlighting the fact that grain development involves
the tight coordination of processes across multiple
tissues, which will ultimately determine the final size
of the grain.

In multiple species, including wheat, it has been
proposed that the size of the maternal outer layers
determines the final grain size by placing a physical
upper limit on the space into which the endosperm can
grow (Calderini et al. 1999; Adamski et al. 2009; Hasan
et al. 2011). Studies in wheat showing a correlation
between carpel size and dry matter accumulation
support this hypothesis, suggesting that increasing
the size of the maternal tissues allows an enhanced
capacity for grain filling i.e. increased source strength
(Calderini and Reynolds 2000; Xie et al. 2015; Brinton
et al. 2017). The maternal parent will also contribute to
final seed size through other mechanisms including
responses to the environment during grain develop-
ment and the imprinting of genes after fertilization,
both of which have been shown to influence final grain
size (discussed in Zhang et al. 2016a).

Studies in Arabidopsis suggest that increased size of
the maternal seed coat can be achieved as an indirect
effect of increased growth of the endosperm, a zygotic
tissue. For example, the HAIKU (IKU) genes act to
promote endosperm growth in Arabidopsis. The iku
mutants have smaller seeds, due to reduced endosperm
growth and, indirectly, reduce cell elongation in the
seed coat (Garcia et al. 2003). The indirect effect on cell
size, in the seed coat, was determined by demonstrat-
ing that iku double mutants pollinated with WT
pollen had WT-like seeds, therefore showing that the
iku mutations do not have a direct effect on the
maternal seed coat. Already this suggests a level of

communication between the endosperm and seed coat,
extending beyond purely mechanical forces (Garcia
et al. 2003).

The IKU genes interact on a genetic basis with TTG2
and iku ttg2 double mutants have seeds even smaller
than ikumutants, due to the ttg2mutation compromis-
ing the elongation capacity of the cell walls in the seed
coat, and hence, further restricting endosperm growth.
This is in accordance with the size of the maternal
pericarp imposing a physical constraint on endosperm
growth. However, combining the iku mutations with
lines that have reduced cell proliferation in the seed
coat (due to overexpression of KIP RELATED PROTEIN2)
does not have an additive effect on seed size, and
instead, the reduction in cell number in the seed coat is
compensated for by increased cell elongation (Garcia
et al. 2005). This suggests that, in some cases, the size of
the seed coat can be adjusted to accommodate the
growth of the endosperm, providing additional evi-
dence there must be communication between the
tissues.

This communication is also present in wheat, as
exemplified for seed dormancy, where the R genes,
which determine grain color specifically in the seed
coat, have pleiotropic effects on embryo dormancy
(Flintham 2000; Himi and Noda 2005). Studies in maize
have shown that the maternal outers layers are
important for specifying the fate of some, but not all,
cell types in the endosperm. In vitro cultures of maize
endosperm develop aleurone cells on the surface, in the
absence of maternal layers, however, differentiation of
transfer cells does not occur. Interestingly, the in vitro
grown endosperms grew for roughly the same duration
as those grown in planta, and underwent similar
frequencies of cell divisions, suggesting that the growth
duration of the endosperm is somewhat independently
controlled (Gruis et al. 2006).

The exact nature of the communication between
tissues is not fully understood. InArabidopsis, roles have
been demonstrated for phytohormones, epigenetic
factors and sugars (Nowack et al. 2010; Locascio et al.
2014; Radchuk and Borisjuk 2014) but relatively little is
understood about the molecular basis of this signaling
in cereals.

Distinguishing between true maternal effects and
zygotic effects that, indirectly, influencematernal tissue
cannot always be achieved by phenotypic characteriza-
tion, particularly when considering post-anthesis
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effects. For example, the grain weight QTL on wheat
chromosome 5A increases grain length due to longer
cells in the pericarp tissue. However, the QTL does not
influence carpel size and the first differences in grain
size are only observed several days post-fertilization
(Brinton et al. 2017). In these cases, assigning the effect
as maternal, or zygotic, requires experiments involving
reciprocal crosses and phenotypic assessment in F1
hybrid seed.

Experiments of this nature in wheat, however, are

challenging as the subtle effects of grain weight genes

(Figure 3A) are likely to be masked by the phenotypic

variation observed across F1 grains. Understanding the

precise mechanism by which the grain weight is being

controlled can help to make these experiments

possible. In the case of the 5A grain weight QTL, we

showed that the effect on pericarp cell size was

independent of individual grain size, suggesting that

this more robust phenotype could be used to assess the

F1 grains (Brinton et al. 2017).

PHYSICAL CONSTRAINTS TO GRAIN SIZE

As discussed above, the interaction of different tissues

within the grain imposes mechanical forces and physical

constraints that determine the final size of the grain. In

addition, there is also evidence that the size of the grain

can be influenced by physical constraints imposed by

other, non-grain tissues, such as the lemma and palea,

which define the floret cavity size (Figure 1E). In rice, for

example, the palea and lemma form a tight-fitting

enclosure, the spikelet hull, that restricts the growth of

the grain and defines the potential for the final grain

size, even before the grain has formed (Lombardo and

Yoshida 2015).
In wheat, the lemma and palea envelop the grain as

in rice, but can separate and allow the grain to grow
further out of these structures. Studies have shown,
however, that the physical pressure exerted by the
glume, palea and lemma inhibit grain expansion in
wheat. This leads to high correlations (mean r¼ 0.65)
between the floret cavity size, that is defined by these
floral structures, and final grain weight (Millet and
Pinthus 1984; Millet 1986). Natural variation for glume,
lemma, and palea size has been described in wheat,
most famously in Triticum polonicum, a tetraploid sub-
species of wheat that has long glumes and long grains

and was first documented by the Swedish botanist
Linnaeus in the 18th century (Percival 1921).

The long glume phenotype has been mapped as a

single semi-dominant locus (dubbed P1) on chromo-

some 7A, and studies confirmed the linkage between

glume length and grain size conferred by the P1 locus

(Watanabe et al. 1996; Okamoto and Takumi 2013).

Given that the floral structures that define floret cavity

size are borne from the mother plant, this exemplifies

yet anothermechanism ofmaternal control of grain size

in cereals.

INTERACTIONS

Final grain size and weight are defined by a series of

complex interactions which are integrated across the

life cycle of the crop. These extend beyond the

traditionally defined compensatory effects between

the major yield components (spike/m2; grain number/

spike; grain weight) and include interactions within

each of these components. For example, grain weight

results from the integration of sub-components, such as

cell division, cell expansion and grain filling rate, among

other processes. Moreover, these interactions play out

within an environmental context of weather patterns,

biotic stress and field management practices across

each growing season, which affects these relationships

in different ways and to differing degrees. Therefore,

when measuring final grain size and weight, we are

measuring the integration of these complex and

dynamic events across the life cycle.
We argue that a more detailed understanding of

how particular genes and QTL affect individual yield
components will allow a more nuanced understanding
of these interactions. For example, traditionally grain
number and grain size have been considered to be
negatively correlated, due to competition for assim-
ilates during grain filling (Sadras 2007; Guo et al. 2016).
However, some genes (e.g. GW2) exert their control on
grain weight by affecting carpel size, a yield component
that is determined during the same growth stages as
the definition of grain number (Simmonds et al. 2016;
Reale et al. 2017). Hence, for these cases, the
interactions between grain number and grain size could
be due to competition for resources pre-anthesis, and
not necessarily due to any post-anthesis events relating
to grain filling. Therefore, being able to break down
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yield components into their constitutive traits, in this
example carpel size, due to cell division as opposed to
the more general final grain weight, should allow a
more in-depth andmeaningful characterization of these
interactions and potential trade-offs. This will help
define the relationships between individual factors
more clearly and avoid grouping multiple aspects of
yield into a single component.

The more precise definition of how individual
genes and QTL affect specific yield components will
also allow a more rational and targeted combination
of traits. This is now becoming increasingly possible as
we further define QTL and identify the genes and
haplotypes that underlie natural variation for many of
these yield components. In addition, knowledge from
model species is becoming increasingly simpler to
transfer into wheat, using either sequenced mutant
populations or gene editing (Zhang et al. 2016b;
Krasileva et al. 2017). This knowledge will allow the
combination of genes which affect distinct processes
governing grain size (e.g. cell division and cell
expansion), through different mechanisms and path-
ways (e.g. ubiquitin and phytohormones), as well as at
distinct developmental stages (e.g. carpel develop-
ment and grain filling rate).

We expect that these combinations will allow more
in-depth study of potential compensatory effects
between yield components than has been possible
before, and bypass possible epistatic interactions when
genes affecting the same developmental processes or
molecular mechanisms are combined. We also hypoth-
esize that this strategy of combining complementary
mechanisms will provide a more resilient genetic basis
for yield stability, under changing weather patterns, as
positive alleles will be operating during different
growth stages and through various molecular
pathways.

Recent examples in rice showcase this approach,
where combining mutations in two negative regulators
of grain size (GS3; Fan et al. 2006) and grain number
(GN1a; Ashikari et al. 2005) increased grain size and
number across all ten genotypes tested (Shen et al.
2016). However, these positive effects only translated
into yield increases for three of the ten cultivars. In
seven cultivars, tillering was reduced in the double
mutants, leading to a significant reduction in yield (Shen
et al. 2016). This highlights the importance of testing
these combinations in multiple genetic backgrounds as

compensatory effects will most likely differ, as exem-
plified in the rice gs3/gn1a double mutant.

To date many of the interactions between individual
genes have been conducted using near-isogenic lines
which differ for the specific genes being studied (Gao
et al. 2015). This requires multiple rounds of back-
crossing to combine the traits, which, despite acceler-
ated growth conditions (Watson et al. 2018), is
cumbersome and time consuming. In the future,
understanding the relationship between multiple genes
affecting yield components will most likely require
multiplex genome editing of the different targets across
several genetic backgrounds (Shen et al. 2017). This will
involve not only knock-out mutations but also allele
replacement and promoter manipulations (Puchta 2017;
Rodr�ıguez-Leal et al. 2017; Li et al. 2018; Ran et al. 2018).

This targeted editing approach will also be com-
plemented by empirical yield data stemming from
breeding programs. Here, large populations segregat-
ing for different alleles and haplotypes, across the
genes of interest, can be analyzed retrospectively
(Bevan et al. 2017) to determine which combinations
have succeeded within different breeding programs
and environments, potentially identifying additional
genes that allow specific allelic combinations to
manifest into on-farm yield. A complementary approach
to identifying beneficial alleles in existing cultivars will
be to explore landraces and wild progenitor species,
such as tetraploid wild emmer (T. dicoccoides) and
diploid goatgrass (Aegilops tauschii), as sources for
novel genes and variation associated with grain weight.

Recent genetic studies have shown the potential for
these wild species to provide useful genetic variation
for grain weight that could possibly have been excluded
from the gene pool during domestication (Golan et al.
2015; Arora et al. 2017; Avni et al. 2018). The genome
sequences and other genomic resources now available
for many of these progenitor species and landraces will
aid the identification of these novel genes and alleles
(Avni et al. 2017; Luo et al. 2017; Wingen et al. 2017).

In addition to combining effects between different
mechanisms and developmental timings, the cloning of
genes will allow the combinations of beneficial alleles
across homoeologs. This will be important due to the
subtle effects of grain weight QTL in hexaploid wheat
compared to grain weight QTL in diploid species (Figure
3A). Simultaneously modulating the function of all three
homoeologs has the potential to expand the range of
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phenotypic variation and achieve effects comparable to
those in diploids, as evidenced by the GW2 example
(Figure 3B) and additional traits (Song et al. 2007; Borrill
et al. 2015; Wang et al. 2018b).

These allelic combinations should provide breeders
with novel and extended phenotypic variation as
beneficial mutations in all three homoeologs are unlikely
to occur simultaneously in natural populations (Uauy
2017; Uauy et al. 2017). The larger phenotypic effects
expected from recessive mutations might help break
some of the negative compensatory effects often
observed with the subtle single locus effects. This
extended variation might also prove important for
understanding gene function. To date, it has been
difficult to compare physiological traits in isogenic lines
with significant, yet subtle effects, on yield components.

Inmany cases, the phenotypic variation in secondary
traits is even smaller than the primary effect, which
means that often these effects cannot be separated
from the inherent variation observed in field trials.
This makes it extremely difficult to establish causal
relationships between genes affecting specific yield
components and compensatory effects. The stronger
phenotypic effects of double or triple mutants should
amplify the phenotypic signal making it easier to
establish causality by distinguishing ‘true’ effects
from inherent background variation.

Grain size and weight are affected by events
occurring both pre-anthesis (e.g. the definition of grain
number, carpel size, stem water soluble carbohydrate
reserves), and post-anthesis (e.g. grain cell elongation,
grain filling rate). While grain filling is most commonly
considered to be sink-limited, events pre-anthesis are
most commonly considered to be source-limited (Slafer
and Savin 1994; Borr�as et al. 2004; Slafer et al. 2005;
Miralles and Slafer 2007; Gonz�alez et al. 2014).
Therefore, this suggests that it is important to consider
interactions between source and sink tissues and
understand how they can be simultaneously improved.
Recent advances in understanding of photosynthesis
and the effects of light/shade transitions promise to
improve biomass accumulation due to increase CO2

assimilation (Driever et al. 2017; Taylor and Long 2017).
Empirical selection for high biomass lines is also helping
improve yield potential in breeding programs (Reynolds
et al. 2017).

Non-genetic approaches have also been used to
manipulate source-sink relationships. Griffiths and

colleagues recently manipulated T6P levels in wheat,
post-anthesis, using chemical applications of T6P
signaling-precursors (Griffiths et al. 2016). They show
that application of the precursors, at 10 dpa, signifi-
cantly increased grain size in wheat. However, no pre-
anthesis applications were reported. Given that T6P
affects both source and sink tissues (Figueroa and Lunn
2016), it will be of interest to determine the effect of
modulating this signaling metabolite, at earlier growth
stages, to determine if this impacts on additional yield
components.

Likewise, CO2 enrichment studies have shown

increases in wheat yield due to increased tillering, grain

number and grain size (Wang et al. 2013). The positive

effect, however, may be tempered by the fact that the

rate of CO2 assimilation may exceed potential sink

capacity of the grains. For future CO2 enrichment and

T6P precursor studies it would be extremely informative

to use the germplasm described above which combines

different and potentially complementary yield compo-

nent traits, as well as double or triple mutants.

CHALLENGES AND OPPORTUNITIES

A fully annotated wheat genome is now available
(IWGSC 2018) providing new opportunities to identify
genes controlling grain size and weight. If the advances
in the rice community are used as a comparison, we
should expect a significant increase in the number of
genes being cloned and characterized in wheat. This
enthusiasm is tempered by the subtle phenotypes
observed in wheat, compared to diploid species, and
the inherent difficulties of working in the polyploid
system. However, the combination of tools and
resources being generated, such as expression atlases
and networks (IWGSC 2018; Ram�ırez-Gonz�alez et al.
2018), sequenced mutants (Krasileva et al. 2017) and
gene-editing technologies (Zhang et al. 2016b), should
position the community in the best possible place to
start understanding the genes and pathways that
control grain size and weight.

The identification of genes controlling these traits
will allow novel combinations to be established, both in
terms of variation across homoeologs, as well as
combinations of distinct mechanisms that affect grain
size in different ways. This germplasm should extend
current phenotypic variation and will facilitate more
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detailed physiological analyses of potential trade-offs
between themultiple grain yield components. Likewise,
new and improved phenotyping technologies, such as
high-throughput profiling of grains across individual
florets and spikelets to detailed bioimaging and
topological growth maps (Pielot et al. 2015), will help
take full advantage of these genetic stocks to advance
our understanding of the processes governing yield
components.

The ability to re-sequence cultivars, as already done

in rice (Wang et al. 2018a), will also soon allow

researchers and breeders to leverage multiple years

of available data to better understand existing varia-

tion. Integrating and modelling this physiological,

mechanistic and genomic information should aid in

defining breeding priorities and determining which

novel alleles should be engineered, introduced, and

combined. This will allow us to move beyond the

reductionist approach towards a more integrated

framework based on understanding of the constituent

parts. The challenge remains, however, to ensure that

this knowledge is deployed into cultivars and that it

delivers in farmers’ fields to maximize yield and stability

under real-world agronomic practices. We will be

judged by our success in ensuring that this happens.
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