
wileyonlinelibrary.com/journal/mrmMagn Reson Med﻿. 2019;81:1553–1565.		    |   1553

Received: 23 April 2018  |  Revised: 10 July 2018  |  Accepted: 1 August 2018

DOI: 10.1002/mrm.27499

F U L L  P A P E R

A framework for motion correction of background suppressed 
arterial spin labeling perfusion images acquired with 
simultaneous multi‐slice EPI

Yuriko Suzuki1   |  Thomas W. Okell2   |  Michael A. Chappell2,3  |   
Matthias J.P. van Osch1

1C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
2Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
3Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom

© 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.

Correspondence
Yuriko Suzuki, Institute of Biomedical 
Engineering, University of Oxford, Old 
Road Campus, Headington, Oxford, OX3 
7DQ, United Kingdom.
Email: yuriko.suzuki@eng.ox.ac.uk

Funding information
Horizon2020 program CDS‐QUAMRI, 
Grant/Award Number 634541; EPSRC 
UK, Grant/Award Number: EP/
P012361/1; UK Royal Academy of 
Engineering; Wellcome Trust, Grant/Award 
Number: 203139/Z/16/Z.

Purpose: When using simultaneous multi‐slice (SMS) EPI for background suppressed 
(BGS) arterial spin labeling (ASL), correction of through‐plane motion could introduce 
artefacts, because the slices with most effective BGS are adjacent to slices with the least 
BGS. In this study, a new framework is presented to correct for such artefacts.
Methods: The proposed framework consists of 3 steps: (1) homogenization of the static 
tissue signal over the different slices to eliminate most inter‐slice differences because of 
different levels of BGS, (2) application of motion correction, and (3) extraction of a 
perfusion‐weighted signal using a general linear model. The proposed framework was 
evaluated by simulations and a functional ASL study with intentional head motion.
Results: Simulation studies demonstrated that the strong signal differences between 
slices with the most and least effective BGS caused sub‐optimal estimation of motion 
parameters when through‐plane motion was present. Although use of the M0 image 
as the reference for registration allowed 82% improvement of motion estimation for 
through‐plane motion, it still led to residual subtraction errors caused by different 
static tissue signal between control and label because of different BGS levels. By 
using our proposed framework, those problems were minimized, and the accuracy of 
CBF estimation was improved. Moreover, the functional ASL study showed im-
proved detection of visual and motor activation when applying the framework as 
compared to conventional motion correction, as well as when motion correction was 
completely omitted.
Conclusion: When combining BGS‐ASL with SMS‐EPI, particular attention is 
needed to avoid artefacts introduced by motion correction. With the proposed frame-
work, these issues are minimized.
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1  |   INTRODUCTION

Simultaneous multi‐slice (SMS, a.k.a multiband) EPI ex-
cites multiple slices at the same time and therefore reduces 
the number of excitation pulses per TR.1,2 This approach has 
been proven to be very advantageous for FMRI and DTI.1,3 
Whereas for FMRI and DTI, the prime advantage of SMS‐
EPI is the acceleration of the acquisition by shortening TR, 
for arterial spin labeling (ASL) this is much less beneficial 
because the preparation module for labeling and post‐labeling 
delay (PLD) is the main time‐consuming part of the sequence 
and not the readout. For measurement of tracer kinetics using 
multi time‐point ASL, however, SMS allows the number of 
slices to be increased within a limited acquisition window to 
achieve whole‐brain coverage.4,5 Another advantage of SMS 
for 2D‐multislice‐ASL is smaller variation of the level of 
background suppression (BGS)6 and PLD7 over the acquired 
slices. Most ASL sequences now use BGS to decrease phys-
iological noise and motion artefacts from background static 

tissue, thereby improving the SNR. BGS is highly effective 
in 3D multi‐shot readout sequences because the image data is 
acquired after a single excitation per TR, which can be timed 
to have optimal BGS.8 However, for certain applications such 
as ASL‐FMRI, a single‐shot readout is preferred to achieve 
high temporal resolution, hence multi‐slice single‐shot EPI 
is still common as a readout module for ASL.9 In multi‐slice 
ASL, optimal BGS is usually timed to occur for the first slice, 
whereas longitudinal relaxation will reduce the effectiveness 
of BGS for more distal slices that are typically acquired hun-
dreds of milliseconds later than the first slice. Similarly, the 
effective PLD of the distal slices will be hundreds of mil-
liseconds longer than the PLD of the first slice, leading to 
interpretation issues as well as a loss of SNR in more distal 
slices. Therefore, shortening the total readout duration by use 
of SMS‐EPI could help to minimize both detrimental effects.

The combination of SMS and BGS, although desirable 
for the reasons outlined above, could also potentially in-
troduce new problems when motion correction (MoCo) is 

F I G U R E  1   Schematic figures illustrating the potential issues that could arise when motion correction (MoCo) is applied to background 
suppressed (BGS) ASL acquired with simultaneous multi‐slice (SMS) EPI. (A) BGS image of conventional 2D‐EPI and SMS‐EPI pCASL, where 
yellow circles show slices with the most effective and poorest BGS immediately next to each other. (B) Dark lines observed on reformatted images, 
produced by slices with the most effective and poorest BGS (BGS dark lines). (C) Subtraction between a control image without motion and a label 
image with through‐plane rotation (realigned). The red circle shows the subtraction errors caused by the different background static signal intensity 
between control and label images (BGS subtraction errors) 
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required as illustrated in Figure 1. In Figure 1, it can be 
seen that, with the SMS‐excitation, slices with the most ef-
fective BGS will be adjacent to slices that experience the 
least effective BGS (see the 2 slices indicated with yellow 
circles in Figure 1A), which results in discrete dark lines 
clearly visible on sagittal and coronal reformatted images as 
shown in Figure 1B. These will be referred to as “BGS dark 
lines” throughout this article. The presence of the BGS dark 
lines might hamper a successful registration procedure that 
is required for good MoCo, because such a registration algo-
rithm might attempt to align the BGS dark lines, instead of 
registering the underlying anatomic structures. Therefore, 
the motion could be poorly estimated, especially when mo-
tion occurs in the slice‐selection direction as a result of rota-
tion around the x‐ or y‐axes or translation in the z‐direction. 
Furthermore, and more importantly, even assuming regis-
tration works correctly, another problem will occur: when a 
certain part of the cortex moves in the slice direction during 
either the label or control condition (e.g., a control image 
without motion and a labeled image with motion, as illus-
trated in Figure 1C), the tissue would experience different 
levels of BGS for the label and control conditions. The dif-
ference of BGS effectiveness will be especially significant 
when tissue moves between slice locations with the most 
and least effective BGS. In such a situation, even when 
the registration worked successfully and the tissue is cor-
rectly realigned to its original location, severe subtraction 
errors would occur (red circle in Figure 1C) as a result of 
the significant difference in static tissue signal for the label 
and control conditions. This problem will be referred to as 
“BGS subtraction error” throughout this article.

We present a new framework to deal with both sources of 
error in BGS-SMS-ASL imaging, which will enable accurate 
MoCo realignment as well as a separation of the perfusion‐
weighted signal from the above‐mentioned BGS subtraction 
errors.

2  |   METHODS

2.1  |  Correction framework
The proposed framework consists of 3 steps.

First, homogenization of static tissue signal over the dif-
ferent slices is performed to reduce inter‐slice signal intensity 
differences as caused by the SMS acquisition with BGS. The 
slice‐wise mean BGS effect is estimated by

where the averaging for the mean tissue value of 
BGS‐ASL was performed over all dynamic volumes, and 

homogenization is performed by multiplying the BGS‐ASL 
time series images by BGSeffect. Although the main purpose 
of homogenization is to minimize BGS subtraction errors 
by homogenizing the inter‐slice signal intensity, it will also 
avoid erroneous MoCo estimation because of the BGS dark 
lines as shown in Figure 1B.

Second, MoCo registration based on the conventional 
rigid‐body transformation is performed by commonly avail-
able software such as SPM10 or FSL,11 while using the M0 
image as reference, which is chosen based on the absence of 
dark lines. In addition, an extra 4D‐data set of the same size is 
created, which at first has a constant value equal to BGSeffect 
for each slice, but is subsequently resliced according to the 
motion parameters as estimated by the MoCo for the ASL 
time series. This new data set will be referred to as “resliced 
BGSeffect” and used in the third step.

Third, perfusion‐weighted signal is extracted. A standard 
subtraction of label from control images would not extract 
the perfusion‐weighted signal correctly, because the perfu-
sion‐weighted signal was scaled by the BGSeffect during the 
homogenization process of the first step. Moreover, because 
the application of BGSeffect only achieves slicewise homog-
enization of the static tissue signal, there will remain some 
BGS‐variations at the voxel‐level that will still lead to some 
residual BGS subtraction errors when through‐slice motion 
occurs. To correct for both effects, it is proposed to use a 
general linear model (GLM) regression to (1) rescale the 
perfusion‐weighted signal as well as to (2) separate the per-
fusion‐weighted signal from residual errors. The GLM is rep-
resented as

where yt is the motion corrected ASL time series at a 
certain voxel. The regressors that constitute the design ma-
trix are: xt_baseline = 1 for baseline tissue signal, xt_perf that 
describes the labeling paradigm [0.5, −0.5, … , 0.5, −0.5]T 
and xt_error that represents an estimate of the pixel‐wise 
residual error. As mentioned above, because the perfu-
sion‐weighted signal was scaled by the BGSeffect during the 
homogenization process, xt_perf was also multiplied by the 
resliced BGSeffect that was generated at the second step. It 
should be noted that the resliced BGSeffect will both depend 
on the location within the images as well as on the tempo-
ral profile and extent of the through plane motion. In this 
study, xt_error was generated from subtraction of the homog-
enized (BGS‐removed) ASL time series before and after 
MoCo. This regressor will be dominated by static tissue 
signal changes and will therefore be a reasonable surrogate 
for the residual error after MoCo. βbaseline, βperf, and βerror 
are fitting coefficients for xt_baseline, xt_perf, and xt_error i.e., 
βbaseline and βperf represent the homogenized background 
tissue image and the baseline perfusion‐weighted (∆M) 

(1)
BGSeffect(slice z)

=

mean tissue value of slice z of M0 image

mean tissue value of slice z of the BGS−ASL image
,

(2)yt = �baselinext_baseline+ �perf xt_perf +�errorxt_error + e,
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image, respectively. e is the fitting error. When ASL‐FMRI 
is performed, an additional regressor is added

where xt_act_perf describes the perfusion signal changes as 
a result of activation and βact_perf is the fitting coefficients for 
xt_act_perf. Please note that xt_act_perf is also multiplied by the 
resliced BGSeffect, similar as described above. 

2.2  |  Simulation
All simulations and image processing were performed offline 
using SPM 12 and custom‐written scripts in MATLAB (The 
MathWorks, Natick, MA).

A data set of single‐PLD pseudo‐continuous ASL 
(pCASL), M0 image, and a quantitative T1 map, all at the 
same spatial resolution, were used from a single subject out 
of a previous in‐vivo healthy volunteer perfusion study (see 
Table 1 in Heijtel et al.12 for acquisition details). The quan-
titative CBF map was calculated in accordance with the rec-
ommendation from the recent ASL white paper8

where ∆M is the perfusion‐weighted signal intensity, 
M0 is the signal intensity of the M0‐scan, and τ is the label-
ing duration. The values from the white paper for the brain–
blood partition coefficient (λ) of 0.95 mL/g, the T1,blood of 
1650 ms, and labeling efficiency (α) of 0.85 were used.

From the M0 images, 7 time series of 60 dynamic images 
each were generated, and 6 different types of motion (transla-
tion in the x‐, y‐, and z‐direction and rotation around the x‐, 
y‐ and z‐axes) were applied to 6 of them. As illustrated in 
Figure 2, each type of motion has a 4‐step pattern in a single 
time series: ±1.4 and ±2.8 fractional pixel translation (±4.2 
and ±8.4 mm) in the x‐ and y‐direction, ±0.6 and ±1.2 frac-
tional slice shift (±4.2 and ±8.4 mm) in the z‐direction, and 
±3 and ±6° rotation around the x‐, y‐, and z‐axes. One time 
series was untouched (no‐motion data set). By using the T1 
map, the pixel‐wise signal attenuation as a result of 2 BGS in-
version pulses (TI = 1860 and 3150 ms) was calculated, in 
which different PLDs for the multi‐slice acquisition were in-
corporated by assuming an interval of 30 ms between 2 subse-
quent excitation pulses; SMS acquisition with factor 3 was 
assumed and the following standard Bloch‐equation was used 
for calculating the evolution of the longitudinal magnetization

where Mz(t) is the longitudinal magnetization at time point 
t, M0 and T1 are pixel‐wise values from the M0 image and T1 

map, respectively. Afterward, perfusion‐like signal changes 
were incorporated to the even dynamic numbers to represent 
the labeled images. Perfusion‐like signal was only added to 
the left side of the brain, thereby keeping the right side with-
out perfusion, in which all signal intensity that would appear 
after the post‐processing will be a measure of the artefactual 
signal as a result of applied post‐processing without any in-
fluence of the underlying perfusion pattern. Using these data 
sets, 2 studies were carried out.

2.2.1  |  Simulation 1: comparison of 
MoCo estimation
First, we studied whether MoCo would indeed be impaired in 
SMS‐ASL data with BGS that exhibit the BGS dark lines and 
whether the performance of MoCo would be improved by the 
homogenization step (first step of the correction framework) 
as well as by using the M0 image as reference for registration, 
instead of 1 dynamic out of the SMS‐ASL data set. All 6 mo-
tion‐corrupted data sets underwent 4 types of MoCo registra-
tion defined as follows:

MoCo‐A: with BGS dark lines present and the use of the 
firstly acquired ASL image as reference

MoCo‐B: with BGS dark lines present and the use of the M0 
image as reference (instead of the firstly acquired ASL image)

MoCo‐C: with homogenization and the use of the firstly ac-
quired ASL image as reference

MoCo‐D: with homogenization and the use of the M0 image 
as reference

As a reference for the MoCo performance comparison, an-
other set of 6 motion‐corrupted data sets was created with exactly 
the same motion patterns, but without BGS‐ and perfusion‐like 
signal attenuation, that also underwent the MoCo registration 

(3)
yt= �baselinext_baseline+ �perf xt_perf +�act_perf xt_act_perf

+ �errorxt_error + e,

(4)CBF=

6000 ∙� ∙ΔM ∙exp(
PLD

T1,blood

)∙

2 ∙� ∙T1,blood ∙M0 ∙ (1−exp(−
�

T1,blood

))
,

(5)Mz (t)=M0

(

1−exp

(

−

t

T1

))

+Mz (0) exp(−
t

T1

),

F I G U R E  2   Motion applied to the simulated data set: ±1.4 
and 2.8 fractional pixel translation (±4.2 and 8.4 mm) in the x‐ and 
y‐direction, ±0.6 and 1.2 fractional slice shift (±4.2 and 8.4 mm) in z‐
direction, and ±3 and 6° rotation around the x‐, y‐, and z‐axes 
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(referred to as “ref‐no‐BGS”). This separate reference data set 
allows any errors resulting from the suboptimal performance of 
MoCo unrelated to BGS dark lines to be excluded from the eval-
uations. For each 6 time series with different types of motion as 
described above, 6 motion parameters (translation in x‐, y‐, and 
z‐direction and rotation around x‐, y‐, and z‐direction) were es-
timated by MoCo‐A, ‐B, ‐C, and ‐D, and the normalized mean 
difference with regard to the reference was calculated, which was 
normalized by the size of the simulated translation and rotation.

2.2.2  |  Simulation 2: separation of the 
perfusion‐weighted signal
All 6 motion‐corrupted data sets underwent the proposed 
post‐processing framework (i.e., the homogenization, MoCo 
[MoCo‐D in simulation‐1], and GLM as described above) that 
will be referred to as “NewMoCo.” Using the obtained βperf 
map (i.e., ∆M image) and the M0 image, the CBF map was 
calculated by applying Equation (4). For comparison, CBF 
maps were also calculated using ∆M images obtained by 
GLM but without the homogenization step (MoCo‐B in simu-
lation 1), referred to as “StdMoCo,” GLM without both the 
homogenization step and MoCo, referred to as “NoMoCo,” 
and also with the same framework as NewMoCo, but without 
including the error regressor “xt_error” in the design matrix, 
referred to as “NewMoCowo_error_reg.”

All signal intensities observed in the right side of the brain 
represent the level of artefactual signal arising from the applied 
post‐processing, i.e., the signal intensity will be close to zero 
when errors such as BGS subtraction errors as well as conven-
tional type of subtraction error because of inaccurate motion 
estimation (or when MoCo is not applied) are corrected well.

2.3  |  In vivo ASL‐FMRI study with 
healthy volunteers
The study was approved by the local institutional review 
board and all volunteers provided written informed consent 
before inclusion into this study. A total of 4 volunteers (2 
male, 2 female, mean age = 41.8 y [range, 24–59 y]) without 
known cerebrovascular disease participated in the study.

Three ASL‐FMRI scans using pCASL were performed for 
each volunteer consisting of a blue‐and‐yellow 8 Hz flickering 
circular checkerboard (for visual stimuli) for 32 s alternated 
with a white fixation cross on a black background for 32 s. 
Volunteers were instructed to also perform a bilateral finger 
tapping task while the checkerboard was projected. For the 
first and the last ASL‐FMRI scans, volunteers were instructed 
to move their head during pCASL labeling and/or PLD (not 
during the readout). For the second ASL‐FMRI scan, volun-
teers were instructed not to move, and this scan was used as 
a reference. After the first ASL‐FMRI scan, image data were 
immediately processed to estimate the motion so that before 

the third ASL‐FMRI scan, the volunteers could be instructed 
to adjust their degree of motion; we aimed for a few mm and/
or degrees of motion. The M0 scan was acquired between the 
first and second ASL‐FMRI scans.

All MR scans were performed on a Philips 3.0T Ingenia 
scanner (Philips, Best, The Netherlands) using a 32‐chan-
nel head coil. Imaging parameters for SMS‐EPI pCASL 
were as follows: FOV = 240 × 240 mm, scan matrix = 80 × 
80, 18 slices acquired with a thickness of 7.0 mm, TE of 16 
ms and TR of 4000 ms, sensitivity‐encoding (SENSE) was 
applied with a factor of 3 in anterior‐posterior direction, 
and the SMS‐factor was set to 3. Both labeling duration 
and PLD were set to 1800 ms. A fat‐suppression pre‐pulse 
was applied to avoid water–fat shift artifacts and a WET 
pre‐saturation scheme was inserted before labeling13,14; 
BGS pulses were applied using hyperbolic secant pulses15 
at 1830 and 3150 ms after the start of labeling. The timing 
of the BGS pulses was determined via Bloch‐simulations. 
With the number of dynamic scans set to 64, the total scan 
time was 8 min 40 s. The M0 image was acquired without 
labeling, WET pre-saturation and BGS but with identical 
acquisition parameters as the perfusion scan except for the 
TR, which was set to 2500 ms. Before the quantification 
process, the M0 image was multiplied by the factor 1/(1 − 
exp(−TR/T1_gm)), where T1_gm was assumed to be 1200 ms, 
to correct for incomplete T1 recovery.8,16

All 3 ASL‐FMRI data sets were post‐processed with the 
NewMoCo framework, and the baseline CBF map was cal-
culated from the βperf map. Moreover, a map that consisted of 
the t‐value of βact_perf was generated to indicate the area where 
the perfusion changed as a result of the visual and motor tasks. 
Figure 3 shows an example of the used design matrix. For 
the 2 ASL‐FMRI data sets with intentional head movement, 
NoMoCo and StdMoCo were also performed for comparison.

On the t‐value maps obtained from the ASL‐FMRI data 
set without intentional head movement, ROIs were manually 
drawn around the activated visual, and left and right motor 
area. These ROIs were copied to the t‐value maps of the data 
sets with intentional head movement, and the mean t‐values as 
well as the number of voxels that exhibited a t‐value >3.0 were 
compared between NewMoCo, NoMoCo, and StdMoCo. The 
analysis was performed by a 2‐way ANOVA followed by mul-
tiple comparisons with adjustment of Bonferroni using SPSS.

3  |   RESULTS

3.1  |  Simulation 1: comparison of MoCo 
estimation
Figure 4 shows the normalized mean difference of MoCo es-
timated motion parameters with MoCo‐A, ‐B, ‐C, and ‐D rela-
tive to the reference. For correction of through‐plane motion 
(Figure 4B) MoCo‐A resulted in the largest mean normalized 



1558  |      Suzuki et al.

difference from the reference, which can be attributed to the 
presence of BGS dark lines influencing the MoCo estimation. 
When using the M0 image as a reference (MoCo‐B) and ho-
mogenization (MoCo‐C), as well as the combination of these 
two (MoCo‐D), the mean normalized difference was much 
lower. In contrast, for correction of in‐plane motion (Figure 
4A) differences of MoCo estimation were much smaller for 
MoCo‐A, presumably because the presence of BGS dark lines 

did not influence the MoCo estimation for in‐plane motion. 
When observing in more detail these results as in the zoomed 
version of Figure 4C, it becomes clear that MoCo‐B showed 
relatively larger mean normalized difference for in‐plane mo-
tion than the other approaches. It can be speculated that the 
use of the M0 image as a reference for registration might in-
troduce small additional errors because of its slightly different 
contrast as compared to pCASL images.

F I G U R E  3   An example of the design 
matrix used to the in vivo ASL‐FMRI study, 
in which xt_baseline = 1 for baseline tissue 
signal, xt_perf represents the signal changes 
as a result of the ASL labeling paradigm, 
and xt_act_perf describes the ASL signal 
changes induced by activation. Because 
the perfusion‐weighted signal is scaled by 
the BGSeffect during the homogenization 
process, xt_perf and xt_act_perf were multiplied 
by the resliced BGSeffect that was generated 
at the second step to include the pixel‐by‐
pixel scaling of the perfusion‐weighted 
signal. xt_error represents an estimate of the 
pixel‐wise residual error
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For further simulations (simulation 2, see next section) 
and the in vivo study, MoCo‐B and MoCo‐D were chosen and 
will be referred to as StdMoCo and NewMoCo, respectively.

3.2  |  Simulation 2: separation of perfusion‐
weighted signal
Figure 5 illustrates the simulation results from the slice that 
exhibited the largest difference in static tissue signal inten-
sity compared to a neighboring slice and therefore most 
prone to the BGS subtraction errors. In StdMoCo, severe 
BGS subtraction errors were observed for through‐plane 

motion (severe signal increase in the anterior part of the 
brain in combination with a decrease in signal at the pos-
terior side, as illustrated in Figure 5I), whereas such BGS 
subtraction errors were not observed in images with in‐plane 
motion (Figure 5E). By use of the NewMoCo approach, 
the BGS subtraction errors were substantially reduced for 
through‐plane motion (Figure 5F). When using NoMoCo, 
the presence of in‐plane motion appeared as a blurring of the 
CBF map (Figure 5D). In contrast, for through‐plane mo-
tion (Figure 5H) such a blurring was less obvious. In both 
types of motion, however, the conventional subtraction er-
rors (because of motion) were observed clearly along tissue 

F I G U R E  4   Normalized mean 
difference of MoCo estimation for (A) 
in‐plane motion and (B) through‐plane 
motion obtained from simulation 1. (C) The 
result of in‐plane motion shown in (A) is 
given in more detail. MoCo-A, with BGS 
dark lines present and the use of the firstly 
acquired ASL-image as reference; MoCo-B, 
with BGS dark lines present and the use of 
the M0 image as reference (instead of the 
firstly acquired ASL-image); MoCo-C, with 
homogenization and the use of the firstly 
acquired ASL-image as reference; MoCo-D, 
with homogenization and the use of the M0 
image as reference. 
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boundaries of the right side of the brain (without perfusion). 
When removing the error regressor “xt_error” from the design 
matrix (NewMoCowo_error_reg), a small increase of blurring 

was observed in the image with through‐plane motion, es-
pecially along the boundary between gray and white matter 
(Figure 5G).

F I G U R E  5   Representative CBF maps obtained from simulation 2. In the right hemisphere, no perfusion signal was simulated, and therefore 
all signal intensity in the right hemisphere indicates motion‐related errors. (A) Reference CBF map obtained from the data set without motion. 
(B–E) Respectively NewMoCo, NewMoCo without error regressor, NoMoCo, and StdMoCo are applied to in‐plane motion (translation in the x‐
direction) and (F–I) to through‐plane motion (rotation around the x‐axis)

F I G U R E  6   The empirical cumulative distribution function (CDF) of the signal intensity in the right side of the brain (without perfusion) 
obtained from simulation 2, which indicates the level of artefactual signal that arises mostly from conventional subtraction errors because of motion 
as well as the above‐mentioned BGS subtraction errors. The value is ideally close to zero when both sources of errors are well corrected. For 
magnified presentation, only plots with the cumulative distribution from 0–0.05 and 0.95–1.00 and signal intensity between −100 to 100 are shown 
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For a more quantitative observation of the artefactual sig-
nal changes, Figure 6 shows the empirical cumulative distri-
bution function (CDF) of the signal intensity in the right side 
of the brain (without perfusion), in which without any errors 
present (i.e., all voxels are zero) the empirical CDF would be 
a step function at zero, whereas significant deviation from 
this step‐function at zero implies the presence of voxels with 
larger errors. (The asymmetry in the empirical CDF between 
positive and negative signal intensities is attributed to the fact 
that the signal intensity was analyzed only for the right side 
of the brain.) Similar to the qualitative results as shown in 
Figure 5, more pixels with signal intensity far from zero were 
observed as a result of StdMoCo applied to data corrupted 
by through‐plane motion, whereas the distribution was closer 
to the step‐function for in‐plane motion. For some motion 
patterns (not clearly divided by the category “through‐plane” 
and “in‐plane motion”), NoMoCo resulted in mild elevation 

of artefactual signal, which reflects the blurring as also ob-
served in Figure 5D. With the NewMoCo approach, both 
types of subtraction errors were substantially reduced inde-
pendent of the direction of motion.

3.3  |  In vivo healthy volunteer study
Figure 7 shows representative results of the ASL‐FMRI ex-
periments showing the baseline CBF maps as well as the 
activated regions evoked by the visual stimulus and finger 
tapping. In the motion‐corrupted data sets, the activated 
regions were depicted much more clearly when applying 
NewMoCo as compared to StdMoCo, whereas NoMoCo pro-
vided results in between of these 2 approaches. The results 
of the ROI analysis from all volunteers confirmed that the 
highest mean t‐value (Figure 8A), as well as highest number 
of activated voxels, (Figure 8B) were obtained by NewMoCo. 

F I G U R E  7   Representative baseline 
CBF maps and t‐value maps showing the 
activated regions by the visual stimulus and 
finger tapping obtained from the ASL‐FMRI 
study with intentional head movements 
processed by NewMoCo, NoMoCo, and 
StdMoCo. As reference, maps acquired 
without intentional head movement are also 
shown on top of them 
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All differences were statistically significant (P < 0.05) ex-
cept the difference between NoMoCo and StdMoCo of the 
number of voxels that exhibited a t‐value >3.0.

As baseline CBF maps from all scans show  
(Figures 9 and10), the BGS subtraction errors on the base-
line CBF map were corrected well by NewMoCo. For the 2 
data sets with the most severe head‐motion (scan 7 from vol-
unteer 4 and scan 1 from volunteer 1), however, correction 
was not sufficient for slices with the largest BGS difference 
between neighboring slices, as indicated by red arrows in  
Figures 9 and10. For the baseline CBF maps, NoMoCo gen-
erally resulted in reasonable image quality without BGS sub-
traction errors, although some blurring can be observed. The 
estimated motion parameters from all volunteers are shown in 
Supporting Information Figure S1.

4  |   DISCUSSION

In this article, we demonstrated 2 major issues that can affect 
ASL measurements when using a 2D multi‐slice readout with 
SMS and BGS: sub‐optimal estimation of motion parame-
ters by MoCo and the occurrence of BGS subtraction errors, 
which can be very severe. Our simulation studies showed that 
these problems predominantly occur when through‐plane 
motion (translation in z‐direction or rotation around the x‐ or 
y‐axes) is present, pointing to the large influence of the BGS 
dark lines. Although MoCo estimation was already improved 
to a great extent by the use of the M0 image as the refer-
ence for MoCo registration, successful realignment still led 
to BGS subtraction errors in the perfusion‐weighted signal, 
as was also evident in the ASL‐FMRI study. By use of our 
proposed framework, the BGS subtraction errors were mini-
mized and the depiction of activated regions was improved, 
while still allowing the use of conventional MoCo‐methodol-
ogy as available in commonly applied neuroscience software. 
The benefit of our framework was most obvious in the func-
tional ASL experiments, in which application of MoCo is es-
pecially important to detect statistically significant activation 
from small regions of interest.

In general, MoCo methods such as those implemented 
in SPM and FSL estimate motion parameters based on an 
error‐measure calculated from the similarity between im-
ages. Therefore, strong contrast as imposed by the BGS dark 
lines could overwhelm differences as a result of anatomic 
misalignment and cause an erroneous estimation of motion 
parameters. By using the M0 image, which does not exhibit 
BGS dark lines, as the reference image for MoCo estimation, 
the MoCo will not be biased because of a tendency to keep 

F I G U R E  8   The results of the ROI analysis from all scans. (A) 
Mean t‐values and (B) number of voxels that exhibited a t‐value >3.0 
from data set processed by NewMoCo, NoMoCo, and StdMoCo 

F I G U R E  9   The baseline CBF maps 
from the subjects 1 and 2 (subjects 3 and 4 
are shown in Figure 10) showing 2 slices 
with largest difference of BGS efficiency 
from the neighboring slices. Red arrows 
indicate the residual error from 2 scans with 
the most severe head‐motion 
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BGS dark lines aligned and will therefore be better able to 
pick up the real motion and that will therefore improve the 
MoCo estimation. This was found to be true for through plane 
motion, both with and without homogenization. However, for 
in‐plane motion, the use of M0 image as a reference resulted 
in slightly poorer performance when homogenization had not 
been applied, although to an extent that was much smaller 
than the improvement for through‐plane motion. The poorer 
performance of the M0‐approach (MoCo‐B) for in‐plane 
motion can most probably be attributed to the difference in 
contrast between the M0 and BGS‐pCASL images. The im-
provement observed by combining the M0‐approach with 
the homogenization (MoCo‐D) reinforces this argument, in 
which further reduction of the normalized mean difference 
was achieved for all types of motion.

The source of subtraction errors as identified in this study 
can be categorized into 2 groups: the first type of errors are 
conventional subtraction errors occurring when anatomical 
structures are not stable at the same location as a result of 
inaccurate motion estimation because of BGS dark lines (or 
when MoCo is not applied), i.e., the “normal” type of motion 
artefacts. One important target of BGS is to minimize this 
type of subtraction error by lowering the signal intensity of 
static tissue.8 In multi‐slice ASL, however, even when SMS is 
applied, multiple excitation pulses will still be needed and the 
level of BGS will not be optimal in all (sets of) slices, thereby 
increasing the severity of these subtraction errors. In our ex-
periments such artefacts can be observed in the NoMoCo data 
(i.e., subtraction without applying motion correction).

The second type of error arises from subtraction of sig-
nals with different levels of BGS (BGS subtraction error). 
These errors are evident in the StdMoCo data in which 

MoCo does assure that anatomic structures are realigned, 
although signal intensity differences of static tissue result in 
artefacts because of the fact that an anatomic structure was 
part of a different slice during the label versus the control 
condition (e.g., a certain anatomic structure moves from a 
location with optimal BGS for the control acquisition to a 
position with lower BGS‐efficiency during the label con-
dition). We propose to eliminate this second type of sub-
traction errors by homogenization of the static tissue signal 
over slices before MoCo is performed. This homogeniza-
tion is, however, only performed by equalizing the mean 
signal of a slice relative to the mean signal of the same slice 
of the M0 image. This implies that at the level of individual 
pixels this homogenization will not be perfect and residual 
BGS subtraction errors can still occur. To minimize such 
residual errors, the use of a GLM was proposed with addi-
tional regressors, besides a subtraction‐regressor that ex-
tracts the perfusion‐weighted signal from the unsubtracted 
ASL data. In this study, we used the subtracted pixel value 
of the homogenized ASL data before and after MoCo as an 
additional regressor. This metric is a measure of static tis-
sue signal change after MoCo reslicing, which is the main 
cause of BGS subtraction errors. In the simulation study, 
the calculated CBF map showed increased errors along the 
boundary between gray and white matter when applying 
NewMoCo without this error regressor, which most likely 
represents residual BGS subtraction errors.

It should be noted that, as Figures 9 and 10 shows, when 
the motion was very large NewMoCo could fail to generate 
reliable baseline CBF maps at the slices with the largest dif-
ference in BGS between neighboring slices (at the BGS dark 
lines), and NoMoCo resulted in better quality. When ASL is 

F I G U R E  1 0   The baseline CBF maps 
from subjects 3 and 4 (subjects 1 and 2 are 
shown in Figure 9), showing 2 slices with 
largest difference of BGS efficiency from 
the neighboring slices. Red arrows indicate 
the residual error from 2 scans with the most 
severe head‐motion 
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performed for clinical diagnostic purposes, the main goal will 
be to achieve high quality resting‐state baseline CBF map, 
in which some motion‐blurring can be tolerated. Therefore, 
performing both NewMoCo and NoMoCo would be recom-
mended to avoid potential misinterpretation because of re-
sidual BGS subtraction errors on the CBF map as obtained 
by NewMoCo. However, when functional ASL is performed, 
small location changes might result in one becoming blind for 
the brain activation, thereby making MoCo more essential. In 
fact, the ROI analysis performed on the ASL‐FMRI scans re-
sulted in higher mean t‐value and higher number of activated 
voxels by NewMoCo than NoMoCo for all 8 scans.

Another approach to avoid BGS subtraction errors would 
be to limit the inter‐slice BGS signal differences by changing 
the acquisition. Such an approach was proposed recently by 
Shao et al.6 via a slice‐dependent signal preparation (i.e., pre‐
saturation is not performed at a single moment in time for all 
slices), but slice‐dependent preparation pulses are applied to 
ensure optimal BGS for each slice.6 With this approach, the 
largest differences in signal intensity of static tissue between 
neighboring slices can be avoided, thereby lowering the risk 
for the most severe subtraction artefacts, although not ex-
cluding these completely. Moreover, when motion occurs be-
tween the saturation module and readout (i.e., including the 
labeling duration and PLD), the carefully optimized scheme 
could be affected and inter‐slice signal differences could ap-
pear. Therefore, it would be interesting to see whether the 
currently proposed approach would also improve motion‐
corrupted SMS‐ASL data acquired with the slice‐dependent 
pre‐modulation approach. It could be expected that both ap-
proaches would enhance each other’s performance.

Several limitations of the current study should be men-
tioned. First, the most important message of this article is 
to demonstrate the issues that could be introduced by com-
bined use of SMS and BGS in an ASL study. Although we 
used the subtraction of pixel values of the homogenized 
ASL data before and after MoCo as an additional error re-
gressor, it does not mean that we can assure that this is the 
most optimal regressor. In fact, as discussed above, there 
is certainly room for further improvements when severe 
motion is present, especially for the baseline CBF maps. 
Second, the proposed method does not correct for other 
well‐known sources of artefacts in motion corrupted MRI 
data. For example, distortions because of B0 inhomoge-
neities and residual water–fat shift artifacts (even though 
fat suppression was applied) are dependent on the head 
orientation and can therefore change during head motion. 
Therefore, after MoCo realignment, such artifacts will be 
repositioned to different locations, again resulting in sub-
traction errors. In this study, only rigid‐body MoCo was 
applied, which cannot correct for such artifacts. Moreover, 
motion that happened during the readout might introduce 
additional artifacts that cannot be corrected by rigid‐body 

MoCo. In future work, further investigation of even more 
appropriate regressors and application of more advanced 
MoCo approaches should be studied.

5  |   CONCLUSION

In ASL with combined use of SMS and BGS, severe BGS 
subtraction errors can occur when through‐plane motion is 
corrected by traditional MoCo procedures. With the proposed 
framework, these BGS subtraction errors can be minimized, 
resulting in improved accuracy of CBF‐estimation while still 
allowing the use of conventional MoCo approaches as avail-
able in widely used software packages.
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