Skip to main content
. 2019 Jan 16;38(11):2074–2102. doi: 10.1002/sim.8086

Table 6.

Performance measures: definitions, estimates and Monte Carlo standard errors

Performance
Measure Definition Estimate Monte Carlo SE of Estimate
Bias
E[θ^]θ
1nsimi=1nsimθ^iθ
1nsim(nsim1)i=1nsim(θ^iθ¯)2
EmpSE
Var(θ^)
1nsim1i=1nsim(θ^iθ¯)2
EmpSE^2(nsim1)
Relative % increase in precision (B vs A) a
100Var(θ^A)Var(θ^B)1
100EmpSE^AEmpSE^B21
200EmpSE^AEmpSE^B21Corr(θ^A,θ^B)2nsim1
MSE
E[(θ^θ)2]
1nsimi=1nsim(θ^iθ)2
i=1nsim(θ^iθ)2MSE^2nsim(nsim1)
Average ModSEa
E[Var^(θ^)]
1nsimi=1nsimVar^(θ^i)
Var^[Var^(θ^)]4nsim×ModSE^2
b
Relative % error in ModSEa
100ModSEEmpSE1
100ModSE^EmpSE^1
100ModSE^EmpSE^Var^[Var^(θ^)]4nsim×ModSE^4+12(n1)
b
Coverage
Pr(θ^lowθθ^upp)
1nsimi=1nsim1(θ^low,iθθ^upp,i)
Cover.^×(1Cover.^)nsim
Bias‐eliminated coverage
Pr(θ^lowθ¯θ^upp)
1nsimi=1nsim1(θ^low,iθ¯θ^upp,i)
B‐E Cover.^×(1B‐E Cover.^)nsim
Rejection % (power or type I error) Pr(p i ≤ α)
1nsimi=1nsim1(piα)
Power^×(1Power^)nsim
a

Monte Carlo SEs are approximate for Relative % increase in precision, Average ModSE, and Relative %error in ModSE.

b

Var^[Var^(θ^)]=1nsim1i=1nsim{Var^(θ^i)1nsimj=1nsimVar^(θ^j)}2.