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Abstract

Introduction : Stenotic aortic valve disease (AS) causes pressure overload of
the left ventricle (LV) that may trigger adverse remodeling and precipitate pro-
gression towards heart failure (HF). As myocardial energetics can be impaired
during AS, LV wall stresses and biomechanical power provide a complementary
view of LV performance that may aide in better assessing the state of disease.
Objectives : Using a high-resolution electro-mechanical (EM) in silico model
of the LV as a reference, we evaluated clinically feasible Laplace-based methods
for assessing global LV wall stresses and biomechanical power.
Methods : We used N = 4 in silico finite element (FE) EM models of LV and
aorta of patients suffering from AS. All models were personalized with clinical
data under pretreatment conditions. Left ventricle wall stresses and biomechani-
cal power were computed accurately from FE kinematic data and compared with
Laplace-based estimation methods, which were applied to the same FE model
data.
Results and Conclusion : Laplace estimates of LV wall stress are
able to provide a rough approximation of global mean stress in the
circumferential-longitudinal plane of the LV. However, according to FE
results, spatial heterogeneity of stresses in the LV wall is significant, leading
to major discrepancies between local stresses and global mean stress. Assess-
ment of mechanical power with Laplace methods is feasible, but these are
inferior in accuracy compared with FE models. The accurate assessment of
stress and power density distribution in the LV wall is only feasible based on
patient-specific FE modeling.
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1 INTRODUCTION

In stenotic aortic valve disease (AS), elevated pressure gradients impose a higher load upon the left ventricle (LV). Under
such conditions, the pressure produced by the LV must increase in order to achieve an adequate cardiac output that meets
the metabolic demands. This requires the LV wall to generate higher active forces, which can be achieved either by an
increase in wall stresses or a change in ventricular shape and mass. Such pressure overload conditions, if persistent for long
enough, trigger adverse remodeling processes, eventually precipitating progression towards heart failure (HF).1 Treat-
ments aim at alleviating pressure overload by reducing transvalvular pressure gradients closer to normal levels by surgical-
or catheter-based aortic valve replacement.2 However, re-stenosis frequently occurs, and despite a successful reduction
of transvalvular pressure gradients, a majority of patients remains hypertensive, consequently showing increased risk for
irreversible course of HF and higher morbidity and mortality.3 Thus, a successful reduction of pathologically elevated
pressure gradients alone cannot be considered a reliable prognostic marker of long-term post-treatment outcomes in these
patient cohorts. As a consequence, alternative biomarkers beyond pressure gradients are sought to that provide a com-
plementary view of cardiac function and, potentially, offer a higher predictive power with regard to outcomes. In a recent
study, the use of end-diastolic or end-systolic wall stresses as assessed by a wall stress index has been proposed as a novel
diagnostic criterion of HF.4 This is physiologically motivated, as elevated wall stress levels are assumed to impair the bal-
ance between metabolic supply and demand5 by hindering perfusion and, thus, contribute towards adverse remodeling.6

Wall stresses are directly linked to the mechanical power generated by the myocardial muscle and the work performed
by it and as such can be considered a metabolic marker. Different approaches have been proposed to assess work and the
energy expenditure of the myocardium. As a direct measurement of energy metabolism, positron emission tomography
(PET) was used7,8; however, the method is limited due to its complexity, including the need for tracers involving ionizing
radiation. More recently, a concept of biomechanical internal myocardial heart power (IHP), necessary to maintain ade-
quate cardiac output (external heart power [EHP]), has been introduced in patients with aortic coarctation.9 Findings in
this cohort suggest that the ratio EHP∕IHP, referred to as power efficiency, improved mostly in those cases with elevated
IHP. While potential marker qualities of such concepts need to be further evaluated, it has remained a yearned-for goal
to lower energy expenditure and increase efficiency of the myocardium likewise in any treatment procedure, including
those for stenotic valvular and vascular disease.

Another method used to determine the work performed by the muscle is pressure-volume (PV) relations. These are
usually measured using conductance catheter techniques. However, these procedures are invasive, time-consuming, and
expensive. Alternatively, PV loops are measured with 3D echo or MRI,10 but even these methods are complex, and pressure
and volume traces are not recorded simultaneously.

Despite the diagnostic potential of markers based on wall stresses and expended mechanical power, this assessment has
not evolved towards a routinely used diagnostic tool in the clinic mainly due to methodological limitations. Attempts to
address this relied upon different variants of Laplace law, which require the acquisition of only a small number of mea-
sures representing LV cavity volume, wall width, and pressure.4,9 However, these approaches are based on simplifications
with regard to LV geometry, tissue structure, and biomechanical properties, as they assume the LV a thin-walled mechan-
ically isotropic spherical shell. The accuracy and validity of these simplifications have not been firmly established, thus
casting doubt on the reliability and fidelity of any metrics based on them.11,12 Experimental validation based on direct
measurements of stresses in vivo is challenging and not feasible yet with currently available technologies. However, an
indirect inference is viable using computational tools such as FE modeling where 3D wall stresses can be computed from
a set of reliable strains—either measured in vivo13,14 or computed in silico15 —using constitutive material models that are
derived from ex vivo measurements16 and material parameters fitted to clinical data.15,17

To evaluate the accuracy of Laplace analysis for estimating global wall stresses and mechanical power in the LV, we
employed four FE-based EM LV models that have been previously fitted and validated with clinical data15 under pretreat-
ment conditions. These models provide reliable strain data at a high spatio-temporal resolution from which wall stresses,
biomechanical power, and work in the LV can be determined at the best possible accuracy. Laplace analysis was applied
to these in silico models to estimate hoop stress and mechanical power over a cardiac cycle and compared with the global
ground truth data based on FE analysis.
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TABLE 1 Pretreatment AS patient characteristics from MRI and noninvasive cuff pressure recordings including end-diastolic volume
(EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), heart rate (HR), diastolic and systolic cuff pressures (pdia and
psys), mean arterial pressure (MAP), wall thickness at the LV equator measured in septum/lateral free wall (h), pressure drop across aortic
valve (Δp), presence of hypertension (HT), and mitral valve regurgitation (MVR)

Sex Age EDV ESV SV EF HR pdia psys MAP h Δp HT MVR
[years] [ml] [ml] [ml] [%] [min−1] [mmHg] [mmHg] [mmHg] [mm] [mmHg]

A F 63 112.0 46.0 66.00 58.93 53 74 126 91.33 12.0∕12.5 95 No No
B M 73 121.0 54.7 66.32 54.81 81 75 134 94.67 11.2∕13.8 62 No Mild
C M 54 118.2 42.2 76.14 64.42 75 71 141 94.33 16.0∕18.2 79 Yes Mild
D M 85 172.0 103.0 69.00 40.12 68 79 144 100.67 14.0∕15.2 59 Yes No

2 METHODS

2.1 Patient data
Data from four AS patients with clinical indication for aortic valve treatment, all preceding a cardiac magnetic resonance
study, were used (Table 1). Stenotic aortic valve disease treatment indicators included valve area and/or systolic pres-
sure drop across the valve. The study was approved by the institutional Research Ethics Committee following the ethical
guidelines of the 1975 Declaration of Helsinki. Written informed consent was obtained from the participants' guardians.

2.2 Biomechanical FE model
The ventricular myocardium was modeled as a nonlinear, hyperelastic, nearly incompressible, and anisotropic mate-
rial with a layered organization of myocytes and fibres that is characterized by a right-handed orthonormal set of basis
vectors.16,18 These basis vectors consist of the fiber axis f0(x), which coincides with the prevailing orientation of the
myocytes at location x, the sheet axis s0(x), and the sheet-normal axis n0(x). The mechanical deformation of the tissue
is described by Cauchy equation of motion under stationary equilibrium assumptions leading to a quasi-static boundary
value problem: For a given pressure p(t), find the unknown displacement u such that

−Δ · 𝝈(u, t) = 0 in Ω (1)

𝝈(u, t) · n = −p(t)n on ΓN

𝝈(u, t) · n = 0 on ΓH

u = 0 on ΓD

holds for t ∈ [0,T]. By Ω, we denote the deformed geometry, and by Γ = 𝜕Ω, we define its boundary with Γ = ΓD ∪
ΓH ∪ ΓN and |ΓD| > 0. The normal outward vector of Γ is denoted by n. The total Cauchy stress tensor 𝝈 refers to the
sum of a passive stress tensor 𝝈pas and an active stress tensor 𝝈act. That is, 𝝈 = 𝝈pas + 𝝈act with

𝝈pas = J−1F
(

2 𝜕Ψ(C)
𝜕C

)
F⊤, (2)

𝝈act = J−1F
(

Sa(f0 · Cf0)−1f0 ⊗ f0
)

F⊤, (3)
where F is the deformation gradient, Ψ is the strain energy function, f0 is fiber orientation in the reference configuration,
J = det F is the Jacobian, C = F⊤F is the right Cauchy-Green strain tensor, and Sa is the scalar active contractile stress
generated by the myocytes acting along f0.

The passive behavior of myocardial tissue was modeled using two material models, either the transversely isotropic
Guccione et al model,16

ΨGu(C) = 𝜅

2
(
log J

)2 + a
2
[
exp() − 1

]
, (4)

where
 = bf (f0 · Ef0)2 + bt

[
(s0 · Es0)2 + (n0 · En0)2 + 2(s0 · En0)2

]
+ 2bfs

[
(𝑓0 · Ēs0)2 + (𝑓0 · En0)2

]
(5)

and E = 1
2
(J−

2
3 C − I) is the modified isochoric Green-Lagrange strain tensor, or the isotropic Demiray model19

ΨDem(C) = 𝜅

2
(
log J

)2 + a
2b

{
exp

[
b
(

tr(C) − 3
)]

− 1
}
, (6)



4 of 18 GSELL ET AL.

with C = J−
2
3 C the modified isochoric right Cauchy-Green tensor. In both models, Equations 4 and 6, the bulk modulus

𝜅, which serves as a penalty parameter to enforce near incompressibility, was chosen as 𝜅 = 650 kPa.
A simplified phenomenological contractile model20 was used to represent active stress generation:

Sa = Speak𝜙(λ) tanh2
(

ts

𝜏c

)
tanh2

(
tdur − ts

𝜏r

)
for 0 < ts < tdur, (7)

where Speak is the peak isometric tension, 𝜑(𝜆) is a nonlinear function dependent on fiber stretch λ = |Ff0| describing
the length-dependence of active stress generation, ts is the onset of contraction, 𝜏c is the upstroke time constant, tdur is
the active stress transient duration, and 𝜏r is the downstroke time constant. This simplified model allows efficient fitting
to patient data, as the parameters for peak stress, Speak, and time constant of contraction, 𝜏c, and twitch duration, tdur,
are related to the two clinical key parameters of interest, peak pressure, and maximum rate of pressure increase, in an
intuitive manner.

Solving these equations under given mechanical boundary conditions using the FE method at a sufficiently high
spatio-temporal discretization provides an accurate description of tissue kinematics. Computed displacement u serve as
input then in a postprocessing procedure to evaluate wall stresses 𝝈(x, t) and to compute internal power expended by the
LV (see section 2.6).

A Newton scheme was applied in each time step to linearize the nonlinear boundary value problem 1 yielding a non-
symmetric FE system. The linear FE system was solved by a parallel GMRES algorithm with an algebraic multigrid
preconditioner. For the Newton scheme, a relative tolerance of 1.0e−5 and an absolute tolerance of 1.0e−8 were used as
stopping criterion.

2.3 Verification of finite element model
To verify the FE-based calculation of stress-derived metrics, a geometrically simple and well-studied benchmark problem
was chosen for which circumferential hoop stresses can be found from Laplace law under the following assumptions:

(A1) The wall material is isotropic.
(A2) The shape is a symmetric spherical shell with inner radius, r, and outer radius, R.
(A3) The thickness of the wall, h = R − r, is sufficiently small, that is, the wall thickness to radius of curvature ratio

is small, h∕r ≪ 1.

Since all these assumptions are violated in the LV which is orthotropic (A1), nonspherical in shape (A2), and
thick-walled (A3) with h∕r ≈ 1, differences between Laplace analysis and FE computation are to be expected. Three con-
figurations were considered, an ideal thin-walled spherical shell, Sph5, which complies with all assumptions (A1)-(A3)
and thus can serve as a reference for FE validation, and two thicker-walled spheres, Sph25 and Sph150, where assumption
(A3) is increasingly violated. Geometries and mechanical boundary conditions are illustrated in Figure 1A-C.

The inner radius was chosen as r = 15.0 mm in all models with h varying from h = 0.5 to h = 15.0 mm in Sph5
and Sph150, respectively. The choices for Sph150 are representative of the h∕r ratios found in the LVs of patients in this
study (Table 2). In line with assumption (A1), the nonlinear isotropic material law stated in Equation 6 was employed
with a = 10 kPa and b = 8. Passive inflation experiments were performed by solving 1 with 𝝈act ≡ 0 and applying a

FIGURE 1 (A) Geometric setup, (B) sperical coordinate system and (C) displacement boundary conditions
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TABLE 2 Geometric parameters inner radius, r, outer radius, R, wall thickness, h and wall thickness to radius of
curvature ratio, h∕r of spherical shell models Sph5, Sph25 and Sph150 and of image-based anatomical LV models in
the stress-free reference configuration

r [mm] R [mm] h [mm] h∕r

Sph5∕Sph25∕Sph150 15∕15∕15 15.5∕17.5∕30.0 0.5∕2.5∕15.0 0.033∕0.166∕1.0
LVA/ LVB/ LVC/ LVD 16.9∕19.5∕17.1∕22.1 30.6∕33.6∕36.9∕38.5 13.7∕14.1∕19.8∕16.4 0.82∕0.72∕1.16∕0.74

FIGURE 2 Image-based patient-specific left ventricle (LV) anatomy models. (A) Shown are the finite element model setup with Dirichlet
(solid triangles) and Neumann boundary conditions controlled by a three-element Windkessel model of afterload, and fiber architecture
(bottom panel). (B) Patient-specific anatomical models LVA, LVB, LVC, and LVD of LV and aorta constructed from a 3DWH MRI scan in
end-diastolic configuration

pressure p in the range from 0 to 4 kPa to the endocardial surface, Γendo, which covers the range of pressures observed in
vivo during diastole. Pressure at the epicardial surface, Γepi, was assumed to be zero. To render the solution of this pure
Neumann problem unique, displacement boundary conditions were enforced at the intersections of the Cartesian axes
with the epicardial surface by restricting displacements to the respective intersecting axes (see Figure 1C). Unstructured
tetrahedral FE meshes were generated for the Sph5, Sph25, and Sph150 geometries where the mean spatial resolution, d̄x,
was increased until solutions were deemed converged.

2.4 LV model
2.4.1 Anatomical modeling
Finite element meshes of the LV anatomy and aortic root were generated from 3D whole heart MRI acquired at end
diastole (ED) with 1.458 × 1.548 × 2 mm resolution at the German Heart Center Berlin. Multilabel segmentation of
the LV myocardium, LV cavity, and aortic lumen was done using the ZIB Amira software (https://amira.zib.de/https://
amira.zib.de/). Segmentations were smoothed and upsampled to a 0.1-mm isotropic resolution.21 The wall of the aorta
was automatically generated by dilation of the aortic lumen with a thickness of 1.2 mm, and the aorta was clipped before
the branch of the brachiocephalic artery. Because of limited resolution, valves were not segmented but were included in
the FE model as a thin layer of tissue for applying pressure boundary conditions and computation of cavity volume. The
multilabel segmentations were meshed using CGAL (http://www.cgal.org/) with a target discretization of 1.25 mm in the
LV myocardium and 1 mm in the aortic wall. For the transversely isotropic Guccione material model, see Equation 4, we
equipped all models with a rule-based fiber architecture,22 where fibers rotated linearly from −75◦ at the epicardium to
+75◦ at the endocardium (Figure 2A). All anatomical models built are shown in Figure 2.

https://amira.zib.de/
https://amira.zib.de/
https://amira.zib.de/
http://www.cgal.org/
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2.4.2 Model fitting
To remove rigid body motion and provide physiological boundary conditions that allow a vertical movement of the LV
base, as observed in vivo, mechanical boundary conditions were applied by fixing the terminal rim of the clipped aorta
(Figure 2A) and resting the apex of the LV on an elastic cushion, which was rigidly anchored at its base. Constitutive
relations were represented by Equation 4. Using the ED geometry, default material parameters and an estimated ED
pressure (EDP), an initial guess of the stress-free reference configuration was computed by unloading the model using a
backward displacement method.23,24 Since clinically recorded data of the ED PV-relation (EDPVR) are often limited, the
Klotz relation25 providing an empiric description of EDPVR, p(Vcav), was used as target to steer the fitting of constitutive
parameters. In absence of accurate measurements of EDP, we refrained from fitting all material parameters to p(Vcav).
Rather, default values for the parameters bf = 18.48, bt = 3.58, and bfs = 1.627 were used as reported in the literature,16

and only the scaling parameter a was adjusted individually for each patient. With a given data point (EDV, EDP) a was
fitted to minimize the difference in stress-free residual volume, V0,dia, between model and Klotz curve. This yielded values
for a of 0.5, 0.65, 0.5, and 0.5 for the cases LVA, LVB, LVC, and LVD, respectively.

A three-element Windkessel model of LV afterload was used to provide the pressure-flow relationship during ejection26

(see Figure 3). Left ventricle models were parameterized to match clinically recorded PV-data using LV cavity volume
traces, Vcav(t), determined from Cine-MRI with a temporal resolution of 45.28, 29.63, 32.00, and 35.29 ms for LVA, LVB,
LVC, and LVD, respectively. Continuously monitored invasive pressure recordings were not available, as catheterization
was not indicated. Peak pressure in the LV was determined by estimating peak pressure in the aortic root from cuff
pressure measurements and by determining the pressure drop at peak flow across the aortic valve from ultrasound flow
measurements using Bernoulli law.27 Windkessel parameters representing the aortic input impedance, Z, comprising the
flow resistance of aortic valve, Zv, and the characteristic input impedance of the aorta, Zc, as well as resistance R and
compliance C of the arterial system were fit to reproduce estimated LV peak pressure using measured volume traces Vcav(t)
as input.

In a final step, active mechanical properties were fit to the same hemodynamic data used for fitting the afterload model.
A reaction-eikonal model was used to generate activation sequences and simulate action potential propagation in the LV.28

Active stress generation was triggered with a prescribed electromechanical delay when the upstroke of the action potential
crossed the −40 mV threshold. Parameters peak stress, Speak; time constant of contraction, 𝜏c; and twitch duration, tdur,

FIGURE 3 Fitting of the afterload model. Measured input data comprise Vcav(t) (top panel), derived flow qLV = dVcav∕dt (mid panel), p̂LV

and pressure drop Δp = p̂LV − p̂ao along with simulated pressure traces pLV and pao (bottom panel), with annotations of onset of ejection, t0,ej,
instant of peak pressure in the left ventricle (LV), tp̂, cardiac contraction time, Tsct, and the instant of peak flow, tq̂
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TABLE 3 Fitted parameters of circulatory, active stress, and passive mechanical model components

Afterload Active stress Passive mechanical model

Zv

[
kPa.ml

ms

]
Za

[
kPa.ml

ms

]
R
[

kPa.ml
ms

]
C
[

ml
kPa

]
Speak [kPa] 𝝉c [ms] a [kPa]

LVA 35.82 26.00 187.74 15.23 69 80 0.5
LVB 16.08 11.03 72.65 26.62 85 35 0.65
LVC 15.93 12.78 77.34 25.50 63 40 0.5
LVD 22.34 11.09 62.73 30.93 98 58 0.5

were adjusted manually to fit peak pressure, p̂LV, duration of pressure pulse and flow. Because of the intuitive link of
the active stress model given in Equation 7 with the fitting targets, a satisfactory fit was achieved within ≤5 simulation
runs. The goodness of fit was deemed sufficiently accurate when the clinically measured metrics EF, SV, MAP, and peak
LV pressure, p̂LV, were matched within a margin of error of ±5%. Clinical input data and fitted model parameters are
summarized in Table 3.

2.5 Myocardial wall stresses
Stresses can be computed from deformations u using constitutive material models based on ex vivo experimental data
that link stresses to strains. In the FE model, stress tensors 𝝈(x, t) are computed by evaluating Equations 2 and 3, which
yields a 3 × 3 tensor where only six components are independent for symmetry reasons. For the models Sph5, Sph25, and
Sph150, the stress tensor simplifies. Because of the assumption of isotropy in (A1) and symmetry in (A2), any solution, if
expressed in a spherical coordinate system, must also be symmetric. Quantities computed in the FE Cartesian coordinate
system are recast in spherical coordinates as defined in Figure 1B using a projection matrix, P. For the total Cauchy stress
tensor 𝝈, we obtain

𝝈 =

(
𝜎xx 𝜎x𝑦 𝜎xz
𝜎𝑦x 𝜎𝑦𝑦 𝜎𝑦z
𝜎zx 𝜎z𝑦 𝜎zz

)
= P

(
𝜎rr 𝜎r𝜙 𝜎r𝜃
𝜎𝜙r 𝜎𝜙𝜙 𝜎𝜙𝜃
𝜎𝜃r 𝜎𝜃𝜙 𝜎𝜃𝜃

)
P⊤ = P𝝈sph P⊤, (8)

with the projection matrix P = (er, e𝜙, e𝜃) and r ∈ R+, 𝜃 ∈ [0, 𝜋], 𝜙 ∈ [0, 2𝜋).
While all quantities in the spherical models must be perfectly symmetric, this is not necessarily the case in the FE

solutions. Depending on spatial resolution and boundary conditions, a minor numerical jitter around mean values will
inevitably occur. For comparing FE with Laplace analysis, averaged mean quantities were therefore computed over the
entire domain by

𝜎⋆⋆(u, t) = 1|Ω| ∫
Ω

𝜎⋆⋆(u, t) dx , (9)

with u being the FE solution at time t and ⋆ ∈ {r, 𝜃, 𝜙}.
In a thin-walled spherical shell, stresses in azimuthal and meridional direction must be equal due to symmetry, that

is, 𝜎circ = 𝜎𝜙𝜙 = 𝜎𝜃𝜃 , and with h ≪ r, radial stresses can be assumed to be negligible relative to circumferential hoop
stresses, that is, 0 ≈ 𝜎rr ≪ 𝜎circ. The stress tensor in spherical coordinates simplifies therefore to

𝝈sph ≈

( 0 0 0
0 𝜎circ 0
0 0 𝜎circ

)
. (10)

As a reference for verifying FE-based stresses, different variants of Laplace law were used. In particular, we use an
extension of Laplace law that takes into account the finite thickness of the wall

𝜎circ =
pr

2h
(

1 + h
2 r

) = 𝜎L,H (11)

and refer to stress estimates based on this formula as Laplace stress in thick-walled spherical shells, 𝜎L,H. Exploiting
assumption (A3), that is, h

r
≪ 1 and thus

(
1 + h

2 r

)
≈ 1, allows a further simplification yielding

𝜎circ =
pr
2h

= 𝜎L,h, (12)
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which we refer to as Laplace stress in thin-walled spherical shells, 𝜎L,h. Finally, we consider a volume-based estimation
of 𝜎circ

29 defined as
𝜎circ =

p(
Vcav+Vmyo

Vcav

)2∕3
− 1

= 𝜎L,V, (13)

which has been used previously in clinical studies.4 We note that Equation 13 is equivalent to Equation 11 for a spherical
shell. However, when applied to a nonspherical structure such as the LV, this is not the case. Equation 13 may offer
advantages, as the determination of Vcav and Vmyo may be less ambiguous than the determination of a representative inner
radius r and wall thickness h (see section 2.8.1).

2.6 Myocardial power and work
For a given displacement u at time t ∈ [0,T], where T refers to the duration of a cardiac cycle and t0 = tED = 0 marks
the end of diastole, the biomechanical power density, pint, generated or consumed at location x within the LV wall can be
computed by evaluating

pint(x, t) = 𝝈(u, t) ∶ �̇�(u, t), (14)

where �̇� is the strain rate tensor and A ∶ B = tr(A⊤B) denotes the double contraction of two tensors; see, eg, Holzapfel30

for further details. Integration of Equation 14 over the entire myocardial wall yields the global biomechanical power, Pint,

Pint(t) = ∫
Ω

𝝈(u, t) ∶ �̇�(u, t) dx , (15)

and integration of Equation 15 over time yields an expression of biomechanical work, Wint, performed

Wint =

t

∫
t0

Pint(𝜏)d𝜏. (16)

Based on Laplace law, biomechanical power can be estimated using

Pint,⋆(t) = Vmyo(t)𝜎L,⋆(t)
(

ṙ(t)
r0

+ Ṙ(t)
R0

)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

≈�̇�circ

, (17)

where ⋆ denotes which formula was used for estimating the circumferential wall stress that is, ⋆ ∈ {h,H,V}, and
�̇�circ approximates circumferential strains. For a derivation of Equation 17, see Supporting Information. Laplace-based
mechanical work is estimated analogously to Equation 16, yielding

Wint,⋆(t) =

t

∫
t0

Pint,⋆(𝜏) d𝜏. (18)

In addition, a recently introduced also Laplace-based relative power indicator, IHP, was evaluated, which attempts
to estimate the power generated by the LV around the instant of peak pressure, tp̂. Based on Preston and Wilson,31 the
mechanical work expended, or internal mechanical heart work (IHW), during contraction time, Tsct, defined as the time
elapsed between the onset of isovolumetric contraction (IVC) at tED and the instant of peak stress in the LV at tp̂, is
approximated by

IHW = Vmyo𝜎L,⋆. (19)

IHW is interpreted as a measure of the mechanical potential energy stored in the LV from which a measure of the peak
biomechanical power generated by the LV between tED and tp̂ is derived then by

IHP = IHW
Tsct

. (20)

Note that Equation 20, in contrast to Equation 17, does not include any measure of �̇�. Thus, while consistent in terms
of physical units, IHP must be considered a relative indicator and not a physical measure of power.
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2.7 Hydrodynamic power and work
Hydrodynamic power, Pext, is given by

Pext = pq = p dVcav

dt
, (21)

where p is the hydrostatic pressure acting at endocardial surface, Γendo, and q represent blood flow out of the LV cavity
during ejection. Hydrodynamic work, Wext, is then the work expended by the LV myocardium when changing the volume
of its cavity, Vcav, given by

Wext =

t

∫
t0

p(𝜏)q(𝜏) d𝜏, (22)

or, equivalently, expressed as PV work by

Wext =

Vcav1

∫
Vcav0

p(Vcav) dVcav. (23)

In absence of active stresses, ie, 𝝈act = 0, and isovolumetric contstraints imposed by valves upon Vcav, Pint ≡ Pext must
hold. Under such conditions, external work can therefore serve as a reference for validating the FE-based computation of
internal power and work. This is not necessarily the case during the isovolumetric phases of a heartbeat where internal
work may be expended, which does not necessarily manifest as external work. During these phases, changes in 𝝈 occur,
which may entail shape changes of the LV myocardium and thus induce a nonzero strain rate tensor �̇�. However, because
of the isovlumetric constraints imposed by the incompressibility of the blood pool and the closed state of all valves, no
global change in cavity volume can occur, ie, dVcav = 0.

Under healthy conditions, hydrodynamic power in the LV cavity equals the power delivered to the arterial system, as
transvalvular power losses are small. However, in AS cases where transvalvular pressure gradients, Δp, are significant,
the effective hydrodynamic power externally delivered to the arterial system is reduced. Following Fernandes et al,9 we
define external hydrodynamic heart power, EHP, as

EHP = P̄ext,ao = 1
Tsys

tES

∫
tED

pao q dt ≈ MAP · CO, (24)

where MAP and CO are mean arterial pressure and cardiac output, respectively, and pao = pLV − Δp is the pressure in
the aorta ascendens. Power efficiency, Peff, has been defined previously in Fernandes et al9 as the ratio

Peff,clin = EHP
IHP

. (25)

Since Peff essentially relates the mean hydrodynamic power delivered to the arterial system to the peak biomechanical
power generated by the LV myocardium during systole, Peff can be expressed as

Peff =
P̄ext,ao

P̂int
≈

P̄ext,ao

P̂ext
. (26)

where P̂int, P̂ext, and P̄ext,ao are determined based on Equations 15, 21, and 24, respectively. That is, Peff can be estimated
from hemodynamic data using P̂ext or from LV deformation analysis using P̂int. Unlike Peff,clin in Equation 25, which
compares an absolute measure of external hydrodynamic power to a relative indicator of internal biomechanical peak
power, Equation 26 provides a physically consistent comparison.

2.8 Evaluation of Laplace-based assessment of wall stress and power
Human EM LV models that were validated against clinical data (see section 2.4.2), provided accurate ground truth data
on strains 𝝐(u, t) and stresses 𝝈(u, t) in the LV wall. Using these as reference, Laplace analysis was applied to the in silico
models to assess its accuracy and validity.
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FIGURE 4 Determination of input parameters radius r̄ and wall width h̄ for Laplace analysis. (A) Automated left ventricle slicing along
long-axis z. (B) Sampling of variations in r, R, and h within a slice, zi. (C) Averaged parameters r̄ and h̄ as a function of p

2.8.1 Determination of clinical input data for Laplace-based analysis
Geometric input parameters r and h required for Laplace analysis must be determined from clinical imaging datasets.
As LV shape deviates markedly from a spherical shell, representative mean parameters of r and h must be found. Since
there is no unique best solution to establish a geometric correspondence between LV shape and a spherical shell, various
methods have been used in clinical applications. Typically, transverse slices from short-axis Cine-MRI scans were analyzed
to measure, either manually or semiautomatically, r and h, where h is measured in the postero-lateral wall, the septum
or an average is taken. The analysis is either carried out in one representative mid-cavity LV short axis slice, or a number
of slices is selected to capture representative basal, mid-cavity, and apical LV cross sections.

Similar issues arise when applying Laplace analysis to in silico datasets. In order to extract r and h as objectively as
possible without operator bias, automated processing workflows were implemented (see Figure 4). Analogous to the
z-slice selection in MRI protocols, the unstructured FE meshes of the LV models were decomposed into slices of ≈8 mm
resolution, comparable with the MRI out-of-plane resolution. Decomposition was achieved by first determining the long
axis, z, of the LV using principal component analysis (see Figure 4A), which yielded, depending on the spatial extent of
the LV long-axis of a given model, between 10 and 14 slices; each slice i is centered around zi. A mean z coordinate of the
LV in its current configuration, z̄c(t), was computed to define the center slice plane using the long-axis unit vector, ez, and
the center zi(t) of individual slices was shifted, keeping slice width and distance to the LV center z̄c(t) constant. Within a
selected plane, radial vectors, ri,j(t), were computed that emanated from zi and were oriented in polar angles 𝜙j ranging
from 0◦ to 360◦ with an angular sampling of Δ𝜙 = 9◦. For each vector ri,j(t), the intersection with surfaces, Γendo(t) and
Γepi(t), was determined, yielding N = 2𝜋∕Δ𝜙 inner radii, ri,j(t); outer radii, Ri,j(t); and wall widths, hi,j(t) = Ri,j(t) − ri,j(t)
(Figure 4B). Mean radius, r̄i(t), and wall width, h̄i(t), were determined as the arithmetic average

r̄i(t) =
1
N

N∑
𝑗=1

ri,𝑗(t) and h̄i(t) =
1
N

N∑
𝑗=1

hi,𝑗(t). (27)

Finally, multislice mean r̄ and h̄ were computed by averaging over M slices

r̄(t) = 1
M

M∑
i=1

r̄i(t) and h̄(t) = 1
M

M∑
i=1

h̄i(t). (28)

The time course of the mean values r̄(t) and h̄(t) (see Figure 4C) was plugged then into the respective Laplace equations
to compute stress in Equations 11, 12, and 13; power in Equation 17; and work in Equation 18.

2.8.2 Simulation protocols and data analysis
To evaluate the influence of violating the assumptions (A1) and (A2), passive inflation experiments were performed with
LV models and the anisotropic material given in Equation 4 following the same protocol as applied before to the spherical
shell models Sph5, Sph25, and Sph150 in section 2.3. Laplace-based stress estimates 𝜎L,h, 𝜎L,H, and 𝜎L,V were compared



GSELL ET AL. 11 of 18

with the mean stresses obtained from the FE solution. Stresses were evaluated with respect to an ellipsoidal coordinate
system to facilitate a comparison with stresses in the spherical shell models (see Figure 1B). An ellipsoidal coordinate
system was constructed for the LV models by assigning fiber and sheet orientations using a rule-based method with a
constant fiber angle of 0◦.22 Stress components 𝜎rr(x), 𝜎𝜙𝜙(x), and 𝜎𝜃𝜃(x) were averaged according to Equation 9, yielding
𝜎rr, 𝜎𝜙𝜙, and 𝜎𝜃𝜃 , respectively. Laplace-based estimation of power, Pint,⋆, was compared with FE-based power, Pint, and to
external hydrodynamic power in the LV cavity, Pext.

Laplace analysis was applied to clinically fitted EM LV models LVA–LVD to compare LV stress 𝜎L,⋆; power Pint,⋆; and
IHP over an entire systolic cycle to the FE-based stresses 𝜎rr, 𝜎𝜙𝜙, 𝜎𝜃𝜃 , and 𝜎mean and biomechanical power Pint. Fur-
ther, biomechanical power due to LV deformation, Pint, and hydrodynamic power, Pext, derived from PV data were also
compared to assess differences during isovolumetric phases.

2.9 Numerical solution
Discretization of all PDEs and the solution of the arising systems of equations relied upon the Cardiac Arrhythmia
Research Package framework.32 Details on FE discretization33 as well as numerical solution of electrophysiology28,34,35 and
electro-mechanics36 equations have been described in detail previously. Both electrophysiolgy and mechanics FE solvers
were validated previously in N-version benchmark studies.37,38

3 RESULTS

3.1 Verification of FE model
The FE implementation was verified by performing passive inflation experiments with spherical shell models for which
Laplace laws are known to be almost exact (Sph5) or, at least, sufficiently accurate (Sph25 and Sph150). The resulting
EDPVRs and principal components of the Cauchy stress 𝝈sph, evaluated in spherical coordinates and globally averaged
to yield mean stresses 𝜎 circ and 𝜎rr, are shown in Figure 5A,B. A numerical comparison of stresses and work at the
maximum pressure of p = 4 kPa is provided in Tables 4 and S7.

Agreement of FE-based mean circumferential stress 𝜎 circ with Laplace laws was very close, that is,𝜎circ = 1
2
(𝜎𝜃𝜃+𝜎𝜙𝜙) ≈

𝜎𝜃𝜃 ≈ 𝜎𝜙𝜙 ≈ 𝜎L,H ≈ 𝜎L,h held. With increasing h 𝜎L,H provided estimates that were closer to the FE-based stress 𝜎 circ

than 𝜎L,h (Table 4). The simple Laplace overestimated 𝜎circ in Sph5, Sph25, and Sph150 by 1.02%, 8.32%, and 63.19%,
whereas with 𝜎L,H, deviations were much smaller with 0.02%, 2.3%, and 14.58%. Radial stresses were negligible in the
thinner-walled models Sph5 and Sph25, that is, 𝜎rr ≪ 𝜎circ, but not in the thick-walled model Sph150 where 𝜎rr amounted
to ≈ 43.75% of 𝜎 circ. A comparison of FE-based work Wint to Laplace-based Wint,h and Wint,H is given in Table S7.

FIGURE 5 (A) EDPVRs for isotropic spherical shell models of varying wall thickness h. (B) Comparison of FE-based mean circumferential
and radial stresses, 𝜎 circ and 𝜎rr , with Laplace-based estimations 𝜎L,h and 𝜎L,H
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TABLE 4 Comparison of FE-based mean wall stresses 𝜎rr , 𝜎𝜃𝜃 and 𝜎𝜑𝜑 in radial, azimuthal and meridional
direction, respectively, with the Laplace-based wall stress estimates 𝜎L,h, 𝜎L,H and 𝜎L,V

a

Setup 𝝈rr [kPa] 𝝈𝜃𝜃 [kPa] 𝜎𝜑𝜑 [kPa] 𝝈L,h [kPa] 𝝈L,H [kPa] 𝝈L,V [kPa] #Elements d̄x [mm]

Sph5 −1.77 99.46 99.47 100.47 99.48 83825 0.65
Sph25 −1.16 15.63 15.63 16.93 15.99 40974 1.23
Sph150 −0.63 1.44 1.44 2.35 1.65 213 742 1.70
LVA−Gu −0.90 7.05 3.33 5.24 4.40 6.83 420 704 1.52
LVB−Gu −0.85 8.71 4.29 5.94 5.08 8.19 332 221 1.74
LVC−Gu −0.67 4.47 2.12 3.54 2.76 4.44 456 553 1.84
LVD−Gu −0.83 6.97 3.93 5.73 4.88 7.07 394 808 1.86

aAll stresses refer to the maximum applied pressure of p = 4kPa.

FIGURE 6 (A) Loading protocol. (B) Stresses, power and work for anisotropic model. Data are shown for model LVD

3.2 Evaluation of Laplace-based assessment of wall stresses and power
After verification with spherical shell models, FE analysis was applied to a validated in silico EM LV model to compute
stresses, power, and work during both diastolic and systolic phases. Since all assumptions underlying Laplace laws are
violated in LV models, the FE-based results were considered the ground truth and, thus, could be used to gauge the
accuracy of Laplace-based assessment of LV mechanics.

3.2.1 Passive inflation of LV models
Left ventricle models LVA–LVD were inflated following the same protocol as in section 2.3 (see Figure 6A). The temporal
evolution of FE- and Laplace-based stresses, power, and work are shown in Figure 6 for model LVD. Minor quantitative
differences to other models LVA–LVC were observed, but qualitatively, the overall behavior was identical. Stresses at
p = 4 kPa are summarized in Table 4; incurred work is given in Table S7.

3.2.2 Analysis of LV cycle experiments
Using Cine-MRI-based LV volume traces and estimated p̂ LV as inputs, the models LVA–LVD were fitted over the cycle
phases IVC, ejection, and isovolumetric relaxation (IVR) (Figure 7). All models replicated the clinical metrics of interest
such as SV, EF, or peak aortic pressure p̂ao with sufficient accuracy (<5%).

Figure 8 compares the time course of the averaged FE-based quantities azimuthal, meridionial, radial, and circumferen-
tial mean stresses, 𝜎𝜙𝜙, 𝜎𝜃𝜃 , 𝜎rr, and 𝜎 circ = 1

2
(𝜎𝜙𝜙 + 𝜎𝜃𝜃), respectively, and power Pint to the Laplace-based estimation of

stresses 𝜎L,⋆ and power Pint,⋆. In all cases, the Laplace-based stresses 𝜎L,h and 𝜎L,H tended to underestimate the FE-based
mean circumferential stress 𝜎 circ, being closer to the azimuthal stress 𝜎𝜙𝜙, whereas 𝜎L,V overestimated 𝜎circ and was closer
to 𝜎𝜃𝜃 . Further, both Laplace stresses or globally averaged mean stresses deviate noticeably from the true local stresses
acting at a given location (Figure 9).

Laplace-based power estimates Pint,h, Pint,H, and Pint,V were qualitatively comparable with the exact FE-based Pint, but
quantitatively marked discrepancies were observed. The time course of Laplace-based power showed both a faster onset
and decay with an early peak in power. Quantitative differences between the Laplace estimates were also significant with
Pint,V > Pint,h > Pint,H. Around the instant tp̂, deviations were in the range of−2.41∕ + 2.92,−6.22∕ − 0.58,−9.19∕ + 9.34,
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FIGURE 7 Fitting of EM LV models (red traces) using Cine-MRI-based volume data (blue traces) and estimated LV peak pressures, p̂ LV,
as input. Top panels show LV anatomy in end-diastolic (transparent blue) and end-systolic (solid blue) configuration

FIGURE 8 Comparison of FE-based computation of stresses (𝜎𝜙𝜙, 𝜎𝜃𝜃 , 𝜎 circ and 𝜎rr) and power Pint with Laplace-based estimates of
stress, 𝜎L,h, 𝜎L,H and 𝜎L,V, and power Pint,h, Pint,H and Pint,V. Top panels show the time course of pressure p in the LV endocardium. The solid
black vertical line indicates the instant, tp̂, when peak pressure in the LV, p̂LV, occurs

and −7.10∕ + 8.28 W for LVA, LVB, LVC, and LVD, respectively. The relative IHP marker led to large deviations (see
Figure S13) from the true FE-based mechanical power, even around the instant of p̂LV the IHP marker was intended for.

A numerical comparison between markers of LV peak power is given in Table 5. Differences between true mechan-
ical peak power P̂int and Pint at the instant of peak pressure, tp̂, were minor, with the maximum difference being|||P̂int − Pint(tp̂)

||| < 0.19 W or 2.15%. Laplace estimation of Pint, evaluated at tp̂, misestimated P̂int by 5.1% to 54.7%. Interest-
ingly, Pint,h performed better than Pint,H in all cases, but with nonnegligible maximum relative errors of 23.37%, 32.23%,
18.51%, and 7.68% for LVA, LVB, LVC, and LVD, respectively. Internalmyocardial heart power overestimated P̂ int signifi-
cantly, in the range between 24.10% to 140.28%. Since the mechanical power developed during isovolumetric phases was
marginal (see Figure S14), the most accurate estimate of Pint is obtained by computing Pext from standard hemodynamic
PV data. In terms of peak mechanical power, the difference |||P̂int − P̂ext

||| was less than 0.5 W or 7.18% in all cases where
P̂ext can be estimated with high accuracy by taking the product of peak power and flow, p̂LV · q̂LV.
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FIGURE 9 Statistical analysis of the circumferential stress 𝜎circ at the instant of peak pressure. The top row shows 𝜎circ averaged over the
corresponding LV segment and the bottom row shows the variation of 𝜎circ in each LV segment

TABLE 5 Comparison of FE-based peak mechanical power P̂int with different estimates that were all evaluated at the instant
of peak pressure, tp̂: Pint(tp̂), Pext(tp̂), Pint,h(tp̂), Pint,H(tp̂), Pint,V(tp̂); peak hydrodynamic power P̂ext; product of peak pressure and
peak flow in the LV p̂LV · q̂LV; relative internal heart power marker IHP and external heart power EHP; cardiac power efficiency
Peff and its IHP-based approximation Peff,clin

P̂int Pint(tp̂) P̂ext Pext(tp̂) p̂LV · q̂LV Pint,h(tp̂) Pint,H(tp̂) Pint,V(tp̂) IHP EHP Peff Peff,clin

[W] [W] [W] [W] [W] [W] [W] [W] [W] [W] [1] [1]

LVA −5.13 −5.02 −5.50 −5.42 −5.54 −3.93 −2.62 −7.94 −6.50 −2.56 0.49 0.39
LVB −13.64 −13.52 −13.56 −13.48 −13.59 −9.24 −7.30 −12.94 −32.76 −6.00 0.43 0.18
LVC −17.94 −17.75 −17.44 −17.39 −17.48 −14.62 −8.56 −27.09 −22.27 −6.30 0.35 0.28
LVD −22.01 −21.92 −21.80 −21.74 −21.84 −20.32 −14.82 −30.20 −29.59 −8.02 0.36 0.27

4 DISCUSSION

Wall stress and mechanical power generated by the LV are considered important biomarkers that promise potential clini-
cal utility for diagnosis and as a predictor of post-treatment LV remodeling after interventions.4,9 Moreover, the modeling
of stresses and power would allow to gain an improved understanding of mechanisms that contribute to adverse remodel-
ing. Laplace analysis would have the charm that inputs such as p, r, h, Vmyo, and Vcav are accessible within routine clinical
procedures. However, Laplace analysis is based on a global force balance calculation and relies upon simplifying assump-
tions on LV shape, tissue structure, and biomechanical behavior. This study attempts to establish validity, accuracy, and
potential limitations of Laplace analysis of stresses and mechanical power generated by the LV by comparing against an
FE model for which these quantities can be determined with high accuracy.

4.1 FE verification
Finite element computation of stresses and mechanical power was verified by performing passive inflation experiments
with geometrically well-defined spherical shell models of varying wall width for which Laplace laws hold with sufficient
accuracy. Finite element computed circumferential stresses 𝜎circ in all models agreed closely with the Laplace stresses
𝜎L,⋆ (see Figure 5 and Table 4). As expected, with increasing h, deviations became more pronounced, and the thick-walled
Laplace stresses 𝜎L,H agreed closer with FE stresses than the standard Laplace stress 𝜎L,h. In terms of work expended, more
noticeable discrepancies were observed between Wint and Laplace-based Wint,⋆ (see Table S7). However, since the agree-
ment between FE-computed internal work Wint and external work Wext was essentially perfect, as expected on grounds of
conservation of energy, we concluded that our FE implementation for evaluating stresses, power, and work is correct and
that the observed deviations are rather attributable to inherent inaccuracies in the Laplace approximations. In particular,
we consider the mean strain rate approximation in Equation 17 and the omission of radial stresses likely candidate causes.
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4.2 Laplace versus FE-based stress and power analysis
The validated high-resolution in silico model served as a reference for evaluating the accuracy of the Laplace-based approx-
imation of 𝝈, Pint and Wint. While the FE models that were built from, fitted to, and validated against clinical data may
deviate from clinical data within the limits of clinical data uncertainty, for assessing Laplace analysis, the FE model repre-
sents the ground truth, as it provides accurate data on stresses 𝝈(x, t) and strains 𝜺(x, t), which can serve to compute local
power and work densities pint(x, t) and wint(x, t), respectively, as well as global Pint, Wint, and Wext with highest possible
accuracy. All input parameters needed for Laplace analysis can be derived from the FE model with higher accuracy than
what is achievable clinically. In this regard, the application of Laplace analysis to the in silico model can be considered a
best case scenario.

4.2.1 Wall stress in the LV
Wall stress 𝝈(x) in the LV is a tensorial quantity that varies in space (see Figure 9). The tensor comprises six independent
components, whereas Laplace stresses 𝜎L,⋆ provide only one scalar stress value representing a global circumferential or
hoop stress, 𝜎circ. While 𝜎circ is equivalent to 𝜎𝜙𝜙 and 𝜎𝜃𝜃 in a thin-walled spherical shell such as Sph5 (see Table 4), this
is not the case in the LV, as there is no direct equivalence to any component of 𝝈. As shown in an FE modeling study by
Zhang et al,12 the correlation of Laplace stresses to fiber and cross-fiber stresses is poor. Conceptually, the force balance
consideration used in the derivation of Laplace laws suggests that Laplace stresses are most likely representative of the
mean stresses in the longitudinal-circumferential plane, 𝜎 circ = 1

2

(
𝜎𝜙𝜙 + 𝜎𝜃𝜃

)
. Indeed, a fair qualitative agreement was

observed between 𝜎circ and 𝜎L,⋆ during passive LV inflation as illustrated in Figure 6. During ejection, the time course of
𝜎L,⋆(t) followed a similar trend as 𝜎circ although waveforms deviated to different degrees owing to the marked differences
in the LV anatomies. However, quantitatively discrepancies were significant during both passive inflation and over an LV
cycle as evident in Figure 6B and in the stress panels of Figure 8 with substantial differences in stress magnitudes between
the various Laplace laws and the global circumferential mean stress with 𝜎L,V > 𝜎circ > 𝜎L,h > 𝜎L,H.

Besides the fundamental problem of stress heterogeneity and tensorial properties of LV wall stress, Laplace calculations
are afflicted with significant uncertainties. The meaning of geometric parameters r and h required for the evaluation of
Equations 11 or 12 is ambiguous when applied to the LV that deviates in shape markedly from a spherical shell. There-
fore, r and h must be determined from averaging over a number of short axis Cine MRI scans to find representative
values. Because of longitudinal shortening, additional averaging occurs, as different slices of the heart are being imaged
during ejection. Thus, the determination of parameters r and h cannot be unique as the particular method employed for
averaging, such as the one described in Equation 28, influences, to some extent, the results. Using Equation 13 seems to
circumvent this problem since Vcav and Vmyo are used as inputs that may be determined uniquely for the LV. However, in
our simulations, 𝜎L,V led to larger misestimations than 𝜎L,h and 𝜎L,H.

It is well known that Laplace-based calculation of stresses is afflicted with various inaccuracies.11 Nonetheless,
Laplace-based calculation of LV wall stresses has been used in clinical studies as a diagnostic criterion.4 However, accord-
ing to observations in this study based on an in silico model and in line with other studies,12 the scope for clinical
applications appears narrow. Laplace stresses may provide information of diagnostic value, but, if so, rather as an empirical
than a mechanistic marker. As a biomarker representing LV wall stresses in a physical sense, Laplace-based calculations
suffer from severe fundamental limitations.

4.2.2 Mechanical heart power and power efficiency
Mechanical heart power Pint and cardiac power efficiency Peff defined as the ratio between peak mechanical power
expended by the LV, P̂int, and the mean hydrodynamic power delivered to the arterial system, EHP, have been proposed
recently as a diagnostic marker.9 On grounds of conservation of energy the global mechanical power Pint expended by the
LV and the hydrodynamic power transferred to the LV blood pool, Pext, must be equal. Discrepancies may occur due to
isovolumetric phases during which hydrodynamic power is close to zero, but mechanical power is expended by the LV
to some extent as conformational changes of the LV myocardium, and the shape of the LV cavity occur. However, in all
models studied, Pint during isovolumetric phases was negligible (see Figure S14). This does not conflict with experimental
studies providing evidence of heterogeneous circumferential strains, longitudinal shortening, and wall thickening during
IVC.39 Qualitatively similar behavior is observed in our in silico models, but magnitude and velocity of strain develop-
ment are much smaller during IVC than during ejection. Thus, the strain rate tensors �̇� remained small during IVC, and
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mechanical power expenditure was minor. In all LV models under study, global mechanical power Pint and the hydrody-
namic power in the LV cavity Pext were virtually identical (see Table 5 and Figure S14). Hence, mechanical heart power
can be determined either by analyzing the deformation of the LV myocardium or from PV relations in the LV.

The estimation of Pint is feasible directly from LV deformation either by using FE models or, as suggested in Fernandes
et al,9 based on Laplace law where the latter approach is more readily applicable in the clinic. However, when global LV
power is of interest, Laplace-based approaches do not seem to offer any additional benefits over more standard approaches
relying on hemodynamic data for a number of reasons.

First of all, the evaluation of Pint,⋆ based on Equation 17 introduces a systematic error that leads to a misestimation of
the actual Pint, even in the spherical shell models, since any work expended in the radial direction is ignored. Laplace law
takes into account only circumferential stresses and neglects any radial stresses. As shown in Figure 5, this simplification
is only well justified in thin-walled structures such as Sph5 but introduces pronounced discrepancies for increased h (see
passive inflation experiments in Tables 4 and S6 as well as 𝜎rr traces in Figure 8). Secondly, in addition to the parameters
needed for wall stress estimation that are afflicted with substantial uncertainties as discussed above, the parameters Vmyo

and �̇� are required. Using the approximation given by Equation 37 in the Supporting Information, the estimation of �̇�circ

requires that both inner and outer radii r and R of the LV can be tracked with sufficient temporal resolution and accuracy.
However, as evidenced in Figure 8, even when evaluated in an in silico model where tracking of these quantities is feasible
with the highest possible accuracy, the overall accuracy of the method is rather poor with significant underestimation or
overestimation of the true Pint, depending on whether Pint,h, Pint,H, or Pint,V is used and whether an early or late phase of
ejection is considered (see Figure 8).

The evaluation of cardiac power efficiency Peff or Peff,clin requires only point estimates of peak mechanical power.
Following Fernandes et al,9 this is feasible by assuming that P̂int occurs at the instant of peak pressure, tp̂. Consistent

with expectations based on Laplace law, this was not the case in any of our LV models. As p ∝ 𝜎∕ (r∕h), peak pressure
p̂LV and peak stress would only coincide under isometric conditions. In the contracting LV during ejection, the ratio (r∕h)
decreases, thus facilitating a further increase of p beyond the instant of peak pressure (see pressure and stress panels in
Figure 8). Nonetheless, the instants of peak power and peak pressure fell sufficiently close together with ||tp̂ − tpow,peak||
of 32, 12, 11, and 9 ms for LVA, LVB, LVC, and LVD, respectively. Indeed, inspection of Table 5 and the power panels
in Figure 8 suggest that the Laplace-based estimation of P̂int seems feasible by evaluating power at the instant of peak
pressure (compare P̂ int, Pint(tp̂), Pint,h(tp̂),Pint,H(tp̂), and Pint,V(tp̂) in Table 5), albeit with inferior accuracy compared with
estimations based on hemodynamic PV data.

Alternatively, the simpler Peff,clin marker can be used as in Fernandes et al,9 which relies on IHP and does not require
an estimation of �̇�. While simpler, its use brings about a number of drawbacks. Since �̇� is ignored, IHP is only a rela-
tive marker that is nonlinearly related to Pint. Therefore, IHP provided highly inconsistent relative estimates of Pint with
errors varying in the range from 24.1% to 140.28% (see Table 5). Thus, IHP as an indicator of Pint appears to be of insuf-
ficient accuracy even for clinical applications of modest accuracy demands. Overall, the scope for Laplace-based power
estimation as proposed in Fernandes et al9 seems limited as standard methods based on hemodynamic data are afflicted
with less uncertainty, offer higher accuracy, and are easier to evaluate. As shown in Table 5, P̂int is straight forwardly
approximated—with higher accuracy than any Laplace-based method—as the product of peak pressure and flow, p̂ · q̂.

The mechanical power generated by the LV is an indicator of metabolic demands. Local wall stresses and power den-
sities governing energetic demand and supply ratios in the LV myocardium are known to play important roles as drivers
of remodeling in the pressure-overloaded LV of AS patients. However, analogous to the stresses shown in Figure 8, the
distribution of power density pint(x, t) in the LV wall is highly heterogeneous as well with significant regional variability
around the global mean power density. In this view, Laplace-based global markers derived from mechanical deformation
such as 𝜎circ or Pint,⋆ are not representative of local stresses and power within the LV myocardium and appear to offer
limited insight and predictive power beyond standard PV analysis.

An accurate representation of local mechanical stresses 𝝈(x, t) and power pint(x, t) over a cardiac cycle depends
on reliable sets of strains 𝝐(x, t). While techniques for measuring strains in 3D throughout the LV myocardium are
available,14 such recordings are not part of clinical routine, their analysis requires expensive nontrivial postprocessing,
and spatio-temporal resolution and accuracy are limited. A carefully fitted and validated FE-based EM LV model that
replicates a patients physiology in terms of PV relations as well as LV kinematics provides accurate data on strains 𝝐(x, t) at
a high spatio-temporal resolution. Using an appropriate parameterized patient-specific constitutive model such as given
in Equation 4, 𝝐(x, t) can be used to compute LV wall stresses 𝝈(x, t) and Pint or any other stress-related biomarker effi-
ciently with high accuracy. Such models are able to provide either global power Pint(t), but also fine-grained distributed
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power density pint(x, t). A spatio-temporal view on 𝜺(x, t), 𝝈(x, t), and pint(x, t) in the LV may provide additional insights
as regions of elevated strain, stress, or power are assumed to be implicated in the mechanisms driving remodeling in the
pressure overloaded LV.40,41

5 CONCLUSIONS

Laplace estimates of LV wall stress are able to provide a rough approximation of global mean stress in the
circumferential-longitudinal plane of the LV. However, according to FE results, spatial heterogeneity of stresses in the LV
wall is significant, leading to major discrepancies between local stresses and global mean stress. Assessment of mechani-
cal power with Laplace methods is feasible, but these are inferior in accuracy compared with FE models and do not offer
any benefits compared with standard methods based on hemodynamic data. In this view, the scope for Laplace-based
analysis in clinical applications seems narrow. The accurate assessment of stress and power density distribution in the
LV wall is only feasible based on patient-specific FE modeling.
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