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Summary

Caffeine is the most widely used psychostimulant in Western countries, with antioxi-
dant, anti-inflammatory and anti-apoptotic properties. In Alzheimer's disease (AD),
caffeine is beneficial in both men and women, in humans and animals. Similar effects
of caffeine were observed in men with Parkinson’s disease (PD); however, the effect
of caffeine in female PD patients is controversial due to caffeine’s competition with
estrogen for the estrogen-metabolizing enzyme, CYP1A2. Studies conducted in animal
models of amyotrophic lateral sclerosis (ALS) showed protective effects of A,,R an-
tagonism. A study found caffeine to be associated with earlier age of onset of
Huntington’s disease (HD) at intakes >190 mg/d, but studies in animal models have
found equivocal results. Caffeine is protective in AD and PD at dosages equivalent to
3-5 mg/kg. However, further research is needed to investigate the effects of caffeine
on PD in women. As well, the effects of caffeine in ALS, HD and Machado-Joseph

disease need to be further investigated. Caffeine’s most salient mechanisms of action
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1 | CAFFEINE

Caffeine (1,3,7-trimethylxanthine) is the most widely used psycho-
stimulant in Western countries.™? It is contained in coffee, tea, energy
drinks, several soft drinks and cocoa.?® In a cup containing 437 mL
of brewed coffee, there is on average 188 mg of caffeine (range 147-
259 mg).* The range of caffeine concentration is about 0.01 mg/g
of coffee beans (decaffeinated coffee) to 19.9 mg/g (Italian coffee).®
However, most coffee beans contain about 10.0-12.0 mg of caf-
feine/g of coffee bean. According to the Centre for Addiction and
Mental Health, the average Canadian consumes 210-238 mg/d of caf-
feine.® After consumption, caffeine is quickly absorbed through the
gastrointestinal tract and the highest blood caffeine concentration is
reached 30-60 minutes after intake.?” Similar caffeine concentrations
are found in the brain, suggesting that caffeine can readily cross the
blood-brain barrier, due to its hydrophobic nature. Average levels of

caffeine consumption cause alertness and reduce fatigue, leading to

relevant to neurodegenerative diseases need to be further explored.

adenosine receptor, Alzheimer disease, amyotrophic lateral sclerosis, caffeine, dosage,
Huntington disease, neurodegenerative disease, neuroprotection, Parkinson disease

better performance in psychomotor tasks requiring fast reactions.®
A two- to four-year follow-up study of 4197 women (74 years) with-
out dementia found that caffeine consumption at 200-300 mg (odds
ratio (OR)=0.82, confidence interval (Cl)=0.67-1.01) and >300 mg
(OR=0.66, CI=0.52-0.83) was associated with significant reduction in
cognitive decline.? As well, the effects of coffee are stronger in women
above 80 years (OR=0.30, Cl=0.14-0.63), compared to younger
women (OR=0.73, CI=0.53-1.02). The same effect was not observed
in 2820 men (74 years).” However, another study in men (75-77 years)
from Finland (volume not reported), Netherlands (125 mL/cup) and
Italy (volume not reported) found that those who consumed coffee
had a cognitive decline of 1.2 points, whereas those that did not
consume coffee had an additional decline of 1.4 points on the mini-
mental state examination, which assesses global cognitive function.*®
Specifically, nonusers experienced 2.6 points of cognitive decline, but
users of 1, 2, 3 and 4 cups experienced 1.4, 1.3, 0.6, and 1.6 points of

cognitive decline, respectively. The same was not true for men who
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FIGURE 1 The chemical structure of adenosine (left), an
endogenous adenosine receptor agonist, and caffeine (right), an
exogenous adenosine receptor antagonist'”

consumed >4 cups of coffee, concluding that three cups/d of coffee
were the most effective in reducing cognitive decline.'® In addition,
a 21-year follow-up study found that moderate consumption (3-5
cups/d) was associated with lower risk of dementia in men (OR=0.27,
Cl=0.08-0.89) and women (OR=0.51, CI=0.17-1.52), compared to low
consumption (0-2 cups/d). Among men, the risk of developing demen-
tia was lower when consuming high levels of coffee (>5 cups) com-
pared to low coffee consumption (OR=0.36, CI=O.13—0.97).11
Caffeine can inhibit lipid peroxidation and reduce reactive oxygen
species (ROS) production.'? In fact, chronic caffeine intake amelio-
rates oxidative stress and improves mitochondrial function in several
neurotoxic situations.'® A study in rats showed that caffeine reversed
oxidative stress and attenuated inflammation induced by p-galactose,
a compound that can induce aging in rat brains.!* As well, caffeine
increases glutathione S-transferase activity and inhibits red blood
cell membrane derangement and apoptosis.’>*¢ It is also a strong
scavenger of hydroxyl radicals. Therefore, the effect of caffeine in
neurodegenerative disorders has been grossly investigated over the
last decade. It has been shown that caffeine affects the pathophys-
iology of neurodegenerative disorders, including Alzheimer’s disease
(AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS),
Huntington’s disease (HD) and Machado-Joseph disease (MJD). This
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review investigates the effects of caffeine on these neurodegenerative

diseases, as well as the mechanisms involved.

1.1 | Caffeine, adenosine and adenosine receptors

As shown in Figure 1, caffeine and adenosine have very similar basic
structures. Both caffeine and adenosine have purine backbones, al-
lowing for caffeine to also bind to adenosine receptors as a competi-
tive antagonist of adenosine.'’

Adenosine receptors (AR, AR, AjxR and A;R) are G-protein-
coupled receptors expressed in a variety of different cells, such as en-
dothelial cells, immune cells, blood vessels, astrocytes, microglia, and
the striatum and the spinal cord of the central nervous system.*®?
The interaction of adenosine with its receptors and the downstream
effects are shown in Figure 2. When adenosine binds to A|R and AR,
the inhibitory G-protein is activated, which inhibits adenylyl cyclase
(AC) activation, reducing the conversion of AMP to cyclic AMP (cAMP),
causing a decrease in protein kinase A (PKA) activation, leading to
lower downstream phosphorylation.?>?* When PKA is not activated,
calcium channels on the plasma membrane will not be phosphorylated,
causing a reduction in calcium flow into the cell. However, when ade-
nosine binds to A,,R and A R, the stimulatory G-protein is activated,
increasing AC activity, cAMP and PKA levels and calcium entry into
the cell.2%%! The binding affinities of adenosine to adenosine receptors
and the Ky (equilibrium dissociation constant) values for caffeine are
shown in Table 1. At 300 mg of consumption, caffeine affects all ade-

nosine receptors, but it has the highest interaction with AR and A, ,R.

1.2 | Adenosine A, receptor (A,R)

AR is abundant throughout different parts of the brain, including
the cerebellum and the cerebral cortex.?® Adenosine, through the
activation of the inhibitory AR, acts as a neuromodulator in the
nervous system that reduces neuronal excitability.?* Targeted dele-
tion of A R gene does not produce any drastic changes in basal or
caffeine-induced motor function, and therefore caffeine’s effects on
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TABLE 1 The binding affinity of adenosine to its receptors and
the K (equilibrium dissociation constant) values for caffeine binding
to human adenosine receptors?23®

AR AR

AR AR

Adenosine

Caffeine (Kp) 12 pmol/L

0.3-3 nmol/L  1-20 nmol/L  0.5-5 pmol/L <10 nmol/L
2.4 pmol/L 13 pmol/L 80 pmol/L

motor activity are not mediated by A|R inhibition.2® However, chronic
treatment, and blockade of these receptors, with caffeine causes an
upregulation of A R in rodents via an increase in the concentration
of AiR.7'25 Interestingly, an increase in the expression of AR causes
a decrease in pro-inflammatory cytokines, including tumor necrosis
factor alpha (TN F-a).%% Direct evidence of the neuroprotective effects
of inhibiting A;R has also been found in a model of methylmercury
poisoning.’

1.3 | Adenosine A,, receptor (A,,R)

A, AR is located mainly in the striatum, basal ganglia, olfactory cortex
and the hippocampus.?®?*2® These receptors are present pre- and
postsynaptically and are also expressed on the glia.29 Extracellular
adenosine levels increase dramatically in response to ischemia, exci-
totoxicity, inflammation, and other brain insults.%° A, R activation, via
increased adenosine, protects against brain injury by modulating neu-
rotransmission processes that are implicated in neuron-glia communi-
cation. As well, A,,R is upregulated in microglia, where it potentiates
the inflammatory cascade,*® and hence its blockade offers robust pro-
tection against noxious brain conditions.?”?%3! Blocking A, AR down-
regulates glutamate release, direct calcium entry into the neurons,
and inflammatory reactivity of microglia.24 A, R mediates the inhibi-
tion of glutamate reuptake by glutamate transporter 1.%2 Also, A,AR
mediates the upregulation of phospho-extracellular signal-reductase
kinases (pERK) 1 and 2, which cause a rapid and dramatic increase in
glutamate release, leading to microglial activation.*® Hence, a vicious
cycle of excitotoxicity is instigated leading to increased ROS produc-
tion and inflammatory mediator production. Glutamate release can

cause calcium release in the cytosol, leading to further inflammatory

| l

’ 1Ca2* influx ’ 1Caz+ influx
Glutamate ‘I‘Glutamate
release release

response, and eventually to neuronal death.?® Therefore, inhibiting
A,,R can have anti-inflammatory and anti-apoptotic effects. Indeed,
in a model of ischemia reperfusion (IR), A, ,R antagonist reduced pERK
activation and glutamate protein levels, lowering the downstream
inflammatory response in the hippocampus.*° A,,R antagonist also
reduced the levels of pro-inflammatory biomarkers nuclear factor
(NF)-xB, TNF-o, interleukin (IL)-6 and prostaglandin E,, and increased
the anti-inflammatory biomarker IL-10, matching those of the control
group.zg'30 The pro-apoptotic markers caspase 3 and cytochrome C
were also downregulated upon A,,R antagonist administration in this
model of IR.

1.4 | Adenosine A, receptor and adenosine
A, , receptor

AR activation can offer protective mechanism via lowering Ca?*

influx, thus lowering presynaptic release of excitatory neurotrans-
mitters, namely less glutamate release.®? A, R releases glutamate,
which has excitatory effects that counteract the inhibitory effects of
A,R. A main biochemical characteristic of A;R/A,,R heteromer is the
ability of A,,R to decrease the affinity of A;R for its agonists with an
ultimate switch mechanism, meaning that high levels of adenosine
will cause excitatory effects and low levels of adenosine will have in-
hibitory effects, as shown in Figure 3.%2 Since caffeine does not allow
adenosine to bind to the A,,R, it abrogates the switch mechanism,
resulting in less calcium influx into the cell and hence less glutamate

release.

1.5 | Caffeine, phosphodiesterase and
calcium release

Caffeine is a ryanodine receptor agonist.33'34 Ryanodine receptors
are Ca% releasing channels on the endoplasmic reticulum (ER).%°
Therefore, caffeine can increase the amount of calcium released from
the ER by binding to and activating ryanodine receptors.>® However,
caffeine consumption at average dosages of 210-238 mg/d does not

affect the ryanodine receptors. The levels of caffeine needed to initi-

ate its effect on the sensitivity of ryanodine receptors are at plasma

FIGURE 3 When adenosine binds

to, and activates, the AR, it causes a

reduction in the calcium influx into the

cell and glutamate release. However,

1 when adenosine binds to, and activates,
A,,R, it increases calcium influx and
glutamate release. Adenosine binding to

iCa2+ influx N o . -
A, R inhibits A, R binding to its agonists,

l therefore causing an increase in calcium

adenosine is readily available, calcium influx
and glutamate release into the cell are

influx and glutamate release. When
fGIutamate
release ] 3
increased
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concentration of 100 pmol/L, which is equivalent to about 1520 mg/d
of caffeine intake.3”"%

Caffeine is an inhibitor of phosphodiesterase, which inacti-
vates cAMP.*® However, to inhibit phosphodiesterase, caffeine
consumption has to be 20 times higher than the dose obtained
from a single cup (100 mg of caffeine) of coffee, whereas to mo-
bilize intracellular calcium depots it has to be 100 times higher.®
While modulation of phosphodiesterase and activation of ryano-
dine receptors may play a role in the effect of caffeine on Ca?*
levels in neurodegenerative diseases, concentrations of caffeine
needed to act on these are difficult to reach at nontoxic doses of

consumption.**

2 | CAFFEINE AND ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is a progressive and irreversible neurode-
generative disorder that leads to cognitive, behavioral, and memory
impairments.*? The histopathological features of AD include: the
extracellular depositions of diffuse and neuritic plaques that are
composed of amyloid-f (Ap) peptide, the intracellular accrual of neu-
rofibrillary tangles that consist of hyperphosphorylated aggregates
of the microtubule-associated protein Tau, and selective neuronal
loss restricted to the hippocampus and the neocortex.*?*3 Recently,
caffeine has been of scientific interest because of its potential as
an antioxidant compound, able to protect against oxidative stress
in AD.

2.1 | Human studies

A 21-year follow-up study (875 women and 534 men, age 50 years
at the beginning of the study) found that moderate consumption
(3-5 cups, volume not identified) of coffee substantially reduced the
risk of AD (62%-64%) and dementia (65%-70%) later in life, com-
pared to low coffee consumers (0-2 cups).!* The Canadian Study
of Health and Aging, examining 10 263 men and women over the
age of 65 years, observed coffee consumption to be associated
with a 31% lower risk of AD in the Canadian population (OR=0.69,
Cl=0.5-0.96).** Another study found that 54 patients with AD had
an average daily caffeine intake of 74+98 mg during the 20 years
that preceded their diagnosis, whereas the age-matched controls
had an average daily intake of 199+136 mg during the correspond-
ing 20 years of their life.*> Caffeine exposure was found to be
significantly associated with a 60% reduced risk of AD (OR=0.40,
Cl=0.25-0.67).4

A recent meta-analysis found that caffeine intake from tea or cof-
fee does not have a statistically reliable protective association, despite
atrend of an 18% reduced risk of cognitive disorders such as dementia
and AD (relative risk (RR)=0.82, CI=0.67-1.01).*° However, this meta-
analysis had several limitations. The studies included in this meta-
analysis had different study designs and outcomes, as well as different
caffeine intakes. Therefore, the variations between the studies were
high. Hence, it is possible that the overall 18% reduction in the risk of
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cognitive disorders, including AD, is not significant because of a type
Il error. As well, this study did not compare caffeinated coffee or tea
with decaffeinated coffee or tea. We cannot conclude that caffeine is
not protective in cognitive disorders based on coffee or tea studies,
unless there is a direct comparison of regular tea or coffee, with their
respective decaffeinated drinks.

2.2 | Invitro and in vivo animal studies

2.2.1 | Caffeine improves functional outcomes in
Alzheimer’s disease animal models

Caffeine consumption, as well as A,,R antagonism or deletion, signifi-
cantly improved the performance of APPsw (a mouse model of AD) in
Morris water maze, ascertaining its protective properties against cogni-
tive impairment and in favor of improved memory retention.”3247-4?
After 4-5 weeks of caffeine administration at 1.5 mg/d (human equiv-
alence of 500 mg/d) in 18- to 19-month APPsw mice, there was a
significant improvement in memory compared to control (4 weeks:
217%, 5 weeks: 198%).50 In fact, caffeine-treated mice were signifi-
cantly better in overall cognitive performance vs the APPsw control
group. When administered in young adulthood (4-9 months) at simi-
lar doses, caffeine provided complete protection in all cognitive tasks
that were previously impaired in APPsw mice.” Caffeine’s protective
effects were global, protecting the working memory, spatial learning,

and recognition.”

2.2.2 | Caffeine reduces amyloid p production and
increases amyloid p clearance

Caffeine’s beneficial effects in AD are through its interaction with
B- and y-secretase.’? In a study conducted in 2009, Arendash et al.>®
found that caffeine treatment at 1.5 mg/d in APPsw mice reduced
Ap deposition in the hippocampus (40%) and the entorhinal cortex
(46%). With caffeine, AB,_,, and Ap,_,, levels were reduced in the
cortex (25% and 51%, respectively) and hippocampus (37% and
59%, respectively).>® Arendash et al.” also found similar results upon
caffeine treatment at similar doses administered to APPsw mice in
young adulthood (4-9 months). Caffeine treatment at 1.5 mg/d for
5.5 months in APPsw mice ‘ignificantly reduced both soluble AB, ,,
(37%) and insoluble AB,,, (32%) in the hippocampus.” Caffeine
treatment at 40 mg/kg (~0.8 mg/mouse, 41% lower than that used
by Arendash et al.) significantly enhanced Ap clearance (20%) in the
brain endothelial cells of C57BL/6 mice.>? In fact, at plasma con-
centrations of 20+5.4 ug/mL (103+28 pmol/L), caffeine caused a
20% increase in AP clearance. However, it is important to note that
this dosage is very close to toxic dosages of caffeine in humans.®
Another study found that crude caffeine treatment at human equiv-
alence of 292 mg/d suppressed Ap,_,, levels (52%) and decreased
plaque number (67%) in APPsw mice.*’ As well, Ap-treated neu-
rons exposed to crude or pure caffeine had reductions in the num-
ber of caspase-3 positive neurons of approximately 48% and 43%,
respectively.
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2.2.3 | Effect of caffeine on signaling pathways

Treatment with caffeine at 1.5 mg/d for 5.5 months in APPsw mice
normalized PKA levels, otherwise downregulated in APPsw mice.”® As
shown in Figure 4, PKA is responsible for inactivating c-Raf-1, which is
responsible for activating NF-kB pathway, leading to the production of
B-secretase-1 (BACE-1) and other AD-related proteins. Hence, caffeine
consumption at doses equivalent to 500 mg in humans causes a reduc-
tion in c-Raf-1, NF-xB pathway activation, and BACE-1 production in
APPsw mice. Furthermore, GSK-3 is known to regulate Ap production.
It is also involved in presenilin (PS)-1 and y-secretase activity as well
as tau hyperphosphorylation; caffeine concentration at 10-20 pmol/L
decreases the GSK-3a and GSK-3f, proposing a mechanism for de-
creasing Ap levels.® Also, caffeine normalized PS-1 levels and caused
a 50% reduction in BACE levels in young mice (4-9 months).” In human
neuroblastoma cells treated with aluminum chloride (AICI3), pretreat-
ment with caffeine (10 pmol/L) reduced phosphorylated IxBa and NF-
kB levels and nuclear translocation of NF-xB down to control levels.?’”
In mice, caffeine treatment for 8 weeks (0.75 mg/d and 1.5 mg/d)
normalized the reduced levels of brain-derived neurotrophic factor
(BDNF) and its receptor (TrkB) responsible for growth, survival and
neuronal cell differentiation.>® The effects of caffeine on BDNF were
dose dependent, increasing with higher doses of caffeine, but the

same was not observed for the levels of TrkB.>%>*

cAMP response el-
ement binding protein (CREB), a transcription factor associated with
memory and neuronal survival, is downregulated in APPsw mice, but
caffeine at 1.5 mg/d significantly increased CREB levels by 126%.°
Caffeine also reduced the upregulated levels of pERK in the striatum

(70%) and the cortex (59%) of APPsw mice down to normal levels.

2.2.4 | Caffeine reduces oxidative stress and
apoptosis, through increasing antioxidant capacity

In human neuroblastoma cells, caffeine (10 umol/L) lowered ROS pro-
duction (51%) in the cells treated with Ap and AICI,, increased su-

peroxide dismutase (SOD) levels (50%), and lowered malondialdehyde

BACE-1
4 Amyloid beta production FIGURE 4 Caffeine normalizes
the otherwise reduced PKA levels in
l APPsw mice, therefore inhibiting c-Raf-1
activation, NF-kB pathway activation, and
T Plaq_ue BACE-1 production, leading to lower levels
formation of plaque formation®

(MDA) levels (50%).2” Also, pro-apoptotic Bax was upregulated and
anti-apoptotic Bcl-2 was downregulated in the cells treated with Ap
and AICl;, whereas pretreatment with caffeine normalized both pro-
tein levels. When these cells were treated with A, ,R-specific antago-
nist (10 umol/L of SCH58261), cell death was prevented only partially;
however, caffeine treatment provided full protection, recognizing the
important neuroprotective effects of AR and A,,R antagonism.27 As
well, a study showed that caffeine (0.6 mg/d) increased hippocampal
mitochondrial respiration (25%) and ATP levels (46%) in the APPsw
mice; and by a much greater degree, caffeine increased hippocampal
mitochondrial membrane potential (78%) and decreased ROS produc-
tion (100%).%® As well, caffeine increased adenosine levels; adenosine
is a vasodilator®” responsible for increased blood flow to the brain,
contributing to caffeine’s protective effects.”

2.2.5 | Caffeine may reduce the risk of Alzheimer’s
disease in individuals carrying ApoE ¢4 allele

Those who carry one or two copies of apolipoprotein E (ApoE) &4
allele have an increased risk of developing AD.%® ApoE is linked to
cholesterol transport, because it carries cholesterol from the blood
into the brain and shuttles cholesterol from astrocytes to neurons.’
Therefore, presence of ApoE is associated with increased cholesterol
levels.’® Indeed, a recent epidemiological study reported that increas-
ing levels of cholesterol were associated with an increased risk of AD,
but only for individuals with the ApoE ¢4 allele.®! Hypercholestrolemia
has been linked with oxidative stress, through the increased produc-
tion of ROS.>? Prasanthi et al. demonstrated that a 2% cholesterol-
enriched diet increased A levels, tau phosphorylation, and oxidative
stress in rabbit hippocampus. However, treatment with caffeine (0.5
and 30 mg) reduced AB production, tau phosphorylation, ROS genera-
tion, and glutathione depletion and increased the levels of A|R recep-
tor.”? Therefore, treatment with dietary antioxidants, such as caffeine,
may be effective in reducing the risk of AD in individuals carrying the
ApoE €4 allele. Further research on the effect of caffeine in these

individuals is warranted.
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3 | CAFFEINE AND PARKINSON’S DISEASE

Parkinson’s disease (PD) is characterized by bradykinesia (slowness of
movement), rigidity, and postural instability.62 The etiology of PD is not
fully understood, but it is thought to be the consequence of the loss of
dopaminergic neurons of the substantia nigra pars compacta and stria-
tum, resulting in deficit of striatal dopamine that leads to the impair-
ment of the corticostriatal-thalamo-cortical or the nigrostriatal pathway
of movement.®*%* Neuronal insult in PD is caused primarily by exces-
sive oxidative stress, leading to damaged proteins, DNA, and lipids.
The majority of ROS are initiated from the inflammatory microglial
cells, which are activated by certain inflammatory or genetic factors.®®
Convergent epidemiological and preclinical data suggest that caffeine
can confer neuroprotection against the underlying dopaminergic neu-

ron degeneration and can influence the onset and progression of PD.

3.1 | Human studies

3.1.1 | Caffeine consumption reduces the risk of
developing Parkinson’s disease in men

A randomized controlled trial in 61 patients found that treatment with
caffeine (200 mg/d for the first 3 weeks and 400 mg/d for the second
3 weeks) improved the total unified Parkinson’s disease rating scale by
4.7 points and the motor manifestation by 3.2 points.%® In a 27-year
follow-up study of 8004 American Japanese men (45-68 years), those
who drank 228 0z (794 g of coffee, equivalent to 421 mg of caffeine)
of coffee had five times less risk of developing PD vs non-drinkers and
had progressively lower risk of PD with increasing coffee consump-
tion.%” Another study examining 318 260 elderly men and women
(61 years) found that consumption of 25 cups of coffee in 1995-1996
was associated with lower risk of PD in 2004-2006 in men (OR=0.70,
Cl=0.47-1.04) and women (OR=0.74, CI=0.42-1.29), vs non-users.®® A
meta-analysis of 1 394 488 participants found that the risk of PD de-
creased by 17% for every 200 mg/d increment of caffeine consump-
tion, and coffee consumption at approximately three cups/d (volume
not identified) provided the maximum protection against the risk of
developing PD (RR=0.72, Cl=0.65-0.81).2” The association of coffee
consumption (3 cups/d) with PD risk was stronger for men (RR=0.68,
Cl=0.59-0.78), compared to women (RR=0.76, CI=0.63-0.93). In men
(71 years), consuming 120 mg/d of caffeine resulted in a significant
38% (RR=0.62, CI=0.40-0.95) lower risk of PD compared to those
that consumed very little caffeine (9.2 mg/d), whereas consuming
478 mg/d of caffeine resulted in an even lower risk of PD compared
to those who consumed very little caffeine (RR=0.43, Cl=0.26-0.71).7°
Men who reported consuming two cups/d (274 mg/d of caffeine) or
more of coffee had about 50% lower risk (RR=0.54, CI=0.37-0.80) of
PD than those who did not drink coffee. Women (69 years) who re-
ported consuming 3.2 cups/d (435 mg/d of caffeine) of coffee had
40% lower risk of PD (RR=0.61, Cl=0.34-1.09) than those who con-
sumed very little caffeine (5.6 mg/d).”® During a 12.9-year follow-up
study of 14 293 men (62.2 years), the hazard ratio of PD in people

who drank 0, 1-4 cups and =5 cups of coffee (cup=100 mL) was 1.00,
0.55 (C1=0.26-1.15) and 0.41 (C1=0.19-0.88), respectively.”*

3.1.2 | The effect of caffeine on Parkinson’s disease
is equivocal in women

In postmenopausal women who consumed caffeine, the relative risk
of PD was lower in hormone users vs non-users.®’ A relationship be-
tween hormone users and coffee consumption was observed in post-
menopausal women.®® Women (61-62 years) who used hormone
therapy had lower risk of PD development upon caffeine consumption
(129-511 mg/d, OR=0.66, CI=0.42-1.05; 511-590 mg/d, OR=0.64,
Cl=0.39-1.04; and >590 mg/d, OR=0.53, CI=0.28-0.98) compared to in-
takes <17.4 mg/d.%® A large prospective cohort study of 77 713 female
nurses (30-55 years), after an 18-year follow-up, found that the use of
postmenopausal hormones was associated with a 34% reduction in risk
of PD among women consuming ~1/2 a cup of coffee/d (68 mg/d of
caffeine), but with a 55% increase in risk among women consuming five
cups of coffee/d (688 mg/d of caffeine).”? It is important to note that
the risk of PD is lower in women versus men, and is inversely associated
with circulating levels of estrogen.73 In 15 042 women (64.0 years), after
12.9-year follow-up, the hazard ratio of PD in people who drank O, 1-4
cups and 25 cups of coffee (100 mL/cup) was 1.00, 0.50 (CI=0.22-1.12)
and 0.39 (CI=0.17-0.89), respectively.”* As a matter of fact, PD patients
are often non-caffeine users.®® However, one study showed that coffee
consumption had no association with PD risk, but drinking more than
two cups/d of cola (34 mg of caffeine/cup, OR=0.6, CI=0.3-1.4) or tea
(38 mg of caffeine/cup, OR=0.4, Cl=0.2-0.9) was associated with lower
risk of developing PD.”* The beneficial effects of these drinks may be
attributed to components other than caffeine. Although tolerance can
increase for caffeine’s stimulant effects, its neuroprotective effects are

maintained regardless of the amount of caffeine consumed.®*

3.2 | Invitro and in vivo animal studies

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin
used in mice and nonhuman primates. MPTP, converted to MPP*,
can cross the blood-brain barrier where it is taken up specifically by
dopaminergic receptors.(’5 There, it inhibits complex | of the electron
transport chain, causing a severe energy crisis, leading to cell death
and hence dopamine insufficiency in the striatum.®® Accompanying
the insult from MPTP, there is a peak in microglial proliferation, lead-
ing to severe neuroinflammation. Therefore, MPTP-induced damage

is an excellent model of neurodegeneration in PD.

3.2.1 | Caffeine reduces MPTP-induced neuron
damage in models of Parkinson’s disease

Caffeine treatment at 30 mg/kg for 8 days (0.9 mg/d) 30 minutes prior
to MPTP administration attenuated neuron damage and improved
motor function (60.6% improvement in grip strength) in male PD
mice.®® Another study found that caffeine pretreatment attenuated
MPTP-induced dopamine loss (38% of the control dopamine levels
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without caffeine) in a dose-dependent manner in young (10 weeks)
male mice, with maximal effects achieved at 10 mg/kg (78% of
the control dopamine levels with caffeine).””> In old male mice
(6-9 months), MPTP-induced dopamine loss (3% of control dopamine
levels without caffeine) was attenuated by caffeine pretreatment in a
dose-dependent manner, with 10 mg/kg of caffeine offering the most
neuroprotective effect (~30% of control dopamine levels with caf-
feine).”” In male Sprague Dawley rats, oral caffeine (1 g/L in drinking
water) from the onset of MPP* infusions prevented the loss of nigral
dopamine cell bodies.”® As well, supplying caffeine at 1 week (early
stages of loss of nigrostriatal dopamine) or 3 weeks (late stages of loss
of nigrostriatal dopamine) after initiating MPP* infusion reduced the
loss of nigral cells (1 week: 94% reduction and 3 weeks: 69% reduc-
tion). Furthermore, caffeine treatment attenuated microglia activation
in the substantia nigra. Therefore, caffeine administration blocked the

nigral neurodegenerative process in the model of PD rats.”®

3.2.2 | Caffeine’s protective effects in Parkinson’s
disease may be due to adenosine antagonism

The neuroprotective effects of caffeine in the substantia nigra could be
due to caffeine’s competitive inhibition with adenosine. Caffeine can
prevent the adenosine-mediated neuroinflammatory actions via com-

petitively inhibiting adenosine binding to A,,R on microglia, as shown

A 5

Neuroinflammation

increase extracellular calcium inside the
cell, resulting in an increase in glutamate
release from the cell, which leads to
neuroinflammation. However, by inhibiting
the binding of adenosine to its receptor,
caffeine downregulates the activation

of PKA, causing a lesser increase in
extracellular calcium inside the cell,
decreasing the glutamate release from the
cell, hence reducing neuroinflammation”®

in Figure 5.7 As an adenosine receptor antagonist, caffeine reduces glu-
tamate release and attenuates excitotoxicity.**¢® Upon MPTP neuroin-
toxication, excessive glutamate is released into the extracellular space,
leading to the activation of microglia and neuroinflammation. Midbrain
glial cells express A,,R, which are activated by their agonists as well as
neuroinflammation caused by MPTP. Caffeine reduces microglial activa-
tion and the release of cytokines and free radicals by blocking the activa-
tion of A,,R and reducing glutamate release, thereby preventing further
damage in the substantia nigra pars compacta and striatal neurons.®3%¢
When exposed to caffeine (10 mg/kg) 10 minutes before MPTP
administration, the residual dopamine level in mice was 40% of the con-
trol, whereas without caffeine it was 15% of the control.”” At 20 mg/
kg, caffeine nearly reversed the dopamine depletion caused by MPTP
in mice, but at higher levels caffeine caused excessive systemic toxicity.
The effects of A,,R antagonists were also investigated and compared to
those of caffeine. A,,R antagonism significantly reduced striatal dopa-
mine depletion. As well, when treated with MPTP, A,,R knockout mice
experienced attenuated dopamine depletion compared to mice that
had A,,R. Therefore, A,,R antagonists mimicked the neuroprotection
offered by caffeine. However, it is important to note that A;R antago-
nism did not mimic the neuroprotection offered by caffeine.”” In human
dopaminergic neuroblastoma cell lines, caffeine (100 pmol/L) signifi-
cantly prevented cell death and decreased the number of apoptotic nu-

clei from 13.1% to 9.7% under MPP*-exposed conditions.”® However,
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FIGURE 6 Caffeine is metabolized by CYP1A2, which also
metabolizes estrogen. Therefore, metabolism of estrogen has an
inhibitory effect on metabolism of caffeine’?%2

this dosage of caffeine exposure is very close to toxic doses of caffeine
consumption.*® Caffeine (10 and 100 pmol/L) also decreased the levels
of caspase 3 (21% and 23%, respectively).”® Akt phosphorylation signifi-
cantly increased with caffeine treatment (10 and 100 pmol/L) dose de-
pendently (1.96-fold and 2.96-fold, respectively), whereas the inhibition
of the PI3K/Akt pathway abolished the effects of caffeine. Therefore, it
can be concluded that the neuroprotective effects of caffeine involve
the PI3K/AKT pathway.”®

3.2.3 | Caffeine may not be as effective in female
Parkinson’s disease models due to estrogen

In female mice, MPTP depleted striatal dopamine levels to 62% of the
control, which is a much smaller reduction compared to their male coun-

1.5 However,

terparts, whose striatal dopamine levels were 38% of contro
in contrast to their male counterparts, female mice showed no attenua-
tion of MPTP toxicity following caffeine consumption at lower doses (5,
10, 20 mg/kg). Caffeine attenuated MPTP-induced dopamine loss (~22%
of dopamine levels in control without caffeine) in female mice only at
the higher dose of 40 mg/kg (~85% of dopamine levels in control with
caffeine). In ovariectomized mice treated with placebo, striatal dopamine
content was 27% of the control, but lower doses (5, 10, 20 mg/kg) of
caffeine offered neuroprotection. However, in ovariectomized mice
treated with estrogen, striatal dopamine content was 39% of the control,
and only higher doses (40 mg/kg) of caffeine offered neuroprotection.

Male mice treated with estrogen also experienced the neuroprotective
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effects of estrogen; however, no dose of caffeine attenuated their stri-
atal dopamine loss.”® Caffeine is largely metabolized by CYP1A2, which
also metabolizes estrogen; by competing for the same enzyme, estrogen
inhibits the metabolism of caffeine in premenopausal women or post-
menopausal women on hormone therapy.”>”°®! Therapeutic estrogen
administration has an inhibitory effect on the metabolism of caffeine by
CYP1A2, as shown in Figure 6.82 Thus, it can be concluded that caffeine
offers protection against PD in male mice, through antagonism of A R,
among other pathways. The interaction between caffeine and estrogen
needs further investigation; however, human studies have shown that
caffeine provides protection against PD in both men and women. Indeed,
factors such as genetics and smoking habits affect CYP1A2 enzyme ac-
tivity,238¢ potentially explaining the interindividual variability observed
in different studies. Furthermore, studies have shown the protective
effects of paraxanthine and theophylline, two metabolites of caffeine,
against MPTP-induced striatal dopamine depletion, warranting further
research investigating the potential neuroprotective effects of caffeine
metabolites, in male and female animal models and humans.®”

4 | CAFFEINE AND AMYOTROPHIC
LATERAL SCLEROSIS

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurode-
generative disease, characterized by degeneration of the upper and
lower motor neurons, resulting in skeletal muscle atrophy and death
by respiratory failure within 3-5 years of initial symptoms.gg'90
Pathological hallmarks of this disease include the following: pro-
gressive muscle weakness, atrophy, and spasticity.”* On a cellular
level, excessive stimulation of glutamate receptors leads to a large
influx of calcium ions into the postsynaptic neuron, resulting in oxi-

dative stress, oxidative damage, inflammation, and apoptosis.g’0

4.1 | Human studies

In a meta-analysis incorporating five large cohort studies that exam-
ined 1 010 000 men and women (60 years) after an 18-year follow-up,
caffeine was found not to be associated with the risk of ALS; the results
were similar among men and women.”? None of the participants were
diagnosed with ALS at the beginning of this study; some developed
ALS during the study period. Men consumed 347 mg/d of caffeine and
women consumed 250 mg/d of caffeine. As well, consumption of two
cups of coffee (274 mg of caffeine) was associated with the same risk
of developing ALS as nondrinkers (RR=1.01, CI=0.85-1.19).

4.2 | Invitro and in vivo animal studies

4.2.1 | Adenosine A,, receptor ablation and
inhibition are beneficial in amyotrophic lateral sclerosis
mouse models

A study found that inhibiting A,,R is beneficial in the SOD1G93A
mouse model of ALS.2 Adenosine levels are upregulated in the
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cerebrospinal fluid of progressing human ALS patients, perhaps
partially due to upregulated AMPK levels in ALS.88%3 A, xR is highly
expressed in the spinal cord, specifically the nonglial cells, including
motor neurons.®® A, AR in the spinal cord of G93A mice is increased
threefold compared to wild type. Daily treatment with A,,R antago-
nist significantly and consistently increased motor neuron survival
(71%), slowed down the progressive loss of forelimb grip strength,
delayed disease onset (6%), and extended the overall survival (5%).
As well, 50% A,,R ablation delayed disease progression and attenu-
ated the progressive loss of forelimb grip strength.88 In addition, co-
activation of A,,R and A,R attenuates the inhibitory effects of A,R.”?
In presymptomatic ALS mice, the cross talk between the two recep-
tors is impaired. Thus, in presymptomatic mice, A,,R can be activated
by a lower dose of its agonist. A,,R activation results in an increase
in intracellular Ca%* levels, whereas AR decreases it. An exacerbated
A, R-mediated action, along with the reported loss of A,,R/A/R
interaction, could induce the neuromuscular transmission toward a
hyperexcitable adenosinergic tonus that could contribute to the Ca?*-
mediated excitotoxicity in presymptomatic ALS.”® In the presympto-
matic mouse model of ALS, the A,,R-mediated excitatory effects are
exacerbated, but this effect disappears in postsymptomatic mice.%’
A, AR signaling is also terminated in aged, wild-type mice, suggesting
that disease-induced early aging of the A,,R influences neuromuscu-
lar transmission. Therefore, A,,R inhibition and ablation are in fact
beneficial in ALS mouse models.

4.2.2 | Caffeine may inhibit Riluzole clearance

Riluzole is the only licensed drug for ALS, and its mechanism of ac-
tion is through the inhibition of the deleterious effects of an over-
load of glutamate and other neurotransmitters in the CNS.”* Riluzole
is rapidly absorbed, with maximum concentration 1-2 hours after
administration. Its elimination is assumed to be mainly through oxi-
dative metabolism by the CYP1A2 enzyme. There is a significant posi-
tive ratio between the expression of CYP1A2 and the clearance of
Riluzole.”* Caffeine, another substrate of the CYP1A2 enzyme, pre-
vents N-hydroxylation of Riluzole via CYP1A2.7> Therefore, although
some studies suggest a lack of correlation between ALS risk and caf-
feine consumption, the effect of caffeine in ALS should be further in-

vestigated, especially with the concomitant intake of Riluzole.

5 | CAFFEINE AND HUNTINGTON'S DISEASE

Huntington’s disease (HD), an inherited neurodegenerative disorder
caused by expanded CAG repeats, is characterized by motor, cogni-
tive, and psychiatric disturbances.** HD is a hyperkinetic disorder char-
acterized by chorea (jerky, involuntary movements), tremor, dystonia
(abnormal muscle tone, resulting in muscle spasm, and abnormal pos-
ture), and prominent neuropsychiatric and cognitive changes. Although
several cerebral regions of the brain show signs of neurodegeneration,
the primary neuropathological hallmark is atrophy of the striatum, spe-
cifically the striato-pallidal neurons that express dopamine receptors.’®

5.1 | Human studies

One study showed that in 80 HD male and female patients (50 years),
caffeine consumption at >190 mg/d in the last 10 years was associ-

ated with a 1.6 years earlier age of onset of HD.*!

5.2 | Invitro and in vivo animal studies

5.2.1 | Caffeine treatment improves functional
outcome in rat models of Huntington'’s disease

Chronic quinolinic acid (QA) lesions in rats closely resemble the neu-
rodegeneration in HD.2** Intrastriatal QA administration causes
NMDA receptor overstimulation, causing an influx of Ca?*, eventually
leading to oxidative stress.'® The mitochondria of the cell take up the
excess CaZ+, and excessive Ca" can lead to mitochondrial release of
pro-apoptotic factors that cause neuron death. At 40 mg/kg treat-
ment for 7, 14, and 21 days, caffeine completely restored motor func-
tion, and when measured at 21 days completely restored body weight
in male Sprague Dawley rats administered with QA.*® Furthermore,
striato-pallidal neurons are a population of medium-sized neurons
that degenerate early in HD.¥ A, AR is specifically expressed in this
region. A,,R antagonist (0.01 mg/kg, but not 1 mg/kg) reduced the
loss of motor function in QA-treated mice, provided neuroprotective
effects, and inhibited the QA-induced increase in glutamate levels.*’

5.2.2 | Caffeine treatment reduces oxidative stress
through increasing antioxidant capacity

In QA administered rats, treatment with caffeine 40 mg/kg for 21 days
restored MDA, nitrite, and SOD levels back to levels of the healthy
control rats.?® At 10 mg/kg and 20 mg/kg, caffeine reduced the levels
of MDA (15% and 42%, respectively) and nitrite (5% and 11%, respec-
tively) and increased the levels of SOD (19% and 62%, respectively)
and catalase (19% and 65%, respectively). Therefore, caffeine admin-
istration significantly reduced oxidative stress in QA-treated rats by
increasing endogenous antioxidant capacity and decreasing oxidative
damage in a dose-dependent manner. Administration with QA re-
duced the levels of complex |, Il, and Il in the mitochondria, but treat-

ment with caffeine (40 mg/kg) restored these levels.!®

5.2.3 | High dosages of caffeine, as well as adenosine
A, , receptor ablation, are detrimental in Huntington’s
disease animal models

A study that investigated the effects of A,,R gene deletion in a trans-
genic mouse model of HD found that A,,R knockout moderately, but
significantly, worsens motor performance (36%) and reduces survival
(15.6%) of these mice.”® As a matter of fact, high dosages of A,,R
antagonists or A,,R gene deletion will wipe out the positive effects
of A,,R on blood pressure and platelet aggregation, among other ef-
fects.*” Presynaptic A,,R controls glutamate release, and blocking

these receptors decreases glutamate release.”” However, blocking
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postsynaptic A,,R is deleterious.”® Interestingly, another study found
that blocking AR exacerbated, whereas blocking A,,R attenuated,
the damage to nigrostriatal dopaminergic and GABAergic neurons in
mice and rats exposed to mitochondrial inhibition.”® When caffeine
(2.5 mmol/L) and glutamate (2.5 mmol/L) were administered together
in a model of HD mice, Ca®* sensitivity to glutamate increased, al-
lowing for glutamate excitotoxicity. However, the blockade of ryano-
dine receptors attenuated the glutamate-induced toxicity.”® Since
caffeine can act as a ryanodine receptor agonist at high dosages of
consumption, this could partially explain the adverse effects of caf-
feine associated with HD.*®? However, these dosages are considered
toxic.>® Therefore, the effect of caffeine at dosages close to average
intake needs to be further investigated, as caffeine’s effect on ryano-
dine receptors begins to occur at much higher dosages (1520 mg/d)
than average consumption (210-238 mg of caffeine).% The effect of
caffeine and adenosine receptor antagonism in HD is highly dose de-
pendent and needs further investigation.

6 | CAFFEINE AND MACHADO-JOSEPH
DISEASE

Machado-Joseph disease (MJD) results from an increase in the num-
ber of CAG codon repeats. It is characterized by an adult age of onset
and causes premature death associated with unstable expansion of
CAG stretch in the MJD1 gene that encodes polyQ repeat in the cor-
responding ataxin-3 protein.100 The clinical hallmarks of the disease
are progressive ataxia (loss of control of bodily movements), dysfunc-
tion of motor coordination, postural instability, and parkinsonism.
Glutamate overstimulation promotes the proteolysis and aggregation
of ataxin-3.1°! One study showed that chronic caffeine consumption
and genetic A,,R deletion reduced progressive degeneration, neu-
ronal death, neuronal dysfunction, and reactive gliosis, sequestered
noxious ataxin-3, and prevented ataxin-3-induced synaptotoxicity.102
Further studies need to explore the effects of caffeine in MJD, at dif-
ferent doses and in men and women.

7 | CAFFEINATED AND DECAFFEINATED
COFFEE

Several studies have shown that decaffeinated coffee is not associ-
ated with the risk of developing neurodegenerative diseases.”®?%103
For example, Arendash et al. found that plasma Ap levels did not de-
crease with administration of decaffeinated coffee to AD mice, sug-
gesting that caffeine is critical to decreasing plasma Ap levels in AD.1%3
As well, several studies have shown that consumption of decaffein-
ated coffee is not associated with the risk of PD.5%*7974 One study
investigating the effects of caffeine and ALS also found no effect of
decaffeinated coffee on the risk of developing ALS.”? However, other
studies show that the protective effects of caffeinated coffee are also
present in decaffeinated coffee in non-neurodegenerative diseases,

suggesting a major role of other compounds (polyphenols) in coffee.
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For example, decaffeinated coffee consumption, as well as caffein-
ated coffee, had protective effects against heart disease, respiratory
disease, stroke, injuries and accidents, diabetes, and infections in
229 119 men and 173 141 women.'**

8 | LIMITATIONS

The dosage of caffeine expressed as cups of coffee in epidemiological
studies present challenges in interpretation. In their questionnaires,
some epidemiological studies did not specify the actual volume that
constitutes a cup, and therefore there is inconsistency in this field
when calculating caffeine intake based on an ill-defined measure of a
‘cup’. Furthermore, meta-analysis studies also equate a cup of coffee
between all studies, even though different studies may have differing
volumes for a cup. Therefore, the results drawn from these studies
should question the exact daily dosage of caffeine when it is not speci-
fied by the investigators. As well, the caffeine content of coffee may
vary based on origin, processing methodologies, and brewing tech-
niques, which adds variability to the daily dosage of caffeine.

Epidemiological studies cannot control for some factors, such as
emotional, regional, and dietary factors, that may influence the devel-
opment of neurodegenerative diseases. In addition, in diseases such as
ALS and HD, the findings from animal studies do not echo the findings
from epidemiological studies. Animal models, such as rats and mice,
may be pathophysiologically different compared to humans. Therefore,
the effects of caffeine observed at the dosages administered in mice
may not accurately depict the effects expected in humans.

Caffeine has differing effects in women vs men, because of the
presence of estrogen. There are not enough studies investigating the
effect of caffeine at different dosages in women. Due to the interaction
of caffeine, estrogen, and CYP1A2, the effects of caffeine observed in

men may not accurately reflect the effects of caffeine in women.

9 | FUTURE DIRECTIONS

Epidemiological studies have shown that caffeine consumption is as-
sociated with lower risk of developing AD in both men and women. As
well, studies in animal models have shown that caffeine has protective
effects against oxidative stress, inflammation, and apoptosis. Clinical
studies need to investigate the effective, nontoxic, therapeutic dosage
of caffeine for patients with AD. Furthermore, studies in humans and
mice showed that caffeine administration prior to the onset of AD is
beneficial. Hence, clinical studies should aim to investigate caffeine’s ef-
ficaciousness in those at higher risk of developing AD, prior to diagnosis.
It is important to note that the dosages administered in mice resulted
in plasma concentrations near toxic levels. Attention should be given
to studying caffeine’s influence on AD at average consumption levels.
Epidemiological and animal studies have ascertained the beneficial
effects of caffeine on the development and progression of PD. Clinical
studies need to confirm these findings. Some epidemiological stud-
ies showed that PD is inversely associated with caffeine consumption
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(Continued)

TABLE 2

Alzheimer’s disease—in vitro and in vivo animal studies

KOLAHDOUZAN ano HAMADEH

Conclusion

Main results

Treatment

Subjects

Reference

Caffeine stimulates pro-survival

Caffeine: T PKA activity in the striatum and 1 CREB levels by 126%

1.5 mg/d of caffeine
2 wk of treatment

APPsw mice

Zeitlin et al.,

pathways and inhibits pro-apoptotic
pathways in the striatum and the

cortex.

Caffeine: | pERK (striatum: 70%, cortex: 59%) and PJNK (striatum:60%, cortex: 54%)

5-8 per experi-

mental group

n=

2011

Sex not identified

9.5 mo

Caffeine has a potential beneficial role

Caffeine: | phosphorylated IxBa and NF-kB levels and nuclear translocation of NF-kB back
Caffeine: | ROS production (51%), T SOD (50%) and | MDA (50%)

Caffeine: |, pro-apoptotic Bax and 1 anti-apoptotic Bcl-2 levels

Pretreatment with

Human neuroblas-

Giunta et al.,

in preventing AD in those exposed to

aluminum.

10 pmol/L of caffeine

toma cells

2014

Treatment with AICI,

in women, whereas other studies showed no association. It is possi-
ble that in PD, caffeine may either be ineffectual in women or that
there is a sex-based differential therapeutic dose given the interac-
tion between estrogen, caffeine, and CYP1A2. Particularly, studies in
postmenopausal women who undergo hormone replacement therapy
and in premenopausal women with high estrogen levels may inform
us about the dynamics of caffeine within an altered hormonal milieu.
Furthermore, CYP1A2 enzyme activity varies with factors such as ge-
netics and smoking habits, warranting further research regarding in-
terindividual variability observed upon caffeine consumption. As well,
caffeine metabolites are protective in animal models of PD. Therefore,
further research on caffeine metabolites can give us a more in-depth
insight into caffeine’s protective mechanisms in PD.

Research investigating caffeine intake in patients diagnosed with
ALS is needed to ascertain the results of the meta-analysis of the asso-
ciation of ALS incidence with caffeine intake prediagnosis. Long-term
epidemiological and clinical studies will inform us about caffeine’s role
on disease onset and progression, survival, and quality of life in ALS
patients. A,,R antagonism and partial ablation have been shown to be
protective in ALS, suggesting that caffeine may mitigate the progres-
sive decline in functional outcomes and quality of life. Hence, further
research is needed to explore the effects of caffeine on the brain and
spinal cord of animal models of ALS. These studies can inform us of
the effects of caffeine on oxidative stress, antioxidant capacity, inflam-
mation, neurotransmitters, blood-brain and spinal cord-brain barrier
integrity, calcium homeostasis, and apoptosis, as well as functional
outcomes in this disease model.

One epidemiological study showed that caffeine consumption at
levels >190 mg/d is associated with a higher risk of developing HD.*!
However, studies in animal models show caffeine can restore motor
function.'® The discrepancy between the epidemiological and animal
studies needs to be further investigated. Perhaps, caffeine has neu-
roprotective effects at different dosages. Further research needs to
educate us about the exact therapeutic dosage of caffeine in the CNS.
Additional animal studies examining the effect of caffeine on HD may
delineate caffeine’s exact mechanism of action in this disease model.
This may then inform us further about caffeine’s effect on the brain
and motor performance in HD.

In terms of MJD, epidemiological studies are needed to advise
us on the chronic effects of caffeine consumption on disease devel-
opment and/or progression. Also, more studies are needed in animal
models to understand caffeine’s underlying mechanisms associated
with MJD. Currently, no conclusion can be drawn about caffeine’s ef-
fect on MJD, but the results are encouraging.

Caffeine is associated with reduced pain through its inhibition of
the adenosine receptors, namely A2AR.29 Chronic caffeine treatment
is associated with the upregulation of AR, which is associated with
reducing pain.?>?? PD and ALS are both associated with higher lev-
els of pain, and hence caffeine’s pain-reducing effects may contrib-
ute to improving these patients’ quality of life and warrant further
investigation.105'1°6

Caffeine can also enhance exercise performance in healthy in-
dividuals,'®” due to its stimulatory effects and its pain-reducing
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mechanisms. Caffeine may also enhance the ability to partake in daily
activities and improve quality of life for PD, ALS, HD, and MJD pa-
tients. Focus needs to be directed toward examining caffeine’s poten-
tial to improve the quality of life in patients with neurodegenerative
diseases with respect to mobility and functional outcomes.

10 | CONCLUSION

Caffeine exerts its effects through different pathways, including the an-
tagonism of adenosine receptors (AR, A,,R, AR, and A;R), inhibition of
phosphodiesterase, and activation of ryanodine receptors. However, at
average levels of caffeine consumption (~210-238 mg/d), caffeine’s main
mechanism of action is antagonism of adenosine receptors. Caffeine con-
sumption, at dosages 3-5 mg/kg, is associated with a lower risk of AD and
PD in both epidemiological and preclinical studies. No such conclusion
can be drawn about the effects of caffeine in ALS, HD, and MJD, since
there are studies that show beneficial, neutral, or harmful effects of caf-
feine in all three diseases. Tables 2-4 summarize the effect of caffeine for
each neurodegenerative disease. The epidemiological studies in humans
suggest caffeine’s preventative role in developing neurodegenerative dis-
eases, namely PD and AD. However, the in vitro and in vivo animal studies
suggest that caffeine may also have therapeutic role for patients already
diagnosed with the neurodegenerative disease. Further clinical studies are
needed to investigate the therapeutic dosage of caffeine in AD and PD
patients, as well as those at risk of developing these diseases. Also, further
animal studies are needed to understand the underlying mechanisms of

caffeine in the CNS of all models of neurodegenerative diseases.
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