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Summary
Recent studies have shown that a widely distributed class of glial cells, termed NG2-
glia, engages in rapid signaling with surrounding neurons through direct synaptic con-
tacts in the developing and mature central nervous system (CNS). This unique glial cell 
group has a typical function of proliferating and differentiating into oligodendrocytes 
during early development of the brain, which is crucial to axon myelin formation. 
Therefore, NG2-glia are also called oligodendrocyte precursor cells (OPCs). In vitro 
and in vivo studies reveal that NG2-glia expressing receptors and ion channels demon-
strate functional significance for rapid signaling with neuronal synapses and modula-
tion of neuronal activities in both physiological and pathological conditions. Although 
it is well known that NG2-glia play an important role in demyelinating diseases such as 
multiple sclerosis, little is known about how NG2-glia or OPCs impact neurons and 
brain function following ischemic injury. This review summarizes recent progress on 
the roles of NG2-glia in ischemic stroke and illustrates new approaches for targeting 
NG2-glia in the brain to treat this disease.
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1  | INTRODUCTION

NG2-glia, also called oligodendrocyte precursor cells (OPCs), con-
stitute the fifth major cell population in the central nervous system 
(CNS).1-3 These cells were first characterized through expression of 
the chondroitin sulfate proteoglycan (NG2 antigen) in cerebellum since 
the 1980s.4-6 To distinguish these cells from the pericytes, which also 
express NG2 in the CNS,7 they are now broadly named NG2-glia in-
stead of simply NG2-positive cells.8,9 NG2-glia can also be found in the 
literature as polydendrocytes,1 because of their branched morphol-
ogy revealed by immunolabeling for NG2 (Figure 1) and the platelet-
derived growth factor receptor α (PDGFRα). During early mammalian 
brain development, NG2-glia play a fundamental role as cell reservoirs 
for oligodendrocytes, which are crucial for the myelination of axons. 
Hence, NG2-glia are often equated with oligodendrocyte precursor 
cells (OPCs). Although NG2-glia are associated with the generation 
and maintenance of the oligodendrocyte population, De Biase et al. 

described that both mRNA transcript and glutamate receptors and 
Nav channel expression in NG2-glia are significantly altered compared 
with preoligodendrocytes (Pre-OLs) and mature oligodendrocytes (OLs) 
(Figure 2),10 further illustrating that NG2-glia are a constitutive distinct 
cell population in the brain. After recognition that NG2 glial cells are 
widely distributed in the brain, their functional roles started to draw 
attention in the brain research field.11,12 Interestingly, NG2-glia also 
have direct synaptic contacts with both glutamatergic and GABAergic 
neurons in adult mammals, suggesting they have as yet to be defined 
physiological functions by their membrane-expressing ion channels and 
receptors.13-15 Furthermore, the morphological, physiological, and bio-
molecular studies of NG2-glia have shown this cell group is involved 
in a variety of human CNS pathologies, such as demyelinating multiple 
sclerosis and ischemia. As NG2-glia demonstrate self-renewal func-
tions as multipotent stem cells and have direct contact with neuronal 
synapses,1-3,6,8,10,11,13,15 it raises the possibility that this unique cell 
group could be a valid therapeutic target for neural disorders.

Stroke is a neural disease clinically manifested by transient or per-
manent brain dysfunction symptoms. It is caused by various factors The first two authors contributed equally to this work.
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such as cerebral artery stenosis, occlusion or rupture, and eventu-
ally induced acute cerebral blood circulation disorders. As one of the 
three most common diseases in the world, stroke has a high mortality 
and disability rates, which severely threaten people’s life and health. 
Ischemic stroke is the most common form, accounting for 87% of 
strokes. This type of stroke mainly causes impairment of neural cells 
and ultimately the loss of brain function due to ischemia and hypoxia. 
However, treatment options to date are very limited. To meet the need 
for clinical therapeutic approaches, experimental stroke models have 
been generated. Most researchers use permanent or transient occlu-
sion of the middle cerebral artery (MCAO) in mice or rats to mimic the 
most common causes of ischemic stroke as seen in patients. Through 
interruption of blood flow in the entire territory of the artery, the intra-
luminal MCAO model offers the advantage of inducing reproducible 
transient or permanent ischemia of the MCAO territory in a relatively 
noninvasive manner,16,17 thus giving a convenient experimental isch-
emia model to study the mechanisms of stroke. This review illustrates 
the developmental origin of NG2-glia, how NG2-glia change their 
properties in the pathology of ischemic stroke experimental model, 
and provides a new insight into the mechanisms of ischemia for clin-
ical therapy.

2  | DEVELOPMENTAL ORIGINS AND 
HETEROGENEITY OF NG2-GLIA 
IN THE BRAIN

In the developing brain, NG2-glia emerge in different temporal and 
regional waves. In vivo fate-mapping analysis demonstrated that 
the first oligodendrocyte progenitors (OPCs) appear in the cerebral 
cortex at approximately E16 (embryonic day 16) and migrate from 
ventral areas of the medial ganglionic eminence. A second wave of 
NG2-glia arises in the lateral and/or caudal ganglionic eminence to 
populate the entire cortex by E18 evidenced in a Gsh2-Cre mouse 
line. Finally, a third wave arises from Emx1-positive cells within 
the postnatal cortex.18 Separate studies also showed that the sub-
venticular zone (SVZ), a region derived from the embryonic lateral 

eminence and lateral cortex, is the major source of NG2-glia and 
oligodendrocytes in the postnatal brain.19,20 However, this hypoth-
esis has been challenged recently by Ortega et al., who demon-
strated that NG2-glia are generated by distinct stem cells from the 
dorsal wall of the ventricle by using live imaging and single-cell 
tracking.21

NG2-glia are prone to be intrinsically heterogeneous cell popu-
lations, with different developmental and physiological properties, 
environmental influences and multiple generating regions. Although 
NG2-glia can divide, gray matter (GM) cells have a longer cell cycle 
than their white matter (WM) counterparts.22 For instance, the ma-
jority of adult NG2-glia located in the white matter (WM) of the 
cerebral cortex differentiate into mature, myelinating oligodendro-
cytes. However, NG2-glia in gray matter (GM) generate fewer ma-
ture oligodendrocytes, where the two NG2-glia cell populations 
have distinct intrinsic properties.23-26 Moreover, the transcription 
factor Ascl1 and G-protein-coupled receptor GPR17 are also found 
expressed by a subset of NG2-glia.27-30 For example, in the cortical 
gray matter, only 50% of NG2-glia express the transcription factor 
achaete-scute homolog 1 or mammalian achaete-scute homolog 1 
(Ascl1 or Mash1), an important factor for neuronal fate determina-
tion,28 further supporting the idea of the heterogeneity of NG2-glia 
in the brain.27-30

3  | REACTIVE NG2-GLIA 
DURING ISCHEMIA

NG2-glia respond to traumatic injuries, including stab wound le-
sions,23,31,32 spinal cord injury,33 and ischemia.34 It was found that the 
number of NG2-glia was significantly decreased in infarct core area, 
whereas they were greatly increased in peri-infarct area, termed pe-
numbra after focal ischemia in rat brain.35 However, the features and 
the time course of their responses are strongly dependent upon the 
nature of the insult and the developmental stage at which this occurs. 
Ahrendsen et al. have reported age-related changes of NG2-glia in 
white matter vulnerability to ischemia. They found OPCs (NG2-glia) 

F IGURE  1 Ai9 (RCL-tdT) transgenic mouse strain harbors a targeted mutation of the Gt(ROSA)26Sor locus with a loxP-flanked STOP cassette 
preventing transcription of red fluorescent protein variant (tdTomato). NG2-CreBAC transgenic mouse strain expresses Cre recombinase under 
the control of the mouse chondroitin sulfate proteoglycan 4 (Cspg4) promoter/enhancer. When NG2-CreBAC transgenic mice are bred with Ai9 
mouse strain, resulting offspring express tdTomato in a pattern dictated by the Cspg4-Cre promoter. As shown in the immunohistochemistry 
images, NG2-glia with branchy morphology are widely distributed in the mouse brain characterized by NG2 antibody staining (in green) 
colocalized with tdTomato reporter gene (in red). Scale bar: 20 μm
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appeared highly resistant to ischemic damage in the juvenile striatum, 
while the number of PLP-EGFP-positive OPCs was significantly re-
duced in adult mice as early as 24 hours posttransient middle cerebral 

artery occlusion (tMCAO) model.36 Moreover, the OPC numbers were 
significantly elevated and remained increased in the injured juvenile 
striatum at 7 days post-tMCAO, which indicates OPCs may respond 

F IGURE  2 Gene expression profiling shows that mRNAs encoding glutamate receptor and NaV channel subunits decrease as NG2-glia 
differentiate. (A) Table showing mRNA transcripts that are significantly altered in NG2-glia (OPCs) compared with pre-OLs and OLs. Transcripts 
that should be highly enriched in NG2-glia (eg, PDGFαR and CSPG4/NG2) and mature oligodendrocytes (CNP, MBP, MOG, MAG, MOBP) 
are shown at the top. For each transcript, the Affymetrix probe set showing the most significant alteration across differentiation is shown. 
Transcripts significantly enriched in OPCs are highlighted in red. Transcripts significantly downregulated in OPCs are highlighted in blue. Some 
gene names have been shortened to optimize space, fold changes have been rounded to the nearest decimal, and P values have been rounded 
up.(B) Diagram illustrating the morphological changes (top) that NG2 cells undergo as they differentiate into oligodendrocytes. Bottom, Extent 
of synaptic signaling and relative abundance of surface glutamate receptors and NaV channels during these distinct stages of oligodendrocyte 
development
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to injury and increase their proliferation rate.9,36 In adults, NG2-glia 
undergo morphological changes around ischemic lesions. For exam-
ple, NG2-glia showed enlarged cell bodies with hypertrophied pro-
cesses after 90 minutes MCAO followed by 2 weeks reperfusion in 
rat brain.32,35,37

In addition to the cell numbers and morphological changes of 
NG2-glia in ischemic infarction, Boda et al. reported that one type 
of NG2-glia become reactive and can “sense” brain damage by ex-
pressing GPR17 in adult brain.29 GPR17 is a deorphanized recep-
tor for both uracil nucleotides and cystein leukotrienes, cysLTs (eg, 
UDP-glucose and LTD4).38 Both ligands for GPR17 are secreted after 
brain injury. GPR17-positive NG2-glia in the adult brain increase in 
density after acute cortical stab wound injury in the gray matter sur-
rounding the lesion and in the white matter underneath the lesion. 
BrdU-based fate-mapping of GPR17-positive NG2-glia has shown 
that these cells robustly differentiate into oligodendrocytes to 
repair the injured tissues after stab wound injury and in the MCAO 
ischemia model.29,39

4  | ALTERATION OF POTASSIUM 
CHANNELS IN ISCHEMIA

NG2-glia in both gray and white matter exhibit voltage-dependent 
K+ currents, which consist of initial rectifying potassium currents 
(IA) and sustained rectifying currents (IK).40,41 Pathological evidence 
indicates that NG2 cells are particularly susceptible to perinatal 
hypoxic-ischemia brain damage (HIBD), which results in decreased 
myelination and infant cerebral palsy. Chen et al. reported that the 
failed rectification of K+ channels leads to depolarized membrane 
potentials of NG2-glia due to changes in K+ channel permeability, 
which results in transmembrane cation flow activation and edema. 
The instability of the NG2-glia perturbs the K+ concentration gra-
dient in the extracellular space and may be the primary cause of 
irreversible metabolic disorders in HIBD.42 Inwardly rectifying K+ 
channel, namely the Kir4.1 channel, is well known to be expressed 
in astrocytes and maintains the resting membrane potentials and 
plays a fundamental role in the pathology of Huntington dis-
ease.43,44 However, there is a study which found that after 3 days 
of ischemia in adult rat hippocampus, NG2-glia showed weakly 
inwardly rectifying K+ channel current impaired, whereas the cell 
proliferative activity was largely increased.45 This sequential corre-
lation indicates that the altered homeostasis of K+ channel triggered 
by ischemic injury may induce NG2-glia proliferation. However, 
it also could be caused by NG2-glia migrating toward the injured 
core, as previously reported by Tong et al.12 The Tong group in a 
recent study found a similar phenomenon in adult mouse brain, that 
is, the inwardly rectifying potassium channel Kir4.1 in NG2-glia was 
significantly impaired in tMCAO as evidenced by electrophysiologi-
cal recordings from acute hippocampal tissue slices (unpublished). 
Taken together, the altered Kir4.1 channel function in NG2-glia at 
the early stage of ischemia could be the causative factor of glial and 
neuronal cell loss.

5  | EXCITOTOXICITY INDUCED NG2-GLIA 
CELL DEATH IN ISCHEMIA

In both white and gray matter of the brain, neuronal cell death is often 
caused by a rise of extracellular glutamate concentration under is-
chemic conditions, which activates N-methyl-D-aspartate receptors 
and leads to an excessive rise of intracellular Ca2+ concentrations. 
Oka et al. showed that excessive glutamate release can induce NG2-
glia death in an in vitro system and found that 24 hours exposure 
to glutamate caused NG2-glia death by reversing cystine-glutamate 
exchange and glutathione depletion.46 However, in the developing 
cerebral white matter, Deng et al. found that prior exposure of OPCs 
to sublethal oxygen-glucose deprivation (OGD) resulted in enhanced 
vulnerability associated with an increased Ca2+ influx, which is directly 
due to aberrantly enhanced activation of Ca2+-permeable AMPA/
kainate receptors.47 In addition to Ca2+ overload-induced NG2-glia 
cell death in stroke, Bcl-2/E1B-19K-interacting protein 3 (BNIP3), a 
proapoptotic member of the Bcl-2 family proteins, has been known as 
inducing neuronal death in a caspase-independent manner in stroke.48 
In primary OPC cultures exposed to oxygen-glucose deprivation, 
BNIP3 was also found upregulated, and the high expression level of 
BNIP3 was correlated with the death of OPCs. Knockout of BNIP3 
significantly reduced death of OPCs in the MCAO mouse model. This 
study provided further evidence of the molecular pathway underly-
ing NG2-glia cell death in ischemia.49 Furthermore, when Lee et al. 
compared the response of glial cell populations to focal ischemia and 
reperfusion-induced tissue damage, the immunoreactivity to the NG2 
protein, but not astrocyte or microglia nor myelinating oligodendro-
cytes showed degradation during the early postischemic reperfusion 
following 3 hours MCAO in adult rat brain.50 Taken together, these 
findings suggest that NG2-glia are possibly more vulnerable to severe 
ischemia and might be a crucial factor for axon’s demyelination and 
consequent neuronal loss.

6  | NG2-GLIA FATE CONVERSION IN 
ISCHEMIC DEMARCATION ZONE

NG2-glia are widely accepted as a distinct glial cell population giving 
rise to oligodendrocytes by NG2 cell fate-mapping studies1-6; how-
ever, emerging findings from genomics and epigenetic studies showed 
reactive NG2-glia can differentiate into GFAP-labeled astrocytes and 
DCX-expressing immature neurons in a stab wound injury.51-53 The 
transcriptional gene changes occurred in NG2-glia in response to in-
jury and environmental signals could lead to depression of conserva-
tive genes such as oligo 1/2 and PLP, which are normally restricted 
to oligodendrocyte lineages and facilitate reprograming of NG2-glia 
into different cell types intrinsically.54 On the other hand, NG2 gene 
can be activated and upregulated by transcriptional factors in other 
cell type in injured brain. In a transient MCAO model which caused 
large ischemic lesions in the basal ganglia and adjacent cerebral cor-
tex, Sugimoto et al. reported that the cells termed BINCs (brain Iba1+/
NG2+ cells) are largely accumulated in the demarcation zone between 
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the peri-infarct tissue and lesion core area in rat brain.55 BINCs which 
express both NG2 and macrophage markers can be found in pathologic 
brains, such as 6-OHDA-induced Parkinsonism,56,57 lipopolysaccha-
ride (LPS)-induced systemic inflammation,58 or lysolecithin-induced 
demyelination.59 In normal conditions, microglial cell somata do not 
adhere to neurons, but give way to NG2-glia migration capability.60,61 
The upregulated NG2 proteoglycan derived by transforming growth 
factor-β1(TGF-β1) in activated microglia transforms “NG2-positive 
microglia” attaching to neurons, suggesting that BINCs actively mi-
grate toward damaged neurons exerting a tissue remodeling process 
in ischemia.

7  | CONCLUDING REMARKS

Stroke is a leading cause of mortality and morbidity worldwide, with 
ischemia representing 87% of stroke cases. Researchers have been 
seeking therapeutic approaches to conquer this disease and attempt 
to extend the patients’ life span. One way of seeking cures for the 
disease is to first fully understand the pathology of the disease in the 
brain. In ischemic stroke, we provided evidence that NG2-glia expe-
rience morphological changes, altered ion channels and membrane 
receptors, gene-regulated cells reprograming, as well as excitoxicity-
induced cell death. These alterations have direct and/or indirect ef-
fects on neurons and other glial cell populations during and after 
ischemia. By overexpression of Netrin-1 or CXCL12 gene in OPCs, 
studies showed those factors promote OPCs proliferation, migra-
tion, axon remyelination, further facilitating white matter repair and 
remodeling, which provides a therapeutic perspective for targeting 
NG2-glia in ischemia.62,63 These conclusions, however, need to be 
further confirmed in vivo. A recent study reported that NG2-glia can 
be reprogramed into both glutamatergic and GABAergic neurons after 
NeuroD1 expression in the brain, opening a completely new direction 
in the therapy of neurodegenerative diseases.64

In the past two decades, NG2-glia have attained recognition in ex-
erting multiple functions in both normal and pathological conditions in 
the brain. In addition to the fact that NG2-glia constitute a ubiquitous 
glial population, which are distinct from astrocytes, oligodendrocytes, 
and microglia in the CNS, they have multipotent properties of self-
renewal and repair in many kinds of brain injuries.23,31-34 In response 
to injury, NG2 glial cells are not only capable to proliferate and migrate 
to the lesions but also differentiate into oligodendrocytes to form 
new myelin sheaths wrapping around damaged axons and leading to 
functional recovery.65,66 It might also be the case when studying NG2-
glia function in stroke. In conclusion, given that NG2-glia are actively 
involved in fast response to neuronal diseases, we can suggest that 
future studies of NG2-glia will unravel a potential therapeutic target in 
the treatment of ischemia.
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