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SUMMARY

Retinal degenerative diseases (RDs) such as retinitis pigmentosa (RP) are a genetically

heterogeneous group of disorders characterized by night blindness and peripheral vision

loss, which caused by the dysfunction and death of photoreceptor cells. Although many

causative gene mutations have been reported, the final common end stage is photoreceptor

cell death. Unfortunately, no effective treatments or therapeutic agents have been discov-

ered. Heat shock protein 70 (HSP70) is highly conserved and has antiapoptotic activities. A

few reports have shown that HSP70 plays a role in RDs. Thus, we focused on the role of

HSP70 in photoreceptor cell death. Using the N-methyl-N-nitrosourea (MNU)-induced pho-

toreceptor cell death model in mice, we could examine two stages of the novel cell death

mechanism; the early stage, including HSP70 cleavage through protein carbonylation by

production of reactive oxygen species, lipid peroxidation and Ca2+ influx/calpain activation,

and the late stage of cathepsin and/or caspase activation. The upregulation of intact HSP70

expression by its inducer is likely to protect photoreceptor cells. In this review, we focus on

the role of HSP70 and the novel cell death signaling process in RDs. We also describe candi-

date therapeutic agents for RDs.

Introduction

Retinitis pigmentosa (RP) is one of the major retinal degenerative

diseases (RDs), which are caused by photoreceptor cell death [1].

At least 50 million people have these diseases, and no effective

drugs have been discovered. Animal models of RP have led to a

better understanding of the disease pathology and to the develop-

ment of therapeutic strategies aimed at curing or slowing down

the genetic disorder [2]. It is not easy to choose an appropriate

genetic model for RP because there are many causative genes [3];

more than 30 genes and more than 100 rhodopsin mutations are

related to RP. Although animal models of RP have a variety of

genetic backgrounds (Table 1) [4–30], the final common end stage

of RP is photoreceptor cell death.

N-Methyl-N-nitrosourea (MNU), an alkylating agent, causes

photoreceptor cell loss and significantly decreases the outer

nuclear layer thickness within 1 week after intraperitoneal injec-

tion [31–33]. MNU selectively damages photoreceptor cells; no

other retinal cells are TUNEL positive. Thus, we used the MNU

model to study the mechanism of photoreceptor cell death.

Heat shock protein 70 (HSP70) plays an important role in pro-

tecting cells against various stresses. However, a few reports have

shown the effect of HSP70 on photoreceptor cell death in RDs. In

the present review, we describe the role of HSP70 in photoreceptor

cell death and discuss the possibility of HSP70 inducers as a new

therapeutic tool for RDs.

The Mechanisms of MNU-Induced
Photoreceptor Cell Death

Some reports have suggested that MNU induced the generation of

free radicals and cell death specifically in retinal photoreceptor

cells. Accumulation of 8-hydroxy-deoxyguanosine, an indicator

of oxidatively damaged DNA, and 4-hydroxy-2-nonenal (4HNE),

a reactive aldehyde species generated endogenously from decom-

position of hydroperoxide of x-6 polyunsaturated fatty acids [34],

was detected in MNU-treated mouse retina [33,35]. MNU also

causes a decrease in reduced glutathione, which effectively scav-

enges free radicals and other reactive oxygen species (ROS) [36],

leading to an imbalance between the production of ROS and

antioxidants.

Intraperitoneal injection of MNU induces the accumulation of

intracellular Ca2+ in the retina and increases calpain activation, as

measured by a-spectrin proteolysis products, which leads to pho-

toreceptor cell death [37,38].

MNU-induced photoreceptor cell loss is caused by a decrease in

antiapoptotic Bcl-2 protein, an increase in proapoptotic Bax pro-

tein, and the activation of caspase cascades [39,40]. Caspase-3,
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caspase-6, and caspase-8 activities were increased within 3 days

after MNU injection.

Although such molecular mechanisms of the MNU-induced

photoreceptor cell loss have been described, the total process of

the cell death signaling remains obscure. Elucidation of the key

molecule that connects these molecular mechanisms is necessary

to clarify the photoreceptor cell death signaling process.

Early and Late Stages of MNU-Induced
Photoreceptor Cell Death Processes

The HSP70 family is a family of conserved and ubiquitously

expressed heat shock proteins. HSP70 is a central component of

the cellular network of molecular chaperones and folding catalysts

and protects cells from various stresses. Although HSP70

immunoreactivity is localized in the outer nuclear layer and the

inner segments of the retina [41], a few studies have reported the

role of HSP70 in RDs. Thus, we investigated the role of HSP70 on

MNU-induced photoreceptor cell death [33]. Under pathological

conditions of neuronal tissues, such as glaucoma and ischemic/

reperfusion of the hippocampus, HSP70 is a common substrate of

calpain [42]. Carbonylated HSP70 by 4HNE is much more vulner-

able to calpain cleavage [43]. We found that the levels of 4HNE

were clearly increased in MNU-injected mouse retina. 4HNE is

highly reactive and may be considered as a secondary toxic mes-

senger that disseminates and augments initial free radical events

[44,45]. Upon the reaction with protein, 4HNE specifically reacts

with nucleophilic amino acids, such as cysteine, histidine, and

lysine to form their Michael addition adducts possessing carbonyl

functionality [46,47]. Thus, HSP70 may be carbonylated by the

accumulated 4HNE in MNU-treated mouse retina. In addition, we

confirmed that HSP70 was rapidly and calpain-dependently

Table 1 Genetic models for RP

Animal models Genotypes Genes Site of origin References

Mice Natural Peripherin-rds Peripherin-rds Null mutation in the rds/peripherin gene [4]

Rd Peripherin-rds rd/rd (retinal degeneration) mice [5]

Rd-1 PDE6B Nonsense mutation in exon 7 of the Pde6b gene in all mouse strains

with the rd1 mutation

[6]

Rd-4 – Inversion encompasses nearly all of Chromosome 4 [7]

Rd-8 CRB1 Single base deletion in the Crb1 gene [8]

Rd-10 PDE6B Mutation in PDE6b [9]

Rd-12 RPE65 Homozygous for the rd12 mutation [10]

Rd-16 CEP290 In-frame deletion in a centrosomal protein CEP290 [11]

Transgenic 307 1-bp del Peripherin-rds Single base deletion at codon 307 of the rds-peripherin gene in mice [12]

C214S Peripherin-rds Peripherin-rds with the C214S (Cys214–>Ser) missense mutation [13]

Crx knockout Cone-rod

homeobox

Cone-rod homeobox gene knockout [14]

Knockout RPE65 Rhodopsin Mice that lack the visual pigment rhodopsin (Rpe65-/-) [15]

l-255/256 Opsin Mutant opsin gene with a 3-bp deletion of isoleucine at codon 255/256 [16]

L185P/Rom-1 null Peripherin-rds Doubly heterozygous for a mutation in RDS causing a leucine 185 to

proline substitution in rds (L185P) and a null mutation in ROM1

[17]

MERTK KO MERTK Homozygous for a targeted disruption of the Mer receptor tyrosine

kinase gene (mer(kd))

[18]

NMF282 PDE6A Ethyl nitrosourea (ENU) mutagenesis [19]

NMF363 PDE6A Ethyl nitrosourea (ENU) mutagenesis [19]

P216L Peripherin-rds Proline 216 to leucine (P216L) amino acid substitution in rds/peripherin [20]

P23H Rhodopsin Missense mutation (P23H) in the rhodopsin gene [21]

P347S Rhodopsin Rhodopsin, proline-347 to serine (P347S) mutation [22]

Q344ter Rhodopsin Heterozygotes with the glutamine-344-to-ter (Q344ter) mutations in the

rhodopsin gene (stop codon mutation)

[23]

Rd12j (NMF137) PDE6B Missense point mutation in exon 16 of the beta-subunit of rod

phosphodiesterase gene, (PDE6B)

[9]

Rpe65�/� RPE65 Rpe65-deficient (KO) [24]

Sema4A-deficient Sema4A Sema4A-deficient [25]

Sema4A F350C Sema4A Knock-in mouse lines with corresponding mutations (F350C) in the

Sema4A gene

[25]

Rat Natural RCS MERTK Small deletion of RCS DNA that disrupts the gene encoding the

receptor tyrosine kinase Mertk

[26]

Transgenic P23H Rhodopsin Transgenic rat that express P23H rhodopsin [27]

S334ter Rhodopsin Rhodopsin mutation S334ter [28]

Chickens Natural Rd GC1 Null mutation in the photoreceptor guanylate cyclase (GC1) gene [29]

Rdd PDE6A Mutation in PDE6A [30]
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cleaved after MNU treatment. Our results indicate that HSP70

cleavage might be involved in both oxidative stress and Ca2+/cal-

pain-mediated photoreceptor cell loss. Calpain-mediated cleavage

of HSP70 leads to lysosomal rupture and cell death through

cathepsin because HSP70 stabilizes lysosomal membranes [48];

this process is known as the calpain–cathepsin hypothesis [49,50].

On the other hand, HSP70 protects against neuronal apoptosis

through the inhibition of caspase-dependent apoptosis [51,52].

Thus, caspase-dependent apoptosis occurs in downstream of

HSP70 cleavage. Together, our findings suggest that cleavage of

HSP70 is a key event that connects the mechanisms of MNU-

induced photoreceptor cell death (Figure 1). Focusing on HSP70,

the MNU-induced cell death signaling process can be divided into

early and late stages. We defined the early stage as HSP70 cleavage

through protein carbonylation by oxidative stress, 4HNE produc-

tion, and Ca2+/calpain activation. The late stage includes the

events after HSP70 cleavage, including cathepsin and/or caspase

activation.

HSP70 Induction Prevented
Photoreceptor Cell Death by MNU

To determine whether HSP70 could protect photoreceptor cell

death by MNU, we used valproic acid (VPA), a well-known HSP70

inducer [53]. VPA significantly inhibited MNU-induced retinal

thinning and TUNEL-positive photoreceptor cell number through

HSP70 induction. Coadministration of VPA and HSP inhibitor

abolished the protective effect of HSP70; thus, HSP70 plays a cru-

cial role in the protection of photoreceptor cells. Calpain inhibitor

also protects photoreceptor cells because of the suppression of

HSP70 cleavage. VPA failed to protect HSP70 from MNU-induced

cleavage, but increased the expression levels of intact HSP70. Both

VPA and calpain inhibitor completely blocked caspase-3 activation

by MNU. In addition, we previously reported that geranylgerany-

lacetone (GGA), another HSP70 inducer, also attenuated the

photoreceptor cell death by MNU through HSP70 induction

[33,54]. Thus, inhibition of HSP70 cleavage or induction of intact

HSP70 may be possible therapeutic approaches for preventing

photoreceptor cell death.

Cytoprotective Effects of HSP70

The photoreceptor cell layer is the primary site of HSP70 synthesis

in the retina, and hyperthermia-induced HSP70 in the photore-

ceptor layer prevents retinal photic injury [55,56]. In the retinal

detachment-induced retinal degeneration model, abolishment of

HSP70 induction using HSP70�/� mice directly exacerbated pho-

toreceptor apoptosis [57]. Furthermore, HSP990, a HSP70 indu-

cer, enhanced visual function and delayed photoreceptor

degeneration in a rhodopsin mutation rat model [58]. These

results are in accordance with previous in vitro and in vivo studies

that showed that abolishment of the HSP70 cytoprotective effect

augments the initiation of the apoptotic cascade [59–61]. Even in

the CNS model, previous studies have reported extensive neu-

ronal damage in HSP70�/� mice after ischemic brain injury, in

which the neuronal expression of HSP70 can be regarded as a

molecularly defined penumbra of protein denaturation [62].

Thus, HSP70 overexpression directly increased the neuronal via-

bility in various CNS degeneration models [63,64]. These reports

showed that HSP70 directly prevented photoreceptor cell death in

both genetic RP models and acquired models.

Candidate Therapeutic Agents for RDs

Based on the total image of photoreceptor cell death mechanism

that we proposed, protein carbonylation by oxidative stress,

Ca2+-dependent protease activation, apoptosis-related molecules,

and HSP70 cleavage are involved in MNU-induced photoreceptor

cell death. The final common end stage of various pathogenic

mechanisms in RDs is photoreceptor cell death. Therefore, protec-
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Figure 1 The mechanism of MNU-induced

photoreceptor cell death and the candidate

therapeutic agents for RDs.
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tion of photoreceptor cells may be a useful therapeutic strategy for

RDs. Some of the candidate therapeutic agents for RDs are listed

in Table 2 [33,35–37,39,54,58,65–121]; these agents include ther-

apeutic agents against the early stage of photoreceptor cell death

(antioxidants, ROS scavengers, Ca2+ antagonists and calpain inhi-

bitors), therapeutic agents against the late stage of photoreceptor

cell death (cathepsin inhibitors and caspase inhibitors), and

HSP70 inducers.

As therapeutic agents against the early stage of photoreceptor

cell death, antioxidants and ROS scavengers could prevent HSP70

carbonylation through reduction of 4HNE production. In MNU-

injected mouse retina, edaravone, a ROS scavenger, can reduce

4HNE generation and the number of TUNEL-positive cells [35].

Polyphenols, such as curcumin and green tea extract, also reduced

the number of MNU-induced TUNEL-positive photoreceptor cells

[69,71]. The Ca2+ antagonist and calpain inhibitors could also pro-

tect photoreceptor cells via the inhibition of HSP70 cleavage.

Nimodipine, a Ca2+ blocker, inhibits MNU-induced photoreceptor

cell apoptosis and protects retinal function [36]. A calpain inhibi-

tor, SNJ-1945, restored photoreceptor cell autophagy and pho-

toreceptor cell death in MNU-treated mice [37,38].

Furthermore, as therapeutic agents against the late stage of pho-

toreceptor cell death, both inhibitors of cathepsin and caspases

could suppress photoreceptor cell death. Caspase inhibitor was

shown to suppress retinal apoptosis in MNU-treated rats [39].

In addition to these existing therapies, we further propose that

HSP70 inducers could be novel therapeutic agents to prevent

photoreceptor cell death in RDs. Many different chemicals have

been reported as HSP70 inducers, including arimoclomol [95],

celastrol [100], eupalinolide A/B [102], paeoniflorin [108], and

radicicol [111] (Table 2). Drug repositioning is the process of

developing new indications for existing drugs or biologics. Some

antiulcer agents, such as carbenoxolone [98], polaprezinc [109],

and rebamipide [112], induce HSP70 expression in various

Table 2 Candidate therapeutic agents for RDs

Roles Compounds References Roles Compounds References

ROS scavenger 5-S-GAD [65] HSP70 inducer 17-AAG [92]

/Antioxidant Alpha lipoic acid [66] 17-DMAG [92]

Astaxanthin [67] 2-Cyclopenten-1-one [93]

Carnosic acid [68] Alkannin [94]

Curcumin [69] Arimoclomol [95]

DHA [70] Bicyclol [96]

Edaravone [35] Bimoclomol [97]

Green tea extract [71] Carbenoxolone [98]

Lutein [72] CdCl2 [99]

Melatonin [73] Celastrol [100]

N-acetylcysteine [74] Curcumin [101]

Unoprostone [75] Eupalinolide A/B [102]

FLZ [103]

Ca chelator/ 2-APB [76] Geldanamycin [104]

/Ca blocker BAPTA-AM [77] GGA [54]

Diltiazem [78] Glucuronic acid [105]

Flunarizine [79] HSP990 [58]

Nicardipine [80] KU-32 [106]

Nilvadipine [81] Linolenic acid [107]

Nimodipine [36] MG132 [99]

Paeoniflorin [108]

Calpain inhibitor ALLN [82] Polaprezinc [109]

Calpastatin [83] Prostaglandin A1 [110]

Calpeptin [77] Radicicol [111]

CYLA [84] Rebamipide [112]

MDL28170 [85] Resveratrol [113]

MG132 [86] Safrole oxide [114]

PD150606 [82] Sodium butyrate [115]

SJA6017 [87] Sodium fluoride [116]

SNJ-1945 [37] Sodium salicylate [117]

TRC051384 [118]

Cathepsin inhibitor CA-074Me [88] Tributyltin [119]

E-64 [89] VPA [33]

Z-FA-FMK [90] YC-1 [120]

Z-FY(t-Bu)-DMK [91] Zinc [121]

Caspases inhibitor Ac-DEVD-CHO [39]
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human tissues. Thus, the drug repositioning approach by HSP70

inducers could be an effective way to develop new therapeutic

agents for RDs.

Similar Mechanisms of Photoreceptor
Cell Death between MNU and RP Models:
Early Stage

Although the MNU-induced photoreceptor cell death model is dif-

ferent from the genetic RP model, the two models appear to share

similar mechanisms of photoreceptor cell death. The eye has 3- to

4-fold higher oxygen consumption relative to brain tissue and,

consequently, has a higher exposure to ROS such as hydrogen

peroxide, hydroxyl radicals, and superoxide anions. Oxidative

stress is involved in the pathogenesis of a number of diseases

including neurodegenerative disorders such as RP [35,122]. Orally

administered N-acetylcysteine reduced photoreceptor cell death

and preserved cone function by reducing oxidative damage in two

models of RP, rd1, and rd10 mice, which have a mutation in the

rod photoreceptor-specific cGMP phosphodiesterase (PDE) sub-

unit [74]. In addition, coexpression of superoxide dismutase 2 and

catalase in the mitochondria of photoreceptors strongly promotes

cell survival and the maintenance of photoreceptor function in

rd10 mice [123]. In some RP models, accumulation of 4HNE was

detected in photoreceptor cells [124,125]. Therefore, oxidative

stress plays a pivotal role in genetic RP models of retinal photore-

ceptor degradation.

Under pathological conditions, like those in rd1 mice, intracel-

lular Ca2+ levels significantly increase in photoreceptor cells, even

before the detection of apoptotic cells [126]. Increased photore-

ceptor cell death in the rd10 mouse retina is associated with Ca2+

overload and calpain activation, which both occur prior to signs of

cell degeneration [127]. Mitochondrial calpain may activate apop-

tosis-inducing factor to induce photoreceptor apoptosis in Royal

College of Surgeon (RCS) rats, a natural model of recessively

inherited RDs that has a disrupted gene for the receptor tyrosine

kinase [82,128], and rhodopsin transgenic rats [129]. l-Calpain
contributed to the activation of Bax and apoptosis-inducing factor

nuclear translocation in rd1, P23H (missense mutation in the rho-

dopsin gene), and rhodopsin knockout retinas [130]. The Ca2+

antagonist nilvadipine preserved retinal morphology and elec-

troretinogram responses in RCS rats through the upregulation of

fibroblast growth factor-2 and antiapoptotic molecules in the

retina [131]. A small clinical trial revealed that nilvadipine

retarded the progression of central visual field defects in RP [132].

In addition to Ca2+ antagonists, calpain inhibitors can attenuate

photoreceptor cell death. Mitochondrial l-calpain inhibitor pre-

vents photoreceptor cell death in RCS rats [128]. In rd1 mice, a

highly specific calpain inhibitor, calpastatin, reduced photorecep-

tor cell death [133]. Therefore, Ca2+-dependent calpain activation

may play an important role in RP and even in the MNU-induced

photoreceptor cell death model.

Similar Mechanisms of Photoreceptor
Cell Death between MNU and RP Models:
Late Stage

Cathepsin D also contributed to photoreceptor cell death in rd1,

P23H, and rhodopsin knockout retina [130]. Thus, cathepsin inhi-

bitors may attenuate photoreceptor cell death.

In some RP models, altered expression of apoptosis-related pro-

teins was also involved in photoreceptor cell death [134]. Inhibitors

of caspase-3, caspase-7, and caspase-9 also showed neuroprotec-

tion of photoreceptors at both the structural and functional levels

in rhodopsin transgenic rat models of RP [135]. Thus, caspase

inhibitors are thought to be effective therapeutic tools for RP.

On the basis of similarities between genetic models of RP and

MNU-induced photoreceptor cell death, the therapeutic agents for

MNU-induced photoreceptor cell death might be effective in

genetic models of RP.

Conclusion

In our recent studies, HSP70 carbonylation by 4HNE and its

subsequent cleavage by calpain was one of the novel central

mechanisms in photoreceptor cell death. In addition, VPA and

GGA protected against photoreceptor cell death by MNU via the

induction of HSP70 expression [33,54]. Further studies are

needed to confirm these possibilities and to clarify the possible

mechanism of pathogenesis and interaction between HSP70

cleavage and chronic photoreceptor cell death using a genetic

model for RDs. Taken together, HSP70 inducers may be consid-

ered as candidate therapeutic agents for the prevention of RDs,

such as RP.
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