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SUMMARY

Progesterone, estrogens, and testosterone are the well-known steroidal sex hormones,

which have been reported to have “nonreproductive “effects in the brain, specifically in the

neuroprotection and neurotrophy. In the last one decade, there has been a surge in the

research on the role of these hormones in neuroprotection and their positive impact on dif-

ferent brain injuries. The said interest has been sparked by a desire to understand the action

and mechanisms of these steroidal sex hormones throughout the body. The aim of this arti-

cle was to highlight the potential outcome of the steroidal hormones, viz. progesterone,

estrogens, and testosterone in terms of their role in neuroprotection and other brain inju-

ries. Their possible mechanism of action at both genomic and nongenomic level will be also

discussed. As far as our knowledge goes, we are for the first time reporting neuroprotective

effect and possible mechanism of action of these hormones in a single article.

Introduction

The best-known steroidal sex hormones secreted primarily by the

ovaries in females are progesterone, estrogens, and testosterone,

from the testicles in males. The hypothalamus releases the peptide

gonadotropin-releasing hormone (GnRH) which ultimately con-

trols the release of the peptides follicle-stimulating hormone

(FSH) and luteinizing hormone (LH) from the anterior pituitary

[1]. These hormones control the development of follicular growth

and corpus luteum in females, which ultimately results in the pro-

duction of progesterone and estrogen [2]. Several studies revealed

that apart from reproductive roles, progesterone, estrogens, and

testosterone have protective actions against different brain inju-

ries [3–5].

There is growing evidence that suggests progesterone and its

metabolite (allopregnanolone) could exert neuroprotective

effects on the injured central nervous system (CNS). Over the

last several years, preclinical studies around the world also sug-

gested that progesterone, given in the acute stage of injury,

could limit tissue damage and improves functional outcome

after blunt traumatic brain injury (TBI), spinal cord injury,

stroke, diabetic neuropathies, and other types of acute neural

injury [6–11]. Progesterone has been reported for their role in

brain neurogenesis regulation and regeneration, convulsions,

myelination, TBI, cognition, mood alteration, inflammation, and

mitochondrial function in different animal models [12–17].

Several clinical studies also highlighted their role in neuropro-

tection [18,19]. The neuroprotective mechanism of action of

progesterone is still at the speculative stage because of vast

complexity of the brain. Some scientific literature supports the

involvement of progesterone receptors (PR) that include the

classic nuclear progesterone receptors A (PRA), progesterone

receptors B (PRB) and their spliced variants and seven trans-

membrane progesterone receptors b [20,21]. Scientific literature

also suggested activation of different CNS signaling cascade

pathways, viz. mitogen-activated protein kinase (MAPK), extra-

cellular-regulated kinase (ERK), and up-regulation of brain-

derived neurotrophic factor (BDNF) by progesterone [22–27].

All of these signaling cascades have been reported for their role

in neuroprotection.

On the other hand, several studies reported the role of

estrogen in stimulation, neuroprotection, and beneficial for cell

survival [28,29]. The mechanism of action of estrogens also

remains obscure, because of the complexity of the brain. Like

progesterone, the data related to estrogens also suggest that

estrogen receptor-a (ERa) and estrogen receptor-b (ERb)
may exert neuroprotection in the brain. At genomic level,

estrogen has been reported to increase the expression of the
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anti-apoptotic gene, B-cell lymphoma 2 (bcl-2), and inhibits the

expression of the pro-apoptotic gene. In vitro study also high-

lighted their role in the activation of extracellular signal-regu-

lated kinases (ERK) and phosphoinositol-3-kinase (PI3K)-Akt

pathways [30]. The enhanced release of transforming growth

factor (TGF)-b1 is an important step of neuroprotection by

estrogen [28]. Some researchers also support the notion that

testosterone could act against neurodegenerative disorders

including Alzheimer’s disease (AD), mild cognitive impairment

(MCI), or depression [31]. In the following section, we will try

to cover these steroidal sex hormones at the individual level

based on their neuroprotective action along with their mecha-

nistic insight.

Progesterone and Their Neuroprotective
Action

Progesterone has been reported for their neuroprotective action

in various in vitro and in vivo models [27,32–34]. Several clinical

studies also highlighted the neuroprotective potential of

progesterone [18,19,35–37]. Moreover, progesterone could tar-

get several regions of the brain particularly hypothalamus,

hippocampus, and cortex. In most of the studies, progesterone

has been suggested to have neuroprotective and/or regenerative

effects in the hippocampal and cortical region [32,33]. It can be

synthesized by both central and peripheral nervous system and

can act not only on the brain but also on peripheral nerves.

Baulieu et al. (1996) reported that progesterone promotes the

formation of the myelin sheath in rat Schwann cells and

increases the number of myelinated axons [38]. In another

study, the same group reported that blocking the action of pro-

gesterone impairs myelination in regenerating axons [39]. Pro-

gesterone has been also reported to stimulate myelination in

organotypic slice cultures of rats and mouse cerebellum [40].

Several pieces of evidence in scientific literature also suggest

that depletion in sex steroidal hormones, estrogen, and proges-

terone at menopause stage is a significant risk factor for the

development of AD in women, which could be overcome by

hormonal therapy [41,42]. Gonzalez et al. (2004) showed

higher expression of BDNF at both mRNA and protein level in

response to progesterone treatment in rats with spinal cord

injury [43]. Progesterone enhancement of endogenous neuronal

BDNF could also provide a trophic environment within the

lesioned spinal cord and might be part of progesterone-activated

pathways to provide neuroprotection [43]. Moreover, proges-

terone treatment also significantly reduces the neuropathologi-

cal and behavioral abnormalities associated with TBI in the

rodent model [44]. The antioxidant effect of progesterone also

supports its potential in the treatment of brain injury [45]. Pro-

gesterone has been reported for its neuroprotective action in

symptomatic wobbler mice with spinal cord motor neuron

degeneration, which could be mediated by the regulation of

expression of some specific genes in neurons and glial cells [43].

The therapeutic outcome associated with progesterone in the

management of acute spinal cord injury was also reported to be

good [46]. Progesterone also acts on other brain region such as

nucleus tractus solitarius (NTS), reverses the hypoxic injury

in rats, and restores the normal respiratory rhythm [47].

Progesterone and its derivatives (dihydroprogesterone [DHP]

and tetrahydroprogesterone [THP]) have been reported to have

the protective effect against diabetic neuropathy in experimental

animal models [48]. Scientific literature suggests the profound

effect of progesterone on seizure processes [49,50]. Antiseizure

effects of progesterone and its metabolite have been also

reported in various animal models [51,52]. Progesterone has

also shown to decrease epileptiform activity in mice [53], maxi-

mal electroshock (MES)-induced seizures in rat [54], kainic

acid-induced seizures in rat [55], and amygdala-kindled seizures

in rats [56]. Along with earlier mentioned studies, some clinical

studies also reported a decrease in catamenial epilepsy in

women in response to progesterone, which points antiseizure

potential of progesterone [57].

Collectively, all these mechanisms might be important in pro-

tecting the brain against various neurodegenerative diseases and

brain-related dysfunctions.

In view of encouraging results of the preclinical studies,

progesterone had been taken into the clinical trials for its

neuroprotective effects especially against TBI, ischemic stroke,

multiple sclerosis and even for the treatment of AD. Interest-

ingly, the neuroprotective efficacy of progesterone was found to

be remarkable at the earliest phase of animal models for TBI,

traumatic spinal cord injury, middle cerebral artery occlusion,

and neurodegeneration [58–62]. The above-mentioned reports

enable progesterone to enter four phase II trials to test its pro-

tective efficacy after TBI including ProTECT II and SyNAPSe. It

also came out with consistent and encouraging outcome

[18,19,63,64]. However, the results of the large multicenter

randomized and placebo-controlled phase III trials were disap-

pointing [65–67]. Phase III trial in women with intractable par-

tial epilepsy also did not show much effect by progesterone,

but the post hoc analysis identified a subset of women with

higher levels of perimenstrual seizure exacerbation that were

responsive to treatment [68]. Progesterone as a neuroprotective

agent offers great promises still it failed at phase III clinical tri-

als. The reason behind the failure of progesterone at phase III

trial was believed to be due to faulty extrapolation of preclinical

animal studies data and use of subjective items measures that

neither reflects nature of deficits or long-term quantitative

recovery. In one of the report, Ioannidis (2005) suggested that

clinical research in general typically fails because of the labora-

tory studies on which trials are based often do not replicate

one another and have too many false-positive findings [69].

These published papers then lead to unwarranted and overen-

thusiastic estimations of effect sizes and are uncritically reported

in the peer-review literature and accepted and used by the clin-

ical community to go forward with clinical trials. Future prob-

lems can be avoided by pooling preclinical data, require more

coordinated and sequential phase II trials using standardized

outcomes to replicate potential findings [70]. Recently, Menon

and Maas (2015) suggested that precise definitions of injury,

better trial design, better patient selection procedures, better

outcome measures, and better options for when to take them

and how often are needed to get positive outcome during phase

III clinical trials [71]. It is also suggested to test the potential of

these hormones in nonhuman primates so that a high number

of model animal could be involved.
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Mechanism of Neuroprotection by
Progesterone

Nuclear progesterone receptor (PR) has been localized in several

regions of the brain including hippocampus, hypothalamus, cor-

tex, and cerebellum [20,72–74]. Typically, the steroid hormones

such as progesterone, estrogen, and testosterone had been main-

tained inactive under hypotonic conditions due to the association

with heat-shock proteins (hsps). The interaction between PR and

chaperons molecule (hsp70, hsp90, hsp40) is prerequisite for hor-

monal binding which further express their action by dissociation

from the chaperons molecule, then dimerize and finally interact

with progesterone response element at the promoter region of the

target genes [75,76]. Two major isoforms of PR, a full length PR-B

and N-terminal truncated PR-A isoform, have been reported to

exist [77,78]. Although PR is expressed in hippocampus and fron-

tal cortex, progesterone shows its effect in PR knockout mice as

well, indicating the involvement of some other receptor [79]. A

novel progesterone binding protein (distinct from conventional

PR), exclusively localized in neural tissue including the cerebral

cortex, cerebellum, caudate nucleus, thalamus, pituitary gland,

and spinal cord, has been also reported [80]. Overall, progesterone

has established neuroprotective action that takes place via several

mechanisms. They could cause a reduction in both IL-b and TNF-a
level in post-TBI [43]. Progesterone has been also reported to inhi-

bit the inflammatory cytokines in the medial frontal cortex of

TBI [81,82]. They reduce cerebral edema by stabilizing the blood–

brain barrier, thus preventing the flow of water, ions, and inflam-

matory molecule across the membrane [43,45]. In fact, proges-

terone, estrogen, and testosterone had been known to activate

MAPK, ERK, and Akt signaling pathways, which are reported to

be associated with neuroprotection [83]. Earlier studies suggested

the co-regulation between BDNF and steroid hormones, viz. pro-

gesterone, estrogens, and testosterone. BDNF is a neurotrophin,

abundantly expressed in several areas of the CNS and known to

enhance specific learning and memory processes [84]. Neuropro-

tection by progesterone is associated with up-regulation of BDNF,

a rise in the activity of choline acetyltransferase, and reduction in

the mitochondrial dysfunction [85–88]. Progesterone has been

also reported to suppress inflammatory response and expression

of nitric oxide synthase-2 in cerebral ischemia model [89]. On the

other hand, it is noteworthy that progesterone could block the

estrogen-induced increase in spine density in hippocampus and

reverses the estrogen-induced enhancement of spatial memory in

rodents indicating its antagonistic relationship with estrogen [90–

92].

Estrogens and Their Neuroprotective
Action

Apart from the reproductive role, estrogens have been reported to

exert complex and diverse action against neurodegenerative dis-

ease and injuries. In addition, estrogens have shown to have pro-

tective effect on the stroke in animal models [93,94].

Furthermore, it also improves histological, physiological, and

behavioral outcomes after transient middle cerebral artery occlu-

sion, global forebrain ischemia, and subarachnoid hemorrhage

and may be beneficial in reducing the risk of cognitive decline in

women with normal function [95]. Wise et al. (2005) reported

that 17-beta-estradiol (estrogen) slows down the progression of

injury, diminishes the extent of cell death by suppressing apop-

totic pathways, and enhances the expression of cell survival genes

[96]. Administration of this estrogen to male rats significantly

reduces brain edema and neurological deficits [97]. Brain edema

was reported to be less significant in female compared with male

rats. The estrogen receptor (ER) antagonist ICI182, 780 was found

to be exacerbated in an intracerebral hemorrhage (ICH)-induced

brain edema in female but not in male rats, suggesting protective

ER activation during ICH in female rats [97]. Estrogens and

related drugs (selective estrogen receptor modulator, ERa, and

Erb) agonist produce neuroprotection of focal and global ischemia

induced in the rat, mice, and gerbils [98], Moreover, estrogen

treatment protects the dorsal hippocampal neurons CA1 regions,

which are susceptible to ischemic injury [98]. Goodman et al.

(1996) reported that pretreatment of estrogens could protect cul-

tured hippocampal neurons against oxidative stress injury, glu-

cose deprivation, glutamate, FeSO4, and amyloid beta-peptide

toxicities and promote cell survival [99]. Despite several reports

on neuroprotection, some contradictory results of worsening of

neuropathology by estrogen have also been reported. However, it

is generally believed that estrogen increases neuronal excitability

and mediates proconvulsant effects [100]. There are also clinical

and animal data that show that estrogen has anticonvulsant

effects [101]. However, conflicting data also exist on the associa-

tion between estrogen and epileptic seizures.

Promising preclinical studies on estrogen enable it to test in clin-

ical trials for its neuroprotective potential. A pilot clinical trial with

estriol administration in women with multiple sclerosis showed

promising results with significant reduction in pathological lesions

[102]. Subsequent phase II study had been enrolled, and one

study published with encouraging results as the estriol combined

with glatiramer acetate in women with relapsing-remitting multi-

ple sclerosis and treatment was well tolerated over 24 months

[103]. Even though several phase II and phase III clinical trials

have been registered for estrogen to investigate the protective

effects on neurodegeneration, the results are yet to be released.

Mechanism of Neuroprotection by
Estrogen

Along with the well-recognized reproductive effect, estrogens

could also influence numerous nonreproductive functions such as

bone and mineral metabolism, cardiac and vascular function,

memory and cognition, mood alterations, and progression of

age-related disease [104]. Several studies have explored the role

of different estrogen receptors (ER) in the neuroprotection

[94,95,105–111]. Two isoforms of estrogen receptor ERa and ERb
are expressed in adult brain. ER antagonist ICI 182780 increases

infract size in middle cerebral artery occlusion of cerebral ischemia

in female rats [112,113]. Estrogen could also block estrogen-

induced neuroprotection in global ischemia and cortical explants

studies [114]. The neuroprotective potential of estrogen was

found to be lost in OVX estrogen receptor-a knockout (ERKO)

mice but at the same time, it protects the brain of OVX estrogen
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receptor-b knockout (BERKO) mice, suggesting the involvement

of ERa in neuroprotection [106,109]. Interestingly, few studies

reported the involvement of only ERb isoform and/or both ERa
and ERb in the protection of CA1 neurons from global ischemia-

induced death [115]. Under the genomic level, estrogen is known

to overexpress anti-apoptotic gene bcl-2 in ischemic part following

global ischemia [105,116,117]. Furthermore, it also inhibits the

expression of BAD gene, which is the antagonist of bcl-2 gene

[105,116–118]. Estrogen also induces certain pathways such as

rapid activation of extracellular signal-regulated kinases (ERK)

and phosphoinositol-3-kinase (PI3K)-Akt pathways in cortical

and hippocampal cells in vitro, which also play a role in the neuro-

protective action [22,119,120]. ER antagonist ICI182, 780 has

been reported to block estradiol benzoate treatment-induced

phosphorylation of Akt in the CA1 region of the hippocampus fol-

lowing cerebral ischemia, which is associated with inhibition of

pro-apoptotic MLK3-MKK4/7-JNK1/2 (mixed lineage kinase-3/

MAP kinase kinase-4-7/c-jun-N-terminal kinase) pathway [22].

The interaction of ERa with cytoskeleton protein, p130Cas (a com-

plex containing Src and PI3K), could lead to the activation of ERK

and Akt pathways [121]. In addition, ERa has also been reported

to interact with the calmodulin binding protein (striatin), in vas-

cular cells, which facilitates cell membrane targeting and is critical

for estrogen-mediated Akt and eNOS [endothelial nitric oxide

synthase] activation [122]. The neuroprotective roles of TGF-b to

cortical, hippocampal neurons, and cerebral ischemia have been

also reported in scientific literature [123,124]. Moreover, specific

PI3K inhibitors or Akt inhibitor could directly prevent Akt activa-

tion and completely block the induction of TGF-b1 release by

estrogen [125].

Androgens/Testosterone and Their
Neuroprotective Action

Testosterone, the gonadal hormone, has been reported for its vari-

ous effects on numerous body tissues, including CNS [31]. One of

the less known actions of testosterone is neuroprotection that

takes place via activation of androgen pathways. Because of its

lipophilic nature, testosterone could cross the blood–brain barrier

and influence neuronal cells [126]. Moreover, testosterone has

also been reported to have antioxidant and anti-apoptotic poten-

tial, which provides neuroprotective effect [127–129]. Testos-

terone acts via androgen receptors, which are present in neurons

throughout the CNS [31,129,130]. Many of the therapeutic effects

of testosterone, viz. libido, cognition, and mood alterations, are

mediated through CNS [131]. The decrease in testosterone level in

men may lead to neurological disorders like AD, in which b amy-

loid (Ab) protein is directly related to testosterone level [132,133].

Table 1 Neuroprotective action and proposed mechanism of action of progesterone, estrogens, and testosterone

Hormone Neuroprotective effects Mechanism of action References

Progesterone Promotes formation of myelin sheath

Increases the number of myelinated

axons

Modifies glial tube organization

Stabilizing the blood–brain barrier

Interact with heat-shock protein

[hsp70, hsp90, and hsp40]

↓IL-b and TNF-a in post-TBI

↑MAPK, ERK, and Akt signaling

pathways

↓ Inflammatory response

↓Expression of nitric oxide

synthase-2

Baulieu et al. 1996

Ghoumari et al., 2003

Gaichino et al., 2003

Baulieu and Schumacher,

2000

Evans et al. 2004

Wali et al. 2007

Gruenbaum et al. 2011

Estrogens Enhances the expression of genes

that optimizes cell survival

Protection from stroke in

experimental animal models

Reduces the risk of cognitive

decline brain edema and

neurological deficits in women

Protect neurons against oxidative

stress injury, glutamate toxicity,

glucose deprivation, FeSO4 toxicity,

and amyloid beta-peptide toxicity

Anticonvulsant effects

↑Expression of anti-apoptotic gene

bcl-2

↓Expression of BAD gene

↑Extracellular signal-regulated
kinases (ERK)

↑ Phosphoinositol-3-kinase

(PI3K)-Akt activation

↑Interaction with p130Cas

↑Interaction with striatin

↑Transforming growth factor-b

(TGF-b)

Sampei et al., 2000; Hurn

and Macrae, 2000

Simpkins et al., 1997

Catherine et al., 2005

Wise et al., 2005

Nakamura et al., 1996

Goodman et al., 1996

Veliskiova et al., 2007

Gloria et al., 2006

Testosterone Neuronal plasticity in the spinal

nucleus

Excitability in the CA1 region of

hippocampus

Prevents retraction or increase the

length of neuritis from motor

neurons

Antioxidant and anti-apoptotic

effects

↑Expression of hsp 70

↓Apoptotic and rapid cell signaling

pathways

↑Signal transduction pathways that

have relevance to cell viability in

both neuronal and non-neuronal

cells

↑MAPK/ERK signaling

Nguyen et al., 2010

Tehranipour and Moghimi,

2010

Spritzer and Galea, 2007

Zhang et al., 2010

Ottem et al., 2007

Marron et al., 2005

Nguyen et al., 2005

Yao et al., 2015
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Androgens are also positive regulators of neuronal plasticity

in the spinal nucleus of the bulbocavernosus [134], excitability in

the CA1 region of the hippocampus [135], and spine density

in the hippocampus [136]. Moreover, androgens also prevent

retraction [137] or increases the length [138] and size [139] of

neuritis from motor neurons. Other neurotrophic effects of testos-

terone include cell differentiation [140], neurogenesis [141,142],

development of neurons in the hippocampus [143], motor

[144,145], and autonomic systems [146].

Regulation of neuronal viability is one of the important actions

of androgens. During development, androgen metabolites deter-

mine neuron number in specific sexual dimorphic nuclei via

apoptosis regulation [147,148]. Androgens could also regulate

central and peripheral motor neurons survival following injury

[149,150]. As far as our knowledge goes from the available scien-

tific literature, we did not come across any clinical trial study on

testosterone that might be currently undergoing. We have sum-

marized the neuroprotective effects and their proposed mecha-

nism of action of progesterone, estrogen, and testosterone in

Table 1.

Mechanism of Neuroprotection by
Testosterone

The activation of gene pathways that increase or decrease the

expression with cell survival is the general mechanism for andro-

gen receptor (AR)-dependent neuroprotection. Androgen neuro-

protection could be blocked by anti-androgen flutamide, which

antagonizes AR-dependent neuroprotection. The genomic andro-

gen pathway includes members of heat-shock protein family that

could provide cellular protection during stress [151]. Zhang et al.

(2004) reported neuroprotection by androgen via increased

expression of hsp70 [152]. Moreover, Pike (2001) suggested AR-

dependent neuroprotection through inhibition of apoptotic and

rapid cell signaling pathways [153]. Additionally, androgen could

also activate signal transduction pathways that have relevance to

cell viability in both neuronal and non-neuronal cells. In one

study, Lin et al. (1999) reported increased cell survival of human

prostate LNCaP cell following treatment with dihydro-testoster-

one via P13K/Akt signaling [154]. Similar result was also reported

by Yao et al. (2015) in the C6 glial cells [155].

Figure 1 Neuroprotective mechanism of action of progesterone, estrogen, and testosterone.
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Some researchers explored the activation of MAPK/ERK signal-

ing cascade by androgens in neurons that are believed to con-

tribute neuroprotection. Their role was confirmed by inhibiting

MAPK/ERK signaling by MEK inhibitors, which blocked both

androgen-induced ERK phosphorylation and neuroprotection.

Nguyen et al. (2005) also reported androgen-activated neuropro-

tection via MAPK/ERK signaling in PC12 cells [156]. They also

reported that activation of MAPK/ERK cascade led to the Rsk-1

activation and ultimately phosphorylation of BAD gene at Ser112

region. It is also believed by the neuroscientist that MAPK/ERK-

Rsk signaling in androgen neuroprotection might regulate neu-

ronal viability. A schematic diagram showing the various mecha-

nistic action of progesterone, estrogen, and testosterone has been

also provided in Figure 1.

Conclusion

Based on our review article, it is quite clear that progesterone,

estrogen, and testosterone possess neuroprotective potential.

Their possible mechanisms of action have been also reported in

scientific literature. However, some of the contradictory reports

are also available in the literature. We believe more research is

required to pinpoint certain mechanism of action of these individ-

ual sex steroids.
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