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SUMMARY

Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, form a

functional unit with axons and play a crucial role in axonal integrity. An episode of

hypoxia–ischemia causes rapid and severe damage to these particularly vulnerable cells via

multiple pathways such as overactivation of glutamate and ATP receptors, oxidative stress,

and disruption of mitochondrial function. The cardinal effect of OL pathology is demyelina-

tion and dysmyelination, and this has profound effects on axonal function, transport, struc-

ture, metabolism, and survival. The OL is a primary target of ischemia in adult-onset stroke

and especially in periventricular leukomalacia and should be considered as a primary thera-

peutic target in these conditions. More emphasis is needed on therapeutic strategies that

target OLs, myelin, and their receptors, as these have the potential to significantly attenuate

white matter injury and to establish functional recovery of white matter after stroke. In this

review, we will summarize recent progress on the role of OLs in white matter ischemic

injury and the current and emerging principles that form the basis for protective strategies

against OL death.

Introduction

After an episode of cerebral hypoxia–ischemia (HI), early events

include energy crisis, cell depolarization from the breakdown of

transmembrane gradients, cytotoxic edema, reactive oxygen spe-

cies (ROS) production, and endothelial dysfunction [1]. These

events prompt a complex cascade resulting in neuronal and glial

damage and death. OLs, the myelin-forming cells of the CNS, are

acutely damaged by short periods of HI. Cell swelling occurs as

early as 30 min after arterial occlusion, and large numbers of OLs

die within 3 h [2]. It has been reported [3] that 30 min of oxy-

gen–glucose deprivation (OGD) results in the death of 90% of OLs

within 9 h. OL pathology results in demyelination and dysmyeli-

nation which have profound consequences for axonal function,

transport, structure, metabolism, and survival [4–6]. The most

devastating effects of HI on these cells occur in premature infants

of <32 weeks’ gestation, which show pathological symptoms of

chronic myelination disturbance, leading to periventricular white

matter injury [7]. The white matter of these infants is immature

and poorly vascularized and contains oligodendrocyte progenitors

(pre-OL) which are sensitive to ischemia and infection.

Research in neurological disorders is progressively embracing

the concept of the neurovascular unit, which emphasizes that a

successful neurorestorative therapy cannot exclusively target neu-

rons, but must also encompass glial and endothelial cells [8]. Thus,

therapeutic strategies that target OLs, myelin, and their receptors

have the potential to significantly attenuate white matter injury

in HI. This review highlights the mechanisms of OL injury and

death in HI at all stages of development and focuses on the oligo-

protective and oligorestorative therapies that have been investi-

gated thus far.

Intrinsic Susceptibility of
Oligodendrocytes to Hypoxic–Ischemic
Damage

OLs display a number of features that render them more vulnera-

ble to HI than other CNS glial cells, and in certain brain regions

and stages of development, more vulnerable than neurons [9]

(Figure 1).

Of all the cell types in the brain, OLs contain the highest levels

of immobilized, protein-bound iron, which is a basic requirement

for their function and oxidative metabolism, and for the synthe-

sis of myelin components [10,11]. Apart from its important func-

tional role, ferrous iron (Fe2+) can be a potent cytotoxin
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by catalyzing the conversion of hydrogen peroxide to hydroxyl

radicals (OH), via the Fenton reaction [12,13]. In cerebral ische-

mia, an energy crisis leads to lactic acidosis, which results in mobi-

lization of protein-bound iron stores. This increases the levels of

free cytosolic Fe2+ that participates in the Fenton reaction to bring

about oxidative stress [14,15]. This effect is further amplified in

OLs by their low content of reduced glutathione (GSH) [16,17]

which is an electron donor for the function of glutathione peroxi-

dase, which in turn, scavenges peroxides. OLs contain less than

half of the glutathione content of astrocytes and <15% of the glu-

tathione peroxidase activity, which leads to a peroxide-scavenging

deficit [17]. OLs also have the highest rate of oxidative metabo-

lism by volume and can support a myelin membrane up to 100

times the weight of their cell bodies [4,11,18]. This high metabolic

activity generates more ROS [18] and requires a correspondingly

high consumption of oxygen and ATP, the synthesis of which gen-

erates hydrogen peroxide as a by-product [19–21].

The subunit composition of glutamate receptors in OLs contin-

ues to predispose them to injury during HI. Their AMPA receptors

are especially permeable to Ca2+ [22,23], and their NMDA recep-

tors are only weakly blocked by Mg2+, enabling them to generate

a substantial current even at resting membrane potential

[22,24,25].

Sphingolipids, constituents of the myelin membrane, may also

increase the susceptibility of OLs to damage under pathological

conditions [4,26]. The simplest sphingolipid, ceramide, can

activate the major pathways that govern cell death [27] and kill

cells by limiting access to extracellular nutrients [28]. Many apop-

totic stimuli activate acid sphingomyelinase, an enzyme that

mediates ceramide release from biological membranes [29,30].

Ceramide-enriched signaling platforms that contain death recep-

tors are formed in the plasmalemma, and these transmit apoptotic

signals into the cell [29,31]. Ceramide released intracellularly also

acts as a second messenger, leading to caspase-mediated OL apop-

tosis within hours [26,32,33].

Even more susceptible to injury than mature OLs are the O4+/

O1� late OL progenitors, which comprises about 90% of all OLs

during the high-risk period for periventricular leukomalacia (PVL)

[7,34]. This vulnerability is a consequence of:

1 Amplified oxidative damage that results from a developmental

deficit in superoxide dismutases (SOD-1 and -2) and a hydro-

gen peroxide-scavenging deficit [35–37] combined with active

iron acquisition [11].

2 Higher vulnerability to reactive nitrogen species attack by

direct mitochondrial toxicity with translocation of apoptosis-

inducing factor [38] and formation of peroxynitrite [39,40].

3 Significant developmental upregulation of non-NMDA

glutamate receptors [41,42] accompanied by enhanced

AMPA-mediated calcium signaling [43], which increases

excitotoxicity. Furthermore, pre-OLs also exhibit a transiently

increased expression of the glutamate transporter (GluT)

Figure 1 Features of oligodendrocytes (OLs) and pre-OLs which render them vulnerable to hypoxia–ischemia (HI). The amplified vulnerability of OLs to HI

derives from their high iron content, low reduced glutathione content, high rate of oxidative metabolism, high lipid and sphingolipid content, and high

permeability of glutamate receptors. Pre-OLs are even more vulnerable than their mature counterparts due to low levels of antioxidant enzymes,

upregulation of AMPA/kainate receptors and enhanced AMPA/kainate signaling, increased expression of the glutamate transporter EAAT2, and a

susceptibility to direct mitochondrial toxicity by reactive nitrogen species. In the event of HI, these properties lead to higher levels of oxidative stress and

apoptosis, hence, severe damage, and death to cells of this lineage.
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EAAT2, which may become a source of glutamate under

pathological conditions [44].

Mechanisms of Oligodendrocyte Damage
in HI

Neurotransmitter-Mediated Toxicity

OLs express neurotransmitter receptors that allow for axon-to-OL

signaling and mediate their own development and function. The

major excitatory neurotransmitters involved are glutamate and

ATP [45,46]. These bind to their respective receptors on the OL

plasmalemma and result in an influx of ions, most notably Ca2+,

which acts as a chemical signal under physiological conditions,

triggering OL differentiation and myelination [47].

OLs are extremely sensitive to disruptions in intracellular cal-

cium homeostasis [25]. In HI, energy crisis and metabolic stress

lead to prolonged overstimulation of neurotransmitter receptors,

resulting in a cytosolic Ca2+ surge which is worsened by the acti-

vation of voltage-gated calcium channels (VGCC) and the reversal

of the Na+/Ca2+ exchanger (NCX) [48]; (Figure 2). This Ca2+ is

sequestered by mitochondria and leads to mitochondrial bioener-

getic dysfunction, which is characterized by impaired oxidative

phosphorylation, ROS generation, the release of apoptogenic pro-

teins, such as cytochrome C, and cell death by apoptosis or necro-

sis [49].

Glutamate-Mediated Toxicity

Glutamate excitotoxicity is one of the major contributors

toward ischemic injury in the CNS [50]. OLs are sensitive to

glutamate-induced cell death [48] with an EC50 of 200 lM for

a 24-h exposure period [51]. The glutamate signaling is

governed by ionotropic and metabotropic glutamate receptors

(iGluRs and mGluRs, respectively) and GluTs [52,53]. OLs

express three main types of iGluRs: the AMPA and kainate

receptors, predominantly located on their cell body, and NMDA

receptors, clustered on their myelinating processes [25,54].

Pre-OLs strongly express all three groups of mGluRs, but these

are downregulated in mature OLs [55]. GluTs are responsible

Figure 2 The major pathways governing neurotransmitter-mediated oligodendrocyte death in hypoxia–ischemia (HI). The glutamate surge that occurs

during HI leads to the overactivation of AMPA/kainate receptors on oligodendrocyte somata and NMDA receptors on myelinating processes. ATP is also

released in HI, partly from the oligodendrocyte itself via pannexin hemichannels, leading to the overactivation of purinergic P2X7 receptors and enhanced

Ca2+ signaling. The Ca2+ surge leads to the activation of voltage-gated calcium channels (VGCC) and reversal of Na+/Ca2+ exchanger (NCX), further

increasing the intracellular Ca2+. The glutamate transporter EAAT2 also starts to operate in reverse, contributing to the surge in extracellular glutamate.

The excess cytosolic Ca2+ is sequestered in mitochondria where it leads to mitochondrial disruption and oxidative stress and eventual death to

oligodendrocytes.
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for the uptake of glutamate from the extracellular space and

maintenance of low extracellular glutamate levels (1–2 lM).

However, under conditions of energy failure that result from

HI, GluTs on OLs, astrocytes and microglia operate in reverse,

with release of glutamate into the extracellular space [48,56].

OLs have for a very long time, been known to be vulnera-

ble to AMPA/kainate receptor-mediated excitotoxicity [57,58].

The AMPA receptors on mature, myelinating OLs contain

subunits GluR3 and GluR4, but not GluR1 [59], and although

mRNA for GluR2 is present, immunoprecipitation experiments

indicate that GluR2 does not assemble with the other subun-

its [22,60], which renders them highly permeable to Ca2+

when activated [23,61]. In fact, Ca2+ influx via these recep-

tors alone is enough to induce death of OLs by excitotoxicity

in culture, [61] and blockade of AMPA/kainate receptors

alone prevents death of OLs by OGD during cerebral ischemic

injury [3]. Prolonged activation of these receptors leads to

caspase-dependent and caspase-independent death pathways

[62], and this toxicity is dose-dependent [58]. Recent work

suggests the involvement of disturbed Zn2+ homeostasis in

AMPA-induced excitotoxicity. It has been demonstrated [63]

that activation of OL AMPA receptors leads to mobilization of

intracellular Zn2+ and a surge in cytosolic Zn2+, which con-

tributes toward ROS production and mitochondrial depolariza-

tion, by a mechanism which is altogether separate from the

Fenton reaction.

Oligodendrocytes express mRNA for the kainate subunits

GluR6, GluR7, KA-1, and KA-2, but not for GluR5 [22]. Nontoxic

concentrations of glutamate can sensitize these cells to comple-

ment attack, inducing OL death, in a process that is mediated

exclusively by activation of kainate receptors. This complement-

induced death of OLs occurs via formation of the membrane

attack complex, which increases membrane conductance and

leads to a Ca2+ surge [64].

Excitotoxic OL death was previously thought to be exclusively

mediated by AMPA and kainate glutamate receptors. Three

recent reports [24,54,65] have manifestly altered this view by

showing in vivo that OLs and myelin possess NMDA receptors

and that these are involved in ischemic injury. White matter

OLs at all stages of development contain NR1, NR2C, and NR3A

NMDA receptor subunits, allowing for inward currents upon

binding of glutamate [66]. OL NMDA receptors are enriched

with NR2C and NR3A subunits, which are blocked weakly by

extracellular Mg2+ and allow for the generation of a current

even at the cell’s resting membrane potential [65–67]. As

NMDA receptors are clustered on the myelinating processes of

OLs, receptor activation leads to a drastic increase in ion con-

centration because of the small intracellular volume [25,54,68]

with disruption of myelin structure and action potential propa-

gation [69].

In pre-OLs, glutamate toxicity also occurs via a non-receptor-

mediated mechanism, referred to as oxytosis, or oxidative gluta-

mate toxicity [70]. This involves system x�c , a plasmalemmal

antiport protein that transports cystine into the cytosol in

exchange for glutamate to the extracellular space, in a 1:1 ratio

[51]. Once in the cytosol, the cystine is converted to cysteine,

which is used in the production of glutathione [71]. High extra-

cellular glutamate concentrations can reverse the direction of

this transport, promoting the efflux of cystine with consequent

depletion of intracellular glutathione, and enhancement of

oxidative stress [51,72]. Although this phenomenon is not exclu-

sive to pre-OLs, they exhibit enhanced, maturation-dependent

vulnerability because of low levels of glutathione peroxidase and

SODs, especially SOD-2 [35–37].

ATP-Mediated Toxicity

ATP activates ionotropic P2X and metabotropic P2Y purinorecep-

tors, both of which are expressed by OLs [73]. P2X receptors con-

sist of P2X1-7 subunits that are most permeable to Ca2+ ions

[74,75]. During ischemia, ATP-mediated toxicity to OLs occurs

mainly via P2X7 receptor subtypes, the sustained activation of

which induces cell death, myelin damage, and white matter injury

[53,76,77].

During situations of metabolic stress, such as cerebral ische-

mia, anoxic depolarization causes ATP to be released from glial

cells, leading to a surge in the extracellular ATP concentration

[78]. It has been suggested [76] that OLs may release ATP dur-

ing ischemia via pannexin hemichannels, resulting in depolar-

ization of mitochondria and release of ROS. ATP released from

dying cells can continue to aggravate P2X7-mediated injury [6].

Functional P2Y and P2X receptors are also expressed by pre-OLs

[79], the latter of which exhibit postischemic downregulation

[80].

ATP-mediated toxicity leads to apoptosis or necrosis of OLs, the

mode of cell death being determined by the intensity of the Ca2+

surge, which, in turn, depends on the intensity of the ischemic

insult [6]. Prolonged stimulation of P2X7 receptors also leads to

several enzyme and secondary messenger cascades, with release

of cytokines such as interleukin-1b and activation of mitogen-

activated protein kinase (MAPK) and nuclear factor-jB, among

others [75,81].

Mitochondrial Disruption and Oxidative Stress

Oxidative damage is a cardinal consequence of neurotransmit-

ter-mediated toxicity. HI rapidly causes oxidative stress in OLs,

which is characterized by enhanced production of the superox-

ide radical (O�
2 ), lipid peroxidation, and reduction of Fe3+ to the

oxidant Fe2+ [82]. The exposure of OLs to systems which gener-

ate free radicals, or free radical donors, such as O�
2 and NO,

leads to their rapid necrosis or apoptosis [5,83].

The drastic rise in cytoplasmic Ca2+ that occurs during HI has

profound consequences for mitochondria, which sequester this

cation in large amounts and generate ROS at levels dependent

on Ca2+ uptake [84]. The oxidative stress that ensues activates

several signaling pathways that modulate the functions of

enzymes and transcription factors. These signals cause changes

in gene expression that influence the cell’s survivability [85].

O�
2 and NO radicals are particularly toxic to mitochondria as

they interact with and block several key proteins of the respira-

tory chain [18]. These radicals also lead to a diffusion-limited

generation of peroxynitrite, which causes death of OLs by lipid

peroxidation, release of Zn2+, activation of extracellular signal-

regulated kinases and of 12-lipoxygenase, and formation of

additional ROS [86].
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Auxiliary Mechanisms

Kinins are peptides produced at sites of tissue injury or inflamma-

tion [87]. They activate specific B1 or B2 receptors, which mediate

a number of signaling transduction mechanisms [88]. In the CNS,

kinins act as neuromediators [89]. They also promote the synthe-

sis of other pro-inflammatory mediators, including cytotoxins and

prostanoids, which lead to tissue damage and blood–brain barrier

breakdown [88,90]. Functional kinin receptors are expressed by

OLs, and their activation leads to a cytosolic Ca2+ surge, inflamma-

tion, and turnover of phosphoinositide [1,91]. Following ische-

mia, expression of B1 and B2 kinin receptors is upregulated, and

the concentrations of bradykinin and kallidin also increase and

result in damage and death of neural and glial tissue. Because of

this, B1R and B2R receptor antagonists may be useable as neuro-

protective and glioprotective agents during stroke, especially

because they target multiple mechanisms that are involved in dif-

ferent stages of brain pathology [1].

The activation of dopamine D2 and D3 receptors [92], GABAA

receptors [22] and adenosine A2A receptors [93] has also been

implicated in ischemic damage of OLs. Moreover, A1 adenosine

receptors are found on pre-OLs, and their activation in HI inhibits

maturation of these cells [94], with consequent shortage of myeli-

nating OLs.

The Role of Neighboring Glia

Neighboring glia cause bystander damage to OLs in HI. Glutamate

activates AMPA/kainate receptors in both resting and activated

microglia at the site of injury and thereby enhances production

and release of the cytokine, tumor necrosis factor-a [95]. This can

kill OLs by apoptosis and by potentiation of interferon c toxicity

and is more toxic to pre-OLs than to mature OLs [96,97]. Reactive

microglia also release interleukin-1b, glutamate [98], and reactive

oxygen and nitrogen species, such as peroxynitrite [40], which

further inhibit glutamate uptake and amplify excitotoxic damage

[99].

Activation of microglia is a major source of damage to pre-OLs

in PVL, especially as the number of microglia in cerebral white

matter peaks during the period of highest vulnerability to PVL

[100]. Reactive astrocytes, microglia, and macrophages also dam-

age pre-OLs in PVL, by the release of interferon c [101], which

leads to an increase in inducible nitric oxide synthase (iNOS) that

becomes upregulated during HI [102]. iNOS generates NO, which

injures pre-OLs by peroxynitrite formation and nitrosative dam-

age. Antimicroglial agents, such as minocycline and melatonin,

provide promising routes to the attenuation of pre-OL damage

and demyelination in PVL [97].

Recovery from Trauma and Role of Adult
Oligodendrocyte Progenitor Cells (OPCs)

An important task of the adult CNS after an episode of HI is the

replacement of affected OLs and the remyelination of affected ax-

ons, to restore saltatory conduction, improving motor function

[103]. In vivo rodent models of stroke have demonstrated that a

few days following an insult, OLs surrounding the infarct tend to

increase in number [104]. Axons that have been demyelinated as

a result of trauma or disease can be remyelinated by immature

cells that “respond to demyelination by differentiating into myeli-

nating OLs” [105]. These cells, now referred to as adult OPCs,

form part of a larger subtype of glial cells, NG2+ glia, which

express the NG2 proteoglycan and platelet-derived growth factor-

alpha (PDGF-a) receptors [106]. Also known as polydendrocytes,

these cells are closely intermingled with other glial cells in the

CNS, but nonetheless represent a distinct cell population [107].

Adult OPCs are not pre-OLs but mature cells which develop

after birth. They become activated during axonal inflammation

and/or demyelination and develop into mature, myelinating OLs

[108]. Many chemical signals appear to be responsible for their

activation, including axonal signals released on demyelination,

growth factors and cytokines from other activated glial cells, as

well as other injury-induced stimuli, such as ATP and glutamate

surges [4]. It is of interest that, although TNF-a causes death of OL

by apoptosis [96], lack of TNF-a leads to a delay in remyelination

and a reduction in the population of proliferating adult NG2+

OPCs, which is followed by a decrease in the number of myelinat-

ing OLs. Apparently, the binding of this cytokine to TNF receptor

2 (TNFR2) is critical for the regeneration of OLs after trauma

[109].

Recently, several therapies have been evaluated to target the

protection or multiplication of these progenitors and allow for

replacement of OLs and remyelination. Sun et al. [110] report

that the synthetic cannabinoid agonist WIN55, 212-2, has been

shown to reduce injury to NG2+ glia cells and to promote their

multiplication in the stroke penumbra. Adenosine was found to

accelerate the maturation of OPCs in culture [111] and erythro-

poietin to stimulate oligodendrogenesis and maturation in vivo

[112]. The transplantation of predifferentiated human embryonic

stem cells, which develop into myelinating OPCs, has also been

proposed [103].

In PVL, pre-OLs and immature OLs also exhibit a defensive

reaction in response to HI. These cells typically take the form of an

enlarged soma with elaborate, thickened processes that are not

typical of OLs at this stage of development and with a concen-

trated distribution around areas of injury [34]. HI also promotes

accelerated maturation of pre-OLs to immature OLs, which are

less vulnerable to ischemia [7].

Protective Strategies for
Oligodendrocyte Injury in HI

Numerous neuroprotective agents have been developed and

tested for their ability to block specific cell damaging pathways

in the ischemic cascade. Although many of these gave promis-

ing results in animal models, clinical trials have been, for the

most part, disappointing, because of a lack of efficacy and/or

clinical safety concerns. This failure may be explained, in part,

by the histological and morphological differences between

human and rodent brains [113]. Ginsberg [114] also suggests

that many agents may have been taken to clinical trials without

sufficient preclinical evidence of efficacy. More rigorous experi-

mentation is necessary to elucidate efficacious and clinically safe

neuroprotective and glioprotective agents, with a focus on
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targeting multiple biochemical cascades and CNS cell types, and

combinatorial therapies. A summary of the agents that have

been deemed most promising in conferring protection to OLs is

provided in Table 1.

Protection Against Neurotransmitter-Mediated
Injury

Excitotoxic OL, pre-OL, and neuronal injury can be attenuated by

administration of the AMPA antagonist NBQX, which preserves

white matter structure and improves motor deficits [3,42,115],

although this compound may not be clinically safe [116]. Topira-

mate, a clinically safe anticonvulsant, protects pre-OLs against HI

when administered postinsult, as does NBQX [117]. SPD 502, a

competitive AMPA antagonist, protects both gray and white mat-

ter, including OLs, when administered intravenously 15 min

before the insult, and for 4 h after the insult [118]. Other AMPA

antagonists that have been shown to protect OLs against excito-

toxic damage include GYKI 52466 [3] and CNQX [58]. Dihydro-

kainic acid, an inhibitor of glutamate release via reverse transport,

significantly protected immature OLs from ischemic injury in cul-

ture [119].

Table 1 Therapeutic candidates for oligoprotection in hypoxia–ischemia

Mechanism Oligoprotective agent

Oligodendrocyte

maturation stage Experimental model References

AMPA antagonist NBQX Mature Brain slices (mouse) 3

Pre-OLs In vivo(rat) 42

Topiramate Pre-OLs In vivo(rat) 117

SPD502 Mature In vivo (rat) 118

GYKI52466 Mature Brain slices (mouse) 3

CNQX Mature Optic nerve oligodendrocyte culture 58

NMDA-antagonist D-AP5 Mature Live adult rat optic nerve 24

Pre-OLs, immature, mature Brain slices (rat) 65

MK801 Mature Live rat optic nerve 24

Pre-OLs, immature, mature Brain slices (rat) 65

Memantine Mature Brain slices (rat) 69

Pre-ols In vivo (rat) 120

7-CKA Mature Live adult rat optic nerve 24

Reverse glutamate transport inhibitor Dihydrokainic acid Immature Cultured rat OLs 119

P2X7 antagonist BBG Mature Rat optic nerve oligodendrocyte

culture + isolated optic nerve

53

Oxidized ATP

P2X antagonist PPADS

ATP degrader Apyrase 76

Pannexin hemichannel blocker Mefloquine

Adenosine receptor antagonist SCH58261 Mature In vivo (rat) 93

Caffeine Pre-OLs In vivo (mouse) 94

Antioxidant/radical scavenger Mangiferin Mature Optic nerve oligodendrocyte culture 84

Morin

N-acetyl cysteine Pre-OLs Rat oligodendrocyte progenitor cultures 124

Edaravone Mature In vivo (rat) 127

Mature Clinical trial 128

a-phenyl-tert-butyl-nitrone Mature In vivo (rat) 126

Vitamin K Pre-OLs Cultured rat OLs 129

Ebselen Mature In vivo (rat) 130

Mature Clinical trial 133

Erythropoietin Pre-OLs In vivo (sheep) 135

Melatonin Pre-OLs In vivo (rat) 136,137

Estradiol Mature In vivo (mouse) 138

Iron chelator Deferoxamine Mature Cultured rat OLs 134

Antiapoptotic agent IGF-1 Pre-OLs In vivo (rat) 97,140

Pre-OLs In vivo (lamb) 97,141

Mature In vivo (mouse) 142

CNTF Pre-OLs In vivo (mouse) 97,143

Estradiol Pre-OLs Cultured rat OL + in vivo (rat) 97,144

Antimicroglial agent Minocycline Pre-OLs In vivo (rat) 97,145

Cannabinoid agonist WIN55, 212-2 OPCs In vivo (rat) 110

BBG, brilliant blue-G; OLs, oligodendrocytes; OPC, oligodendrocyte progenitor cell.
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NMDA receptors are excellent targets for antagonists because

they contain several sites at which ligands can bind in a subunit-

selective manner, such as glutamate-binding sites, ion-channel

pores, and allosteric sites on the N-terminal domain. NMDA

receptor antagonists that target NR3A and NR2C subunits have

the potential of acting as major therapeutic targets for white mat-

ter preservation in stroke [67]. The NMDA antagonists, D-AP5,

and MK801 protect OLs and myelin from excitotoxic death, but

are not clinically safe [24,65,72]. Memantine, a clinically safe,

uncompetitive NMDA receptor blocker is also effective against

injury in both OLs and pre-OLs [72,120], and 7-CKA protects OLs

and myelin during chemical ischemia in vitro [24]. Of interest is

that blockade of NMDA receptors or removal of extracellular Ca2+

worsens, rather than improves, functional recovery in aging ani-

mals [121], which emphasizes the importance of age-specific

stroke treatment.

Another possible therapeutic route is the upregulation of GluTs,

as these allow for ischemic tolerance subsequent to ischemic pre-

conditioning. EAAT2 promoters, such as valproic acid, can protect

glia against ischemia by enhanced removal of glutamate from the

extracellular space [122–124].

Ischemia-induced mitochondrial depolarization and oxidative

stress are partially reversed by P2X7 receptor antagonists, by

the ATP-degrading enzyme apyrase, and by pannexin hemi-

channel blockers such as mefloquine. P2X7 receptor antago-

nists do not interfere with normal physiological function

because of their selective activation [76,77]. The P2X7 antago-

nists Brilliant Blue-G (BBG), oxidized ATP (oATP), and the

nonselective P2X antagonist PPADS prevent ATP-mediated OL

toxicity [53]. The calmodulin antagonist calmidazolium has

been shown to inhibit P2X7-receptor evoked glutamate release

and may therefore have potential in oligoprotection during

ischemia [125]. The administration of the selective adenosine

A2A receptor antagonist SCH58261 also protects OLs against

cerebral ischemia by reducing the activation of the MAPK,

JNK [93]. Caffeine, an adenosine receptor antagonist, was

found to be protective in PVL as it promotes the maturation of

pre-OLs after HI [94].

Protection Against Oxidative Stress

Antioxidants are potent therapeutic candidates for oxidative dam-

age to OLs in cerebral ischemia. Mangiferin and morin, two natu-

ral antioxidant polyphenols, protect OLs from excitotoxic insult

by free radical scavenging and cytosolic Ca2+ handling [84].

N-acetyl cysteine also attenuates AMPA/kainate OL cytotoxicity

by increasing intracellular glutathione levels [124]. Pretreatment

with the spin-trap agent a-phenyl-tertbutyl-nitrone (PBN)

reduced the number of damaged OLs by 55%, 40 min after the

insult [126]. The radical scavenger edaravone protects all compo-

nents of the neurovascular unit against oxidative stress

[8,127,128], while Vitamin K prevents oxidative damage to pre-

OLs and neurons during HI, with clinical safety [129]. 12-lipoxy-

genase inhibitors may also be of protective value to OLs at all

stages of development, as 12-lipoxygenase is a potent generator of

ROS [97].

Ebselen, a mimic of glutathione peroxidase and phospholipid

hydroperoxide glutathione peroxidase, exerts potent antioxidant

effects on OLs and neurons [130–132]. When administered intra-

venously, 2 h after stroke onset, it can salvage damaged tissue

without major side effects [130]. In a clinical trial, ebselen demon-

strated a significant improvement in stroke patients who started

ebselen treatment within 24 h of onset of the insult [133]. The

iron chelator deferoxamine protects OLs from cytotoxic effects

induced by H2O2 and suppresses free radical formation [134]. In

clinical trials for PVL, erythropoietin, an antiinflammatory, antia-

poptotic, antioxidant, and neurotrophic agent was found to

reduce injury and preserve myelination in infants with moderate

damage, without significant adverse effects [135]. Melatonin, a

free radical scavenger and up-regulator of SOD, catalase, and glu-

tathione peroxidase, has been found to promote pre-OL matura-

tion after perinatal brain damage [136] and decreases white

matter inflammation, promoting myelination after neonatal

stroke [137]. The administration of the hormone 17b-estradiol
was recently shown to attenuate OL loss in the corpus callosum of

male mice, and results in decreased demyelination and microglial

activation [138], by a quinol-based cyclic antioxidant mechanism

[139].

The ability to visualize OLs in living brain through cell type-

selective transfer of genes encoding fluorescent proteins [146]

provides new opportunities to understand cell–cell interactions of

recovery in diseases of the myelinating unit.

Conclusion

Largely ignored for many years, the importance of OLs in the

pathophysiology of a variety of neurological disorders has

become evident. We now know that OLs are major targets of

cerebral ischemia, both in the case of adult-onset stroke and

especially in PVL, which means that treatment strategies that

exclusively target neuronal recovery cannot be optimally suc-

cessful. This has led and should continue to lead researchers to

make new links and explore new pathways of investigation,

with the objective of treating cerebral ischemia in a more com-

prehensive manner.

New, groundbreaking research on oligodendrocyte pathophysi-

ology in ischemia is constantly being made available. A notable

example is the relatively recent discovery of functional NMDA

receptors on OLs, antagonists of which are now being considered

a possibly valid and valuable therapeutic route. Further work

should continue to elucidate the exact underlying mechanisms of

oligodendrocyte pathophysiology and to shed light on therapies

that simultaneously target multiple mechanisms of injury and

multiple components of the neurovascular unit. Therefore, it is

hoped that future investigations should continue to work toward

generating animal models of white matter stroke along with well-

designed clinical trials to extrapolate the findings on experimental

animals to human neurological disease. These therapies are

expected to be more innovative, more extensive, and more

clinically viable.
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