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SUMMARY

Introduction: Gliomas are the most common primary brain tumors in adults and a signifi-

cant cause of cancer-related mortality. A 9-gene signature was identified as a novel prog-

nostic model reflecting survival situation obviously in gliomas.Aims: To identify an mRNA

expression signature to improve outcome prediction for patients with different glioma

grades. Results: We used whole-genome mRNA expression microarray data of 220 glioma

samples of all grades from the Chinese Glioma Genome Atlas (CGGA) database (http://

www.cgga.org.cn) as a discovery set and data from Rembrandt and GSE16011 for validation

sets. Data from every single grade were analyzed by the Kaplan–Meier method with a two-

sided log-rank test. Univariate Cox regression and linear risk score formula were applied to

derive a gene signature with better prognostic performance. We found that patients who

had high risk score according to the signature had poor overall survival compared with

patients who had low risk score. Highly expressed genes in the high-risk group were ana-

lyzed by gene ontology (GO) and gene set variation analysis (GSVA). As a result, the reason

for the divisibility of gliomas was likely due to cell life processes and adhesion. Conclusion:

This 9-gene-signature prediction model provided a more accurate predictor of prognosis

that denoted patients with high risk score have poor outcome. Moreover, these risk models

based on defined molecular profiles showed the considerable prospect in personalized can-

cer management.

Introduction

Gliomas are the most common primary central nervous system

tumor, which remain one of the most challenging diseases in

humans with considerable mortality and posttreatment morbidity

[1]. Patients with newly diagnosed glioblastoma multiforme

(GBM) have a median survival of approximately 1 year, with

generally poor responses to all therapies. As such, scientific and

clinical advances are required. Although adjuvant radiotherapy

and chemotherapy improves survival, death occurs inevitably

from either recurrent or progressive disease [2].

Introduction of molecular biomarkers in the management of

patients with cancer may improve their clinical outcomes.

Many biomarker candidates have been generated by

high-throughput technologies such as microarray gene expres-

sion profiling [3], which is a powerful and promising method

for evaluating the expression of a large number of genes and

evaluating changes in genome-wide expression. The gene

expression pattern of the primary tumor has been shown to

predict the outcome for several malignancies, including lung

cancer, head and neck cancer, and breast cancer. Numerous

genes have been discovered to be important in the
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management of gliomas, with changes in gene expression

having a close relationship with patient prognosis. However, it

is unclear whether a signature is available to predict

clinical outcomes in patients in every grade in Chinese popu-

lation. In the present study, we utilized mRNA expression

profiling of gliomas to identify a signature that could success-

fully divide patients into two groups with different overall

survival.

Methods

Datasets

Whole-genome mRNA expression microarray data were deposited

from the Chinese Glioma Genome Atlas (CGGA) database [4] as a

training set, and the following two datasets were obtained for vali-

dation: Repository for Molecular Brain Neoplasis Data

(REMBRANDT, http://caintegrator.nci.nih.gov/rembrandt) and

GSE16011 data (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE16011).

Statistical Analysis

In those 220 glioma samples of all grades from the CGGA data-

base, there were 97 grade II tumors, 34 grade III tumors, and 89

GBMs. Overall survival time (OS) was defined as the interval from

the date of diagnosis to death or the last follow-up. The prognostic

difference of patients with high or low expression of a certain gene

(higher or lower than the median value) was calculated by the

Kaplan–Meier method with the two-sided log-rank test by two

packages (survival and KMsurv) of R. The number of significant

genes (P < 0.05) was 1095, 3397, and 1906 in grade II, III, and IV,

respectively. We then chose the overlap of the three groups of

genes above. As a result, nine genes remained, which were used

for signature development.

To investigate the effectiveness of these nine genes as a mRNA-

based gene signature for clinical outcome prediction, a mathemat-

ical formula for survival prediction was constructed. More specifi-

cally, we assigned each patient a risk score according to a linear

combination of the expression level of the mRNAs, weighted by

the regression coefficients derived from the univariate Cox regres-

sion analyses [5]. From our nine-gene signature, the risk score for

each patient was calculated as follows:

Risk score ¼ exprgene1 � bgene1 þ exprgene2 � bgene2 þ � � �
þ exprgenen � bgenen

Patients having higher risk scores are expected to have shorter

overall survival. We divided patients in the training dataset into

high-risk and low-risk groups using the median mRNA signature

risk score as the cutoff point. With regard to the validation sets,

we used the same b. Considering genes with multiple probes, we

calculated their average expression value and then subsequently

excluded samples without prognostic information. The Kaplan–

Meier method was used to estimate overall survival, and the

differences in survival between high-risk and the low-risk patients

were analyzed using the two-sided log-rank test.

Gene Ontology (GO) Analysis of Associated
Genes in Every Grade

Significant analysis of microarray (SAM)was performed in every

grade of gliomas identifying the differently expressed genes, and

then, GO analysis of the top 3000 genes, highly expressed in the

high-risk group, was performed using DAVID [6] for function

annotation (Table 1).

Gene Set Variation Analysis (GSVA) with Gene
Lists Expression

For another functional annotation, we also conducted GSVA by

GSVA package [7] of R. Gene lists were from the following GO

terms: 0000084, 0000236, 0043065, 0005925, 0045773, 0050771,

and 0042789.

Results

Identification of 9-Gene Signature and its
Association with Survival and Expression from
the Training Set

In the 220 glioma samples of all grades, we used a two-sided log-

rank test to analyze each grade mRNA expression microarray data

in the training set and identified nine genes that were the overlap

of gene lists in each grade that were significantly associated with

OS (P < 0.05, Table 2). We then applied the nine genes to develop

a signature using the risk score method. The risk score was calcu-

lated for each of the 220 patients in the training set, and patients

in every grade were then successfully divided into a high-risk

group and a low-risk group based on the cutoff value (median risk

score). We observed that patients in the high-risk group had a

shorter median OS than those in the low-risk group (Figure 1A–

C). Subsequently, we also found that nine genes were signifi-

cantly differently expressed from II to IV grade (Figure 2).

The related clinical information such as The Cancer Genome

Atlas (TCGA) and CGGA subtype, which were annotated as previ-

ously reported [4], was listed as well as the isocitrate dehydroge-

nase (IDH) mutation status, histology, gender, age, Karnofsky

Table 1 Ten gene ontology (GO) terms of associated genes in every

grade

Name Count P-Value Grade

GO:0060284~regulation

of cell development

39 0.010906 II

GO:0010721~negative

regulation of cell development

13 0.015282171 II

GO:0022403~cell cycle phase 150 1.21E-32 III

GO:0007049~cell cycle 222 1.15E-30 III

hsa04510~focal adhesion 58 4.78E-07 III

GO:0042981~regulation

of apoptosis

146 6.89E-05 III

GO:0006915~apoptosis 99 0.020368 III

GO:0006350~transcription 333 1.10E-08 IV

GO:0007049~cell cycle 269 5.49E-65 IV

GO:0000278~mitotic cell cycle 171 2.47E-61 IV
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performance status (KPS), which were obtained from CGGA

database, some parameters also had a corresponding trend from

low risk score to high risk score. Patients with high risk scores

obviously appeared to display G3 and wild-type IDH1 accumula-

tion, and patients with low risk scores tended to show G1, G2, and

IDH1 mutation accumulation. Patients with low risk scores had

longer OS than those with high risk scores (Figure 3).

Confirmation of the Prognostic Value of the
Gene Signature in Validation Sets

For validation, we downloaded the whole-genome mRNA

expression profiling of glioma patients from Rembrandt and

GSE16011. With the remaining 319 and 256 glioma patients in

the two datasets, we then used the same risk score formula

obtained from the training set to get a risk score for each indi-

vidual in each respective situation. In each grade, patients were

divided into the high-risk and low-risk groups in line with the

risk score, which was higher or lower than the cutoff. The prog-

nostic value of the signature was validated in both of the data-

sets (Figure 1D–I).

Table 2 Nine genes associated significantly with overall survival time

(OS)

Symbol Hazard ratio Parametric P-value

BIRC5 1.653 <0.001

TEAD2 2.382 <0.001

TUBA1B 2.942 <0.001

MT1E 1.365 0.004

RAB1A 0.584 0.001

SFXN4 0.22 <0.001

TPX2 2.588 <0.001

HDAC4 0.548 <0.001

FAM125B 2.447 <0.001

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Figure 1 These Kaplan–Meier estimates of overall survival in patients with each grade glioma were constructed by the signature. P-values are indicated

for the high-risk and low-risk groups stratified according to the signature risk score in the Chinese Glioma Genome Atlas (CGGA) data (A, B, and C), the

GSE16011 data (D, E, and F), and the Rambrandt data (G, H, and I). H, high-risk group; L, low-risk group.
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Functional Annotation of the Signature

Using GO analysis, we found that the associated genes, which

were obtained from those highly expressed in the high-risk group,

were mainly associated with evolution of cell life and adhesion.

We also performed GSVA that showed that patients with a higher

risk score tended to have a lower expression of anticell develop-

ment-, cell apoptosis- and adhesion-, transcription-associated

genes, and a higher expression of regulation of cell development-,

mitotic cell cycle-associated genes in each grade, respectively (Fig-

ure 4). These data may explain the different prognoses of the two

groups divided by the signature.

Gene Function Interpretation

The nine genes used in our signature were RAB1A, BIRC5,

TEAD2, TUBA1B, MT1E, SFXN4, TPX2, HDAC4, and FAM125B.

We found that the majority of these genes have similar functions

including cell development, apoptosis, proliferation, and migra-

tion.

RAB1A is a member of the Rab family of small GTPases with a

well-characterized function in the regulation of vesicle trafficking

from the endoplasmic reticulum to the Golgi apparatus and within

Golgi compartments [8].

BIRC5 is preferentially expressed in human cancer cells and

has multiple functions, including the inhibition of cell apoptosis

[9], control of the cell cycle [10,11], promotion of tumor angio-

genesis [12,13] resistance to chemotherapy or radiotherapy [14],

acceleration of metastasis and recurrence [15], and regulation of

cancer cell autophagy [16], all of which favor cancer cell survival

and tumor maintenance.

TEAD2 encodes a protein that regulates a wide range of devel-

opmental processes, including skeletal and cardiac muscle devel-

opment, skeletal muscle regeneration, neural crest development,

Figure 2 The expression difference of 9-gene signature in Chinese Glioma Genome Atlas (CGGA) dataset. A single spot was the gene expression value of

an individual patient. Lines in the middle were the mean expression value.
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and notochord development [17–21]. The major roles of Tead2

appear to be the promotion of cell proliferation and suppression of

cell death.

TUBA1B was more highly expressed in hepatocellular carci-

noma (HCC) tumor tissues than in adjacent nontumor tissues,

which was a significant predictor for poor overall survival of HCC

patients [22].

MT1E (Metallothionein 1E) has been found to be highly

expressed in motile cell lines and can enhance the migration and

invasion of human glioma cells by inducing MMP-9 inactivation

via the upregulation of NF-jB p50 [23].

SFXN4 (comprising SFXN4a and SFXN4b) is widely expressed

in almost all tissues examined, which suggests that functional

redundancy is likely [24].

TPX2 is a mitotic regulator involved in the formation of the

mitotic spindle and in oncogene-induced mitotic stress. This

protein is frequently overexpressed in human cancer, and its

deregulation may participate in chromosome numeric aberrations

as well as other forms of genomic instability in cancer cells [25].

HDAC4 (histone deacetylase 4) belongs to a class IIa of histone

deacetylases, which are important regulators of gene expression,

and controls pleiotropic cellular functions [26]. HDAC4 was found

to impinge on multiple and apparently contradictory cellular fates,

including differentiation, apoptosis, survival, cell growth, and

proliferation. HDAC4 is massively expressed in the proliferative

compartment of the colon, and is downregulated during intestinal

differentiation [27].

FAM125B is a component of the ESCRT-I complex, a

heterotetramer, which mediates the sorting of ubiquitinated cargo

protein from the plasma membrane to the endosomal vesicle.

However, it is unknown whether there is any correlation between

its function and human tumors.

Discussion

As a common fatal central nervous system tumor, gliomas are

diagnosed by histopathological criteria. The robust prognostic

factors for the majority of these tumors are limited to tumor grade

and gene variation. In recent years, the molecular classification of

gliomas has developed rapidly. Several groups have reported

classification systems based on mRNA expression [28–30], micr-

oRNA expression [3], or methylation [31,32], and the majority of

the classification systems are focused on mRNA expression. We

hypothesized that a set of genes or gene profile would be predic-

tive of survival after surgical resection in patients with glioma.

The main objective of the present study was to evaluate the gene

expression profiles, identify genes associated with outcome, and

build a gene expression signature based on the risk score method

(A) (B) (C)

Figure 3 Analysis of the signature risk score is illustrated for patients from grade II to IV (A, B, and C), including (Top) signature risk score distribution,

(Middle) patient survival duration, and (Bottom) clinical and molecular information.
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to assess high- and low-risk patients. Hence, we investigated the

mRNA expression profile of CGGA data to identify a prognostic

signature and found that patients with a high risk score had a poor

survival time compared with patients who had a low risk score.

By GO and GSVA analysis, we inferred that the divisibility of

glioma patients is likely related to cell life processes and adhesion.

However, only MT1E that can enhance the migration and inva-

sion of human gliomas cell had been published in gliomas. So, the

other genes need us to further explore.

Accurate staging before treatment is important and facilitates

the selection of appropriate treatment strategies. Despite improve-

ments, however, the current clinical staging modalities have not

proved very accurate [33–35]. A better understanding of the bio-

logical behavior of a tumor will help to determine appropriate

therapies, with the potential to improve the outcomes of patients

with gliomas.

The analysis of the gene expression profiles associated with dif-

ferent outcomes may be useful for the careful selection of thera-

pies and could also aid in tailoring treatment to the individual

patient [36,37].

Additionally, this approach may help to reduce the complexity

and dimensionality of genomic data to provide biological insights

that may translate into improved management of gliomas.

These observations lay the foundation for future development

of a mechanistically based molecular risk estimation model in

high-grade gliomas. The signature might lend itself better to trans-

lation into clinical practice for two reasons. First, while the expres-

sion of an individual gene can vary over short periods of time in

cancers, a gene signature is more static and more amenable to pre-

dictive screens. Second, the highly expressed genes of the signa-

ture in human cancers were associated with promotion of cell

proliferation and enhancing cell migration, invasion, and fre-

quency of genetic mutation. Further, in complex glioblastoma

tumors, it is considered that multiple, rather than single, genes

drive the disease process.
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