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Abstract

Cancer research relies on model systems, which reflect the biology of actual human tumors only to 

a certain extent. One important feature of human cancer is its intra-tumor genomic heterogeneity 

and instability. However, the extent of such genomic instability in cancer models has received 

limited attention in research. Here we review the state of knowledge about genomic instability of 

cancer models and discuss its biological origins and implications for basic research and for cancer 

precision medicine. We discuss strategies to cope with such genomic evolution, and evaluate both 

the perils and the emerging opportunities associated with it.

Introduction

Cancer is a disease characterized by the genomic instability of somatic cells. Genomic 

evolution generates genetic and epigenetic diversity, and the resultant cellular heterogeneity 

constitutes a fertile molecular ground for further evolution. In recent years, largely thanks to 

the advance of single-cell “omics” and sequencing technologies, clonal heterogeneity and 

tumor evolution have been studied extensively, and their importance for cancer progression 

and for the clinical outcome of cancer treatments is now widely appreciated (reviewed in 
1, 2).

Any functional interrogation of human cancer cells must rely on patient-derived cancer 

models, such as patient-derived cell lines (PDCLs), patient-derived organoids (PDOs) and 

patient-derived xenografts (PDXs). The successful derivation of such models requires that 

the tumor cells adapt to new environmental conditions, in other words, distinct selection 

pressures, and their propagation continuously selects for the fittest and most rapidly 

proliferating cells3–5. Moreover, as cancer cells are often deficient in their ability to properly 
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maintain genome integrity (reviewed in 6), their inherent genomic instability makes them 

susceptible to rapid acquisition of additional genetic insults throughout propagation. Non-

patient-derived cancer models, such as genetically-engineered mouse models (GEMMs), 

also experience genomic evolution, both at the tumor level and at the host level7. Cancer 

model evolution is thus emerging as an important aspect of cancer modeling.

In recent years, advances in the development of cancer models have greatly expanded their 

application in cancer precision medicine. First, large cohorts (also known as “biobanks”) of 

cancer models have been generated, and extensive genomic and phenotypic characterization 

of these models performed, in order to uncover genotype-phenotype associations at the 

patient population level8–31. Second, patient-derived models are increasingly being used as 

“avatars” of their tumor of origin, in an attempt to predict patient-specific drug 

response31–35. For both applications, cancer models ought to be faithful representations of 

the tumors from which they were derived, and remain genomically and phenotypically stable 

throughout propagation. The proper use of cancer models thus requires critical evaluation of 

these underlying assumptions in light of the propensity of these models to evolve.

The evolution of cancer models bears potential consequences for another burning issue in 

cancer research – its reproducibility. The “reproducibility crisis”, that is the inability to 

replicate results reported in the literature, has drawn much attention recently. Cancer 

research has been at the focus of this debate, following reports that only 11% to 25% of 

high-profile cancer studies could be replicated by an industrial lab36, 37. For example, 

differences between large-scale drug screens of cancer cell lines have been observed and 

debated in the literature38–40. While many explanations have been suggested to account for, 

and to some extent reconcile, such discrepancies39–45, the potential contribution of model 

evolution to observed differences remains underexplored.

In this Opinion, we summarize the emerging evidence for genomic evolution in cancer 

models, its biological origins and its functional consequences. We then highlight the 

implications for basic cancer research and for clinical translation, including cancer precision 

medicine. Finally, we suggest practical ways to mitigate the risks posed by genomic 

evolution, and propose how to constructively build upon this phenomenon in future research.

Model evolution: proof and prevalence

The factors shaping evolution (Fig. 1) can differ between GEMMs and patient-derived 

models, and between PDCLs, PDXs, and PDOs (Table 1). The rate of genomic evolution is 

determined by the genomic heterogeneity within the cell population, and by the genomic 

stability of the individual cells. Quantitative assessment of these traits can therefore be used 

to follow genomic evolution and estimate its prevalence (Box 1).

Genetically-engineered mouse models

De novo tumor evolution—GEMMs are a powerful tool to study tumor heterogeneity 

and follow tumor evolution. They have been used extensively for these purposes, especially 

with the advance of technologies to edit the genome and to molecularly profile tumors 

(reviewed in 7, 46, 47). As GEMMs are primarily generated by manipulating a single gene, or 
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a handful of genes, genomic evolution of the manipulated tissue must occur in order for 

tumors to form. Numerous studies have shown that diverse routes of genomic evolution 

could lead to the formation of molecularly distinct tumors, within the same mouse 

model48, 49. Nonetheless, genomic evolution is not stochastic; we and others have shown 

that specific transgenes induce specific secondary genetic events, thus identifying driver-

specific evolutionary trajectories of tumorigenesis50–52. Tumor formation in GEMMs is thus 

inherently associated with genomic evolution. Despite differences in the tumor genomic 

landscapes and in the relatively short time for tumor formation required in mice compared 

with humans46, this type of evolution is clearly a desired trait of GEMMs, as it largely 

mimics tumor evolution in human patients49, 52, 53.

Genetic instability in mouse colonies—Applying GEMMs for research involves their 

continuous breeding for the purpose of colony expansion and maintenance, which generates 

a risk for genomic diversification throughout the generations. Two populations of the same 

laboratory mouse strain will ultimately evolve in different directions, if maintained and 

propagated separately. Based on spontaneous mutation rates, 0.96 deleterious germline 

mutations are expected to arise in wildtype laboratory mice each generation, and this number 

is much higher in genomically unstable mice54. As colony maintenance relies on inbred 

breeding, there is ~25% likelihood for a new mutation to become homozygous, and thus 

fixed, in the population.

Indeed, different substrains of common mouse strains are acknowledged in the literature. For 

example, the commonly used C57BL/6 strain has evolved into multiple substrains, with the 

two major ones – C57BL/6J and C57BL/6N – differing in 34 single-nucleotide variants, 2 

indels and 15 structural variants in coding genes55. This genetic variation is associated with 

marked phenotypic variation55–58, and can severely mislead the interpretation of 

experimental results59–61. Therefore, the US Institute for Laboratory Animal Research 

(ILAR) assigns unique identifiers that designate the laboratory in which mice were 

maintained (see Related Links), and strain diversification is thus reflected in proper mouse 

strain nomenclature.

Patient-derived models

Established cancer cell lines—The diversification of established cell lines (ECLs) in 

culture has been appreciated for decades, and some of the most commonly used cancer 

ECLs, such as HeLa and MCF7, have become notorious for it62–67. In fact, similar to the 

mouse nomenclature, it has become common practice to designate the exact strain of HeLa 

used in one’s study (e.g., HeLa-CCL2, HeLa-S3 or HeLa-Kyoto). Nonetheless, ECLs are 

often considered to be clonal and stable for most applications, as evident by efforts to 

provide definitive characterization of their genomic landscapes and cellular 

dependencies8–14, as well as by lack of routine documentation of culture history (e.g., 

passage number is rarely tracked, reported or controlled for).

Related Links
http://dels.nas.edu/global/ilar/Lab-Codes
https://cellstrainer.broadinstitute.org
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Recent molecular analyses comprehensively characterized the genomic variation that exists 

between strains of ECLs, revealing rather extensive heterogeneity and evolution. Comparing 

multiple strains of commonly used cancer and non-cancer ECLs, we found evidence for 

extensive genetic variation at all genetic levels – point mutations, rearrangements and copy 

number alterations – and affecting many cancer-related genes. A comparison between over 

100 ECLs cultured independently in two laboratories (in the U.S.A and the U.K.), found a 

~20% chance that a mutation would be detected in only one of the two compared strains68. 

Variation in gene expression mirrored genetic variation, and specific genetic alterations were 

often associated with a transcriptional signature of the genetically perturbed pathway68. 

Preliminary observations from 14 strains of HeLa revealed similar magnitudes of genetic 

and transcriptional variation, which translated into corresponding proteomic variation as 

well69. In both of these studies, routine maintenance of cells under standard culture 

conditions resulted in rapid genomic diversification within a handful of passages. In 

agreement with these findings, a recent analysis of RNAseq data from eight cell lines found 

genetic variability across labs, which was associated with gene expression variability70. 

Therefore, the genetic, transcriptional and proteomic landscape of cancer ECLs keeps 

evolving in culture, leading to genomic differences across separate cultures of the same 

ECL.

In addition to genetic variation, cell line diversification could be induced by epigenetic 

variation. Given their more transient nature, epigenetic marks would likely be more sensitive 

to culture conditions than DNA sequences, making cell lines susceptible to epigenetic 

instability. Indeed, instability of DNA methylation and erosion of X-chromosome 

inactivation have been documented throughout the culture of human pluripotent stem cell 

lines71, 72. Similarly, continuous propagation of human mammary epithelial cells is 

associated with silencing of the tumor suppressor p16INK4A by hypermethylation of its 

transcription start site73, demonstrating that epigenetic instability can alter the 

tumorigenicity of cultured cell lines. Systematic analysis of epigenomic variation across 

strains of cell line cultures is yet to be performed.

New patient-derived cell lines—As described above, cancer ECLs, which were derived 

from patients many years ago, experience ongoing genomic evolution. To what extent would 

such evolution also affect recently derived early-passage PDCLs? Recently, systematic 

attempts to generate PDCLs have been initiated, in order to increase representation of certain 

genetic alterations and tumor lineages available for cancer research74–76. It has been hoped 

that these freshly derived PDCLs would resemble their tumors of origin better than ECLs 

that have been cultured, and have evolved, over decades.

While PDCLs were reported to largely retain the genomic features of primary tumors, 

differences between these models and their parental tumors were observed77–80. We recently 

analyzed copy number alterations (CNAs) in 38 samples of PDCL models from 5 cancer 

types, and determined how the genomic landscapes of these models evolved throughout their 

derivation (p0/1) and early propagation (through p20)81. We found evidence for continuous 

genomic evolution throughout passaging, with an average of ~20% of the genome 

differentially affected by CNAs between early and later passages81. Interestingly, CNA 

landscapes of PDCLs evolved more rapidly during the first few passages (<p5), compared to 
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the later time points (>p10). This suggests that the derivation of the models is associated 

with genomic evolution, and that the models eventually become more stable as they adapt to 

their new environment.

Patient-derived xenografts—PDXs are considered to be more physiologically relevant 

than cell lines, and to mimic the human disease more accurately, as their generation and 

propagation does not involve their culture in artificial in vitro conditions (reviewed in 4, 33). 

However, the in vivo xenograft environment is quite distinct from the original patient 

environment. First, metabolism and physiology differ between species. Second, PDXs are 

commonly transplanted subcutaneously, exposing the tumors to signaling cues, cellular 

interactions and mechanical constraints utterly different from their native microenvironment. 

And third, the lack of a functioning immune system in immune-compromised mice could 

alter tumor development and behavior82.

Indeed, PDXs undergo genomic evolution throughout their derivation and propagation. 

When engraftment and early passage propagation of breast cancer PDX models was 

followed using single-cell sequencing, extensive clonal dynamics were observed, which 

drastically changed the abundance of mutation clusters (and thus the allele fraction of 

mutations) throughout serial PDX passaging83. Similarly, the engraftment of human acute 

lymphoblastic leukemia (ALL) in mouse xenografts was shown to be associated with 

genomic evolution into a more aggressive malignancy84, and engraftment propensity varied 

considerably among genetically-distinct clones of acute myeloid leukemia (AML)85, 86. Our 

analysis of CNAs in 543 unique PDX models across 24 cancer types found that ~60% of the 

models acquired at least one large chromosomal aberration within a single passage, and 

~90% acquired at least one such aberration within four passages81. Similar to the 

observation in PDCLs, genomic evolution was most rapid during PDX initiation and early 

passaging, and its rate considerably decreased at later passages81, consistent with strong 

selection pressures being associated with model initiation.

Importantly, the rate of genomic evolution, defined as the fraction of the genome altered per 

passage, was similar between PDXs and PDCLs81. Comparing matched PDXs, a median of 

~12.5% of the genome was differentially affected by CNAs within four passages. One 

should note, however, that an in vitro passage normally involves many fewer cell divisions 

than an in vivo passage, so the rate of change per cell division may be smaller in vivo than in 
vitro. Nevertheless, these findings challenge the notion that PDXs better preserve the 

genomic landscapes of primary tumors.

It is worth noting that PDXs are also susceptible to epigenomic evolution throughout their 

propagation. A recent study that compared the methylation patterns between primary 

NSCLC tumors and their derived PDXs reported relatively low genome-wide Spearman 

correlations (ranging from 0.37 to 0.49)87. While many of the observed differences were 

related to tumor purity, others potentially reflect epigenetic instability87.

Patient-derived organoids—PDOs have emerged as physiologically relevant 3D model 

systems to study cancer in vitro (reviewed in 3). Long-term organoid cultures have been 

established from multiple epithelial cancer types, by embedding cancer cells into a 3D 
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matrix in medium containing tissue-specific growth factors that recapitulate the tumor niche. 

Cancer organoids have several advantages over 2D cell lines, including more complex 

cellular composition. The culture conditions also permit expansion of normal epithelial cells, 

providing the ability to obtain matched normal organoids from the same patients3.

Several arguments suggest that tumor organoids may experience less genomic evolution than 

their 2D counterparts and thus better retain tumor genomic features. First, organoid 

derivation from primary tumors is more efficient than that of PDCLs3, suggesting that their 

generation might be associated with less of a population bottleneck. Second, organoid 

culture conditions better recapitulate those of the original tissue3, potentially alleviating 

some of the selection pressures entailed in the in vitro transition. Third, genomic profiles of 

PDOs were found to be highly similar to those of the tumors of origin23, 28, 30, 31, and PDO 

drug response could recapitulate patient response in the clinic31, 88.

Nonetheless, PDOs are not exempt from in vitro model evolution. Extensive genetic 

diversity has been recently described in colorectal PDOs89; the derivation and long-term 

culture of such highly heterogeneous organoids are likely to be associated with clonal 

dynamics that will alter the clonal composition of the model, similar to that observed in cell 

lines and PDXs68, 81, 83, 84. Indeed, PDOs are not perfect genomic representations of their 

tumors of origin, and all of the major PDO cohorts reported to date have provided examples 

for differences in the status of both somatic point mutations and CNAs between matched 

primary tumors and PDOs23, 28, 30, 31, 90. Importantly, strong clonal dynamics have been 

recently described in PDOs, leading to rapid expansion of pre-existing minor subclones90. 

As in all other models, the inherent genomic instability of cancer cells is also likely to result 

in de novo genetic alterations on continuous propagation of organoid models28. Future 

studies will be required to characterize the extent of genomic evolution in PDOs, as matched 

genomic data from multiple time points throughout PDO passaging become available.

Mechanisms of cancer model evolution

The genomic evolution observed in cancer models could be the result of pre-existing 

heterogeneity, as clonal dynamics of pre-existing tumor subclones would lead to changes in 

their relative abundance. A rare primary tumor subclone could expand and become the 

dominant subclone in the model, thereby altering the molecular landscape of the model. 

Alternatively, genomic evolution could be the result of ongoing genomic instability, which 

could lead to the accumulation and fixation of new genetic alterations following propagation 

of the model (Fig. 1a). Regardless of whether it reflects expansion of pre-existing subclones, 

the emergence of a new one, or both, genomic evolution could be either a stochastic or a 

deterministic process, depending on whether it is a consequence of genetic drift or of genetic 

selection (Fig. 1b). In either case, bottlenecks associated with the model derivation and 

propagation would enable and expedite genomic evolution (Fig. 1c). However, if selection is 

involved, an important question is whether evolutionary trajectories in cancer models reflect 

evolutionary trajectories in the patients from which they are derived (Fig. 1b).
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Clonal dynamics

Molecular heterogeneity has emerged as a fundamental characteristic of most tumor types2. 

Patient-derived cancer models would thus begin as heterogeneous cell populations. The 

extent to which models remain heterogeneous, and the strength of clonal dynamics during 

model establishment and passaging, could determine the stability of the models and whether 

they accurately mirror their parental tumors.

Clonal dynamics play an important role in the genomic evolution of cell lines, PDXs and 

PDOs. Stochastic cell transitions have shown clonal dynamics within cell line populations, 

at the phenotypic level91. Genetic clonal dynamics has been recently described in cancer 

ECLs, where the relative abundance of genetic subclones varies across strains of the same 

cell line68. Single-cell genomic analyses of breast cancer PDXs revealed that expansion of 

minor subclones could drastically change the clonal composition of the model compared to 

the original tumor83. Such clonal dynamics were also identified in PDXs of multiple 

additional cancer types81, as well as in esophageal cancer PDOs90, and were not limited 

only to the model derivation stage, as significant differences were also observed between 

early- and late-passage PDXs81, 83.

Genetic drift is likely to be involved in the clonal dynamics observed in models, especially 

during model initiation, given that models are typically generated from a biopsy taken from 

a small, randomly-selected tumor region. However, both in cell lines and in PDXs, selection 

has been shown to be a major driver of clonal dynamics. The expansion of minor subclones 

in PDXs was found to be reproducible; when the same tumor population was transplanted 

into different mice, expansion of the same minor subclones was observed, indicating non-

stochastic, directional genomic evolution81, 83. Similarly, DNA barcoding experiments in 

ECLs showed that minor changes in culture conditions, such as changing the medium from 

RPMI to DMEM, resulted in reproducible changes in barcode abundance68. Moreover, 

stronger selection pressures, such as drug exposure, resulted in stronger clonal dynamics. 

Therefore, selection-driven clonal dynamics clearly play an important role in genomic 

evolution of cancer models.

Ongoing genomic instability

Genomic instability is another fundamental trait of tumors, which is carried over from the 

primary tumors to the models derived from them. The nature and rate of the genetic 

alterations that arise in the model depend on the genome integrity mechanisms that are 

perturbed in the tumor of origin. Moreover, some types of genomic instability are 

exacerbated in model systems. For example, the fidelity of chromosome segregation was 

recently shown to depend on integrin function and thus diminish when cells were grown in 

2D culture92.

Evidence for ongoing genomic instability in cancer models is extensive. As expected, 

GEMMs generated by perturbation of genes directly related to genome integrity 

maintenance (most notably, p53) are more genomically perturbed than GEMMs generated 

with other classes of oncogenes or tumor suppressors52, 93, 94. Similarly, PDXs from p53-

null tumors experience more copy-number evolution compared to those from p53-WT 
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tumors81. And the mutation landscape variability across ECL strains is higher in ECLs with 

microsatellite instability (MSI) than in ECLs without it68, in line with the hyper-mutation 

phenotype of MSI human tumors.

We recently demonstrated that single-cell clones derived from ECLs quickly became 

genetically, transcriptionally and phenotypically heterogeneous68. This means that ongoing 

genomic instability leads to the constant emergence of new subclones, which can eventually 

expand and alter the genomic composition of the tumor.

Bottlenecks of model propagation

The magnitude of genomic evolution depends on the heterogeneity of the population and on 

the stringency of the bottlenecks cells need to go through. Some of these bottlenecks are 

inherent to the nature of cancer models, whereas others depend on experimental practices 

that could be modified. It is therefore imperative to understand the bottlenecks associated 

with model derivation and propagation.

The first strong bottleneck that every model encounters is the founder effect associated with 

its establishment. The tumor biopsy from which a model is derived represents only a specific 

tumor region, and therefore a local clonal composition2. At the same time, the need to 

survive in a new environment and adapt to markedly different conditions makes model 

initiation a highly selective process5.

Routine propagation of cancer models continues to present bottlenecks for the cell 

population. Passaging of cell lines, PDOs or PDXs involves continuous competition that 

favors the fitter, more rapidly dividing cells. Propagation conditions inevitably vary, and the 

exact conditions (e.g., media composition, batches of reagents or cellular densities) may 

affect model evolution. Bottlenecks are also introduced by freezing and thawing, another 

routine practice in the propagation of in vitro cultured models. Finally, genetic 

manipulations, including those considered to be neutral (such as the introduction of a 

reporter gene) introduce bottlenecks in the form of viral infection and antibiotic selection.

We recently found that in ECLs, most of the variability across strains was introduced 

through extensive passaging or genetic manipulations, whereas multiple freeze-thaw cycles 

did not seem to induce extensive genomic evolution68. However, the generalizability of this 

finding is yet to be confirmed.

Distinct trajectories of tumor evolution

As selection plays a major role in shaping the genomic landscapes of cancer models, it is 

important to assess whether model evolution mirrors the tumor evolution that naturally 

occurs in patients. Data from both cell lines and PDXs indicate divergent trajectories of 

tumor evolution in cancer models and in patients. An analysis of genomic and functional 

heterogeneity in AML revealed that the AML founding clone was not necessarily the AML-

initiating clone in the mouse model85. In solid tumors, recurrent cancer type-specific CNAs 

that are commonly observed in primary tumors, tend to become even more recurrent during 

cancer progression (i.e., metastases and recurrences); however, the same events tend to 

disappear in PDXs and in cell lines68, 81. Therefore, genomic landscapes of tumors are 
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shaped by distinct selection pressures during their evolution in the natural human 

environment and in the artificial model environment, leading to the gradual genomic 

divergence of cancer models from their tumors of origin.

Implications for research and medicine

The implications of genomic evolution of cancer models for research and clinical translation 

depend on whether it can alter their performance in functional assays. Different model 

applications are expected to be differentially affected by this phenomenon. Once potential 

risks are identified, mitigation strategies can be devised and implemented, to properly assess, 

alleviate, and control for genomic evolution.

Phenotypic consequences

It is conceivable that while extensive genetic and epigenetic evolution occurs within cancer 

models, such evolution might not translate into biologically meaningful cellular properties. 

That is, this phenomenon could represent a molecular curiosity with little practical 

implication. Unfortunately, this does not seem to be the case. Genomic changes that arise 

throughout model propagation have been associated with marked phenotypic changes across 

all cancer model types (Fig. 2a).

In mice, a comparative phenotypic analysis of two substrains of the C57BL/6 strain 

demonstrated significant phenotypic differences between these strains in multiple 

physiological, biochemical and behavioral systems, ranging from blood pressure and eye 

morphology to bone structure and spatial memory55. Variation in morphological and 

behavioral traits was described among multiple C57BL/6 strains, and specific DNA-level 

differences were suggested to underlie these phenotypic differences56, 57. Such genomically-

driven phenotypic differences can be carried over to GEMMs generated on the genetic 

backgrounds of these mice: for example, a Dock2 copy-number variant that spontaneously 

arose in C57BL/6 was inadvertently backcrossed into multiple mutant mouse lines; as a 

result, these mice exhibited several immune phenotypes previously described in the context 

of Dock2 deficiency60.

In human CLs, considerable phenotypic variation across strains of the same cell line has 

been described and linked to genomic variation. In our studies, 27 strains of MCF7 collected 

from multiple laboratories varied in their doubling time by as much as 3.5-fold under 

identical culture conditions. Morphological features, such as cell size and shape, largely 

varied as well, and morphological variation correlated well with genomic variation68. 

Similar differences in doubling time and morphological features were observed across 14 

HeLa strains69. These HeLa strains also varied considerably in their susceptibility to 

Salmonella infection, which could be explained by differential expression of proteins 

associated with bacterial infection69.

One of the most common and important applications of cancer models is their use for testing 

of drug sensitivity and resistance. Variability in drug sensitivity of the same cell line to the 

same drug is common in the literature: for example, reported IC50 values of tamoxifen in 

wildtype MCF7 cells differ by >100-fold10, 95. In order to evaluate whether such differences 
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could result from genomic evolution, we screened 27 strains of MCF7 against 321 cancer-

related compounds and compared the basal gene expression of sensitive and resistant strains 

(forward genetics approach). A striking variability was observed: for 48 of 55 (87%) drugs 

for which at least one strain was highly sensitive, another completely resistant strain was 

also identified. In the majority (82%) of cases, a differential gene expression signature of the 

drug mechanism of action was observed between the sensitive and resistant strains68, 

highlighting that genomic variation indeed underlies the disparate drug response. Similarly, 

PDX response to some targeted therapies was associated with the existence of specific 

CNAs, and these associations were confirmed in ECLs81. Therefore, the functional effect of 

genomic evolution on drug response in PDXs may be as pronounced as the effect observed 

in CLs.

Implications for tumor “avatars”

“Avatar” experiments, also known as “co-clinical trials”, match patients’ drug responses to 

those of the models derived from them. The idea is that testing multiple drugs against a 

patient-derived cancer model could help direct the course of clinical treatment for that 

patient. Several such “co-clinical trials” reported high degree of concordance between the 

drug response of patients and their PDXs and PDOs24, 31, 88, 96, 97.

While this strategy is intriguing and useful, several cases where model drug response did not 

match patient’s response have been described24, 31, 88. Such discrepancies could result from 

changes in clonal composition of the tumor model due to genomic evolution (Fig. 2b). This 

could be especially important if genomic evolution affected driver events, such as ESR1 
status in ER+ breast cancer (as observed throughout MCF7 evolution68) or trisomy 7 and 

monosomy 10 in GBM (as observed in GBM PDXs81). In addition, differences in tumor 

microenvironment (e.g., exposure to ligands and cytokines, matrix stiffness, ECM protein 

composition, etc.) can profoundly influence cell growth and therapeutic response (reviewed 

in 98, 99). Further analyses are warranted to evaluate the extent to which evolution of cancer 

models, together with differences in the tumor microenvironment, limit their use as 

“avatars”, and how these limitations can be overcome.

Implications for tumor model “biobanks”

Efforts to generate large panels of cancer models aim to represent the molecular diversity of 

patient populations, and are commonly queried to identify phenotypes associated with 

specific molecular features (e.g., drug sensitivity associated with a gene mutation). For this 

type of application, the similarity of a specific model to its tumor of origin is much less 

relevant. However, two important questions emerge in this setting: a) To what extent does 

the cohort as a whole represent the patient population? b) How stable and reliable are the 

molecular features characterized in such cohorts?

Overall, large cohorts of cell lines, PDXs and PDOs mirror the genomic landscapes of their 

respective cancer types23–27, 30, 100. A couple of important concerns remain, however. First, 

continuous passaging can distance the model population from the patient population and/or 

skew the represented populations. Indeed, some hallmark genetic alterations were found to 

be less prevalent in high-passage than in low-passage PDXs81. Second, biobanks of cancer 
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models are usually characterized only once, on their derivation, and the resultant data sets of 

molecular features are then widely used as “lookup tables” by individual investigators. 

However, as models evolve, these “lookup tables” may be misleading – a given genetic 

alteration characterized in the model may be absent from the specific strain that happens to 

be available to an investigator, and vice versa68(Fig. 2c).

As discussed above, genomic evolution is most rapid during the derivation and early 

propagation of cancer models. Genomic evolution then continues to shape the genomic 

landscape of the model on continuous passaging, albeit at a slower rate. It would therefore 

be optimal to characterize and use the models at a point when they are already sufficiently 

stable, but are still good representations of their tumors of origin. In PDCLs and PDXs, such 

optimal time point might be between p5 to p1081, but this optimum would clearly be 

context- and model-specific.

Recently, a new practice emerged to first generate PDXs and then derive PDOs from them. 

This practice aims to have the best of both worlds, as the derivation success rate is generally 

higher in xenografts, whereas organoids are easier to manipulate and study at high-

throughput23, 101. However, this strategy also adds strong bottlenecks to the process, as the 

model is being transferred twice, from a patient to a mouse and then from mouse into cell 

culture. It is likely that this multi-step derivation strategy would be associated with genomic 

evolution, especially given that the opposite transition – the transplantation of established 

CLs into mice – was shown to induce such evolution81.

Implications for screening purposes

Genomic evolution of cancer models can greatly affect chemical and genetic screens. In a 

typical primary chemical screen, compounds are screened at a single high dose against one 

randomly-selected strain of a cell line. The striking variability in drug response observed 

across strains of the same cell line suggests that very often, whether or not a compound is 

identified as a “hit” in a screen may depend on the particular cell line strain that was 

screened. This problem may be exacerbated in genetic loss-of-function screens, which 

typically involve genetic manipulations and antibiotic selection that can act as strong 

bottlenecks that increase diversification.

CRISPR screens are likely most susceptible to this problem. First, the introduction of Cas9 

and gRNAs into cells often involves two selection steps, enabling more clonal selection. 

Second, genetic alterations that enable cells to tolerate DNA cutting may be selected in the 

process; for example, two recent studies showed that genome editing by CRISPR-Cas9 leads 

to a selection against cells with a functional p53 pathway102, 103. Third, CRISPR screen 

results need to be corrected based on the copy-number landscapes of the screened cells, and 

this is commonly done using CNA profiles of the parental cell lines13, 104, 105; the more 

CNA evolution that took place from the time of the original profiling of the WT strain until 

the actual screen was performed with the CRISPR-Cas9 strain, the less accurate the 

computational correction of the “copy-number effect” would be (Fig. 2d). Indeed, genome-

wide CRISPR screens of two remote MCF7 strains revealed distinct gene essentiality 

patterns, and some of the differential dependencies could be readily explained by genomic 

alterations of the underlying genes68.
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Implications for reproducibility

When results obtained in one laboratory cannot be replicated in another laboratory, one 

should consider the potential contribution of genomic evolution to the observed 

discrepancies. For example, mispairing C57BL/6 substrains of GEMMs and WT controls led 

to opposite results related to the role of Jnk2 in livery injury59. Of note, many publications 

that make use of C57BL/6 mice do not report which specific substrain was used.

The recent genomic and phenotypic comparisons of multiple MCF7 and HeLa strains 

provide another compelling demonstration of the potential of genomic evolution to 

jeopardize cancer research reproducibility. For example, studying sensitivity to proteasome 

inhibition using MCF7 can clearly lead to different conclusions, based on the strain used68. 

Importantly, however, while disagreements between large data sets of chemical and genetic 

dependencies do exist38–40, it is not clear yet to what extent this reflects genomic differences 

between strains.

Mitigation strategies

Many of the risks associated with cancer model evolution can be mitigated by adjusting 

model propagation strategies and experimental designs. Mitigation strategies can be divided 

into three classes: 1) Tracking and reporting model propagation; 2) Routine assessment of 

model genetic diversification; and 3) Alleviating propagation bottlenecks. In addition, 

robustness of findings should be confirmed across collections of model systems that 

represent the relevant aspects of cancer being modelled in different genomic and 

environmental contexts.

Track and report propagation—A requirement for a clear nomenclature of models – 

taking into account the model history and strain – could make investigators more aware of 

the phenomenon and prevent mispairing of controls. Keeping track of passage and 

generation information and reporting it in publications is a desirable practice; the “absolute” 

passage number of a model does not necessarily carry useful information, but matching 

passage numbers can guarantee a uniform and appropriate within-study use of the model.

Assess diversification—Routine monitoring of genomic evolution could alleviate its 

detrimental outcomes. Assessment of diversification is needed after prolonged propagation, 

or when models go through strong bottlenecks such as genetic manipulations or single-cell 

cloning. As the genetic distance between cell line strains correlates very well with the 

expression distance and the drug response distance68, relatively inexpensive commonly-used 

genomic technologies, such as low-pass whole-genome sequencing, can be applied to 

accurately assess cell line diversification. Characterizing the genomic features of the model 

at the same time that it is subjected to functional experiments is therefore both desirable and 

feasible.

We developed Cell STRAINER (Cell STRAin Instability profilER; see Related links) to 

facilitate the routine assessment of cell line diversification. Users can upload cell line 

genomic data of their cell line strain (currently in the format of CNA profiles), and these 

data are compared to reference genomic data of the same cell line, as characterized by the 
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Cancer Cell Line Encyclopedia8. Large genetic distance between the two strains is indicative 

of considerable cell line diversification, suggesting that other genomic features of the CCLE 

strain may also not apply to the tested strain.

When cell line misidentification and mycoplasma contamination emerged as major problems 

in cell line research, journals began to require authors to confirm cell line identity (using 

DNA fingerprinting) and mycoplasma contamination status. Similarly, we can envision that 

cell line genetic diversification assessment may become a pre-requisite for publication in the 

future. Of note, the same genomic analysis can also confirm cell line identity, and therefore 

replace DNA fingerprinting in most cases. As biobanks of PDXs and PDOs become more 

widely used, tools similar to Cell STRAINER should be developed for these models as well.

Minimize genomic evolution—Experimental practices can be adjusted to minimize 

genomic evolution and its phenotypic effects. First, it is advisable to avoid unnecessary 

passaging by using techniques that minimize cell culture after the initial characterization106. 

Second, bottlenecks should be reduced as much as possible. Practically, this means keeping 

culture conditions as constant as possible, as even minor changes can lead to clonal 

selection68. This also means that single-cell cloning should be avoided when population-

based assays can be used instead. Better mimicking of the human tumor environment in the 

model – a desirable goal regardless – could also alleviate selection pressures and minimize 

genomic evolution.

Given that prolonged passaging leads to continuous model evolution, multiple frozen stocks 

should be prepared for large studies, so that models be used at comparable passage numbers 

throughout the entire course of the study. This could be especially important for large-scale 

screens, where downstream follow-up experiments are often performed many months after 

the original screen.

Finally, some models are inherently unstable and are thus prone to much more rapid 

genomic evolution81. Sometimes the use of such models is unavoidable or even desirable 

(e.g., when one wishes to study genomic instability); however, for some applications these 

models can simply be replaced by alternative, more stable ones.

Emerging opportunities

While the perils of genomic evolution of cancer models warrant caution, and applying 

mitigation strategies is recommended, this natural phenomenon could also be harnessed in 

creative ways. One might take advantage of the dynamic nature of cancer models to pursue 

novel avenues of research, or to address longstanding open questions in new ways.

Panels of near-isogenic cancer models

In mouse models, the realization that different substrains differ in their genomic and 

phenotypic features was successfully used to illuminate genotype-phenotype associations. 

For example, a genomic comparison of two C57BL6 substrains that differ significantly in 

their alcohol consumption, identified candidate genes that explain this trait56. Application of 
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a similar strategy uncovered the genetic alterations underlying differences in immune 

phenotypes60.

The same approach can be applied to patient-derived models (Fig. 3a). Genomic evolution 

leads to the generation of genetically-matched, near-isogenic models. These models are not 

fully isogenic, as more than a single event would normally separate each pair of strains. 

Nonetheless, panels of such near-isogenic models can be used to study specific molecular 

features that are variable across strains. As a proof of concept, comparison of gene 

expression and drug response between cell line strains with and without a given genetic 

alteration correctly identified cellular consequences of, and pathways perturbed by, that 

alteration68. This reverse-genetics approach would be especially useful for studying the 

consequence of genetic events that are difficult to introduce experimentally, such as large 

chromosomal changes (Box 2).

Similarly, taking a forward-genetics approach as described above when comparing global 

gene expression levels between drug sensitive and drug resistant MCF7 strains68, such 

comparisons could uncover the genomics underlying variable phenotypes. Importantly, such 

comparisons provide more statistical power than similar comparisons of non-genetically-

matched cancer models. However, this approach is limited to studying differential 

phenotypes, and so is not useful for studying drugs that do not affect that particular cell line. 

Another limitation is that ongoing clonal dynamics may affect the stability of the panel, 

rendering the genomic profiling of the strains a moving target.

Understanding selection pressures

Since both positive and negative selection can alter the genomic landscapes of patient-

derived tumors, cancer models could potentially be used to study selection itself. For 

example, the immune-deficient subcutaneous mouse environment of PDXs is different from 

the immune-competent organ-specific patient environment. Which of these components is 

most important for shaping the trajectory of tumor evolution? Following the rate, extent and 

identity of genomic alterations in subcutaneous vs. orthotopic models, and in immune-

deficient vs. “humanized” mice, should help clarify the relative importance of each of these 

factors (Fig. 3b). Similarly, following clonal dynamics in PDOs or cell lines cultured under 

various defined culture conditions may illuminate the role of specific media components 

(e.g., growth factors) in shaping the genomic landscape of the tumor.

Studying heterogeneity

Tumor heterogeneity is a fundamental aspect of tumor biology, with profound implications 

for drug response and clinical outcome2, 107. Single-cell technologies have revolutionized 

the way cancer heterogeneity is studied and understood, and deeper sequencing allows more 

accurate reconstruction of tumor clonal composition108, 109. The heterogeneous, dynamic 

nature of cancer models raises interesting opportunities for research (Fig. 3c).

Cooperative and competitive interactions—There is growing evidence that 

cooperative and competitive interactions between tumor subclones can influence disease 

progression and clinical outcome (reviewed in 110). Using engineered subclones of a human 
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breast cancer ECL, intra-tumor clonal heterogeneity was shown to drive tumor growth and 

dissemination111. Similarly, cooperation between subclones was found to promote invasion 

in a zebrafish melanoma xenograft model112, and differentiated cell populations could 

increase invasiveness and growth of cancer stem cell populations through factor secretion, in 

pancreatic and glioblastoma cell lines, respectively113, 114. Most recently, functional 

cooperativity was described between genetically-distinct subclones derived from human 

pediatric brain tumors115.

The realization that cancer models are naturally heterogeneous suggests that they can be 

used to dissect the mechanistic basis of clonal interactions. Single-cell profiling of cell lines 

might help determine the abundance of existing subclones, and clonal dynamics throughout 

various types of perturbations and challenges can then be followed. Experiments like the one 

described above can potentially be performed without cell engineering, taking advantage of 

the natural variation in the cell population to study non-cell-autonomous interactions.

Determinants of drug sensitivity—The pre-existence of drug-resistant subclones was 

recently shown to be a major mechanism of drug resistance in cancer cell line 

populations116, 117. Drug treatment of barcoded cell populations reproducibly induced the 

enrichment of the same specific barcodes, indicating selection of pre-existing resistant 

subclones68, 116. Molecular, biochemical and functional analyses of sensitive and resistant 

subclones within a heterogeneous population could therefore be used to study drug 

sensitivity in cancer models.

Studying genomic instability

As ongoing genomic instability keeps shaping the genomic landscape of cancer models, 

these models can be used to study the cellular mechanisms underlying genomic instability. 

Indeed, cancer models have been used to study such mechanisms for many years (reviewed 

in 118–120). However, the recent advances in the field suggest new ways to study genomic 

instability in cancer models (Fig. 3d).

Single-cell clones of genomically unstable cell lines become genetically and 

transcriptionally heterogeneous. Studying the genomic evolution of single-cell clones from 

their initiation can therefore be a promising way to study how diversity is generated. 

Another idea would be to perform DNA barcoding experiments with cell lines that are 

deficient in distinct mechanisms of genome integrity maintenance, in order to identify 

associations between mechanisms of genomic instability and drug resistance.

Concluding remarks

Genomic evolution is inevitable in living model systems. Like other sources of research 

irreproducibility, model diversification should be assessed routinely, reported appropriately 

and controlled for experimentally. It should not be viewed as a disaster, nor should it be 

ignored. The continuous improvement of cancer models over the past few years has yielded 

significantly better modeling of the human disease. Moving from a static to a more dynamic 

way of thinking about the genomics of cancer models could be another important step in this 

direction. It would help minimize the detrimental effects of genomic evolution on cancer 
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research and cancer precision medicine, and at the same time open novel avenues of research 

that take advantage of these dynamics. Genomic evolution of cancer models can therefore 

contribute to the evolution of cancer research.
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Glossary

Patient-derived xenografts (PDXs)
Models generated by the direct engraftment of resected human tumors into immune-

deficient mice, followed by their serial transplantation between mice.

Patient-derived organoids (PDOs)
Models generated by the embedment of tumor (or normal) cells into a 3D matrix, using 

culture conditions that mimic the in vivo tumor niche.

Patient-derived cell lines (PDCLs)
Models generated by the transferring of tumor cells into a 2D plastic dish, using culture 

conditions that enable cells to proliferate.

Genetically-engineered mouse models (GEMMs)
Models generated by genetically manipulating mice, using genetic alterations that 

characterize human tumors.

Established cancer cell lines (ECLs)
Models generated as PDCLs, followed by prolonged culture propagation. These models are 

not assumed to represent the specific tumors from which they were derived.

Clonal dynamics
Changes in the relative abundance of tumor subclones throughout model propagation.

Pre-existing heterogeneity
Genetic diversity within the original tumor, contributing to the genomic evolution of the 

model.

Ongoing genomic instability
Generation of de novo genetic alterations throughout model propagation, contributing to the 

genomic evolution of the model.

Genetic drift
Stochastic changes in the clonal composition of the cancer cell population, due to chance 

disappearance and/or expansion of particular subclones.

Genetic selection
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Directional changes in the clonal composition of the cancer cell population, due to growth 

advantage and/or disadvantage of particular subclones.

Founder effect
Genetic diversity that results when a cell population is descended from a small number of 

original cells.

Copy-number effect
In CRISPR screens, copy number changes result in gene-independent anti-proliferative 

effect of Cas9-mediated DNA cleavage, confounding the measurement of gene essentiality. 

This effect can be corrected computationally using genome-wide copy-number 

measurements.
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Box 1:

Measuring genomic evolution in cancer models

The ability to follow the genomic evolution of cancer models has considerably advanced 

in recent years. First, the drop in the costs of DNA and RNA sequencing has increased 

standard sequencing depths121, enabling to detect genetic alterations that are rare within 

the bulk tumor population, and to characterize the genomic composition of cancer models 

at multiple time points throughout their propagation52, 81, 83. Second, single-cell 

sequencing technologies now enable cellular heterogeneity to be studied at the resolution 

of individual cells83, 108, 109, and improvements in the isolation and expansion of clones 

from single tumor cells enables their functional interrogation115. Third, analytical tools 

have been developed that use genomic data to infer the clonal structures of cell 

populations107, 122, 123, and additional tools make use of genomic data to characterize and 

quantify signatures of genomic instability124–126. Together, these methods now enable to 

measure both the heterogeneity and the instability of cancer models in much greater 

detail than before. It is important to note that genomic heterogeneity and genomic 

instability, although conceptually related and quantitatively correlated81, 107, are not 

synonymous terms – heterogeneity refers to the genetic variation within the cell 

population, whereas instability refers to the stability of that genetic composition over 

time. Measuring both of these traits in cancer models is required to understand how these 

models evolve over time.
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Box 2:

Model evolution and cancer aneuploidy

Aneuploidy demonstrates both the perils and the opportunities presented by cancer model 

evolution. Aneuploidy provides a unique lens through which one could follow tumor 

evolution, as this is a discrete event at the cellular level, is unique to cancer cells, and can 

be detected by multiple methods127, 128. In addition, due to the high fitness cost 

associated with specific aneuploidies under most cellular circumstances129, these events 

may be particularly sensitive to changes in selection pressures.

The study of aneuploidy in cancer models is exposed to all the risks associated with 

model evolution. Variability in arm-level and whole-chromosome copy-number status 

exists within ECLs, and aneuploidy landscapes rapidly evolve in PDXs and PDCLs81. 

These genetic changes are associated with very consistent changes of gene expression 

along the affected chromosome(s), in the expected direction68, 81. Both in ECLs and in 

PDXs, the existence of specific aneuploidies was associated with the response to specific 

anticancer drugs81. The gradual disappearance of recurrent cancer aneuploidies 

throughout the derivation and propagation of PDXs81 emphasizes the potential risk that 

model evolution poses to accurately using these models as tumor “avatars”.

At the same time, model evolution can be used to advance the study of cancer aneuploidy. 

The artificial introduction of extra chromosomes into cells is tumor-suppressive130, 

whereas naturally-occurring aneuploidy can be tumor-promoting131, as also suggested by 

the cancer type-specific patterns of aneuploidy recurrence132. Therefore, naturally-

occurring aneuploid variants that arise during model evolution may be uniquely suitable 

for studying aneuploidy in a more cancer-relevant context.

Indeed, following aneuploidy landscapes in developing tumors in GEMMs enabled us to 

identify aneuploidies that are associated with specific drivers, narrow down regions of 

interest within altered chromosomes, and identify candidate genes that cooperate with the 

initial transgene to drive tumorigenesis52 (see box figure, part a). Another promising 

direction is to use naturally-occurring variation in aneuploidy landscapes within ECLs to 

study the cellular consequences of recurrent aneuploidies, and to identify synthetic 

lethalities associated with these events (see box figure, part b).
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Figure 1: The biological origins of cancer model evolution
(a) Genomic evolution could be the outcome of clonal dynamics that lead to the expansion 

of pre-existing subclones (left), or the outcome of the emergence of new subclones during 

the derivation or the propagation of the model (right). (b) In both cases, such evolution could 

result from a genetic drift, which would lead to stochastic changes (left), or from clonal 

section, which would lead to reproducible changes (right). Selection pressures are different 

between the natural tumor environment in the patient’s body and the new environment of the 

model (e.g., mouse in the case of PDXs). (c) Bottlenecks associated with model propagation 
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can promote genomic evolution. In ECLs, the main bottlenecks are extensive propagation, 

changes in culture conditions, multiple freeze-thaw cycles, and genetic manipulations that 

involve viral infection and/or antibiotic selection.
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Figure 2: Perils of cancer model evolution
(a) Genomic evolution leads to variability across strains of the same model. Genetic 

alterations acquired during model propagation can translate into differential gene expression 

patterns and result in disparate drug response68. (b) Cancer models are used as tumor 

“avatars” to predict drug response in the patient from which the model was derived. 

However, if a rare subclone expands in the model and becomes dominant, its drug response 

may not reflect that of the primary tumor81. (c) Cancer models are also used as cohorts, also 

known as biobanks, to characterize genotype-phenotype relationships (e.g., cancer 
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dependencies associated with specific mutations). Models are usually characterized upon 

their derivation, but functional experiments keep being conducted throughout model life. 

Continued passaging of the models may alter their genomic profiles, thus confounding 

analyses that make use of early-passage genomic profiles and late-passage functional 

experiments81. (d) CRISPR/Cas9 screen results need to be corrected for copy-number to 

account for the number of cuts (a phenomenon known as the CRISPR copy-number effect). 

Changes in aneuploidy (and other copy-number alterations) as a result of genomic evolution 

can jeopardize the accuracy of this computational correction. For example, if an 

amplification of gene C occurred between genomic characterization and CRISPR screening, 

and the original genomic characterization is used for correcting the copy-number effect, this 

gene could be mis-identified as a genetic dependency.

Ben-David et al. Page 30

Nat Rev Cancer. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: New research opportunities presented by cancer model evolution
(a) The natural genomic evolution of cancer models generates semi-isogenic model strains 

that can be used both for reverse genetics and for forward genetics. In reverse genetics 

experiments, the gene expression profiles and drug response patterns of model strains with a 

genetic alteration of interest can be compared to those of strains without that alteration. In 

forward genetics experiments, the genetic landscapes and gene expression profiles of model 

strains that are sensitive to a drug of interest can be compared to those of strains that are 

resistant to that drug. (b) Genomic evolution can be used to study the selection pressures that 
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shape the genetic landscapes of tumors. For example, PDXs can be generated in mice hosts 

that share their genetic background, but differ in their immune status and transplantation 

sites. The genomic profiles of these PDX models following propagation can be characterized 

and compared to that of the primary human tumor. The rate, extent and identity of genomic 

alterations in the various models can help identify the components that determine the 

evolutionary trajectory of tumorigenesis. (c) Cancer model evolution can be used to study 

cancer heterogeneity and cellular interactions. Competitive and cooperative interactions 

between tumor subclones can be dissected using single-cell genomics, genome editing and 

cell barcoding technologies. Drug sensitivity and resistance can also be studied by following 

tumor evolution and clonal dynamics following drug exposure. (d) Mechanisms of genomic 

instability itself can be studied by following how single-cell clones become heterogeneous 

(left), or by following how drug resistance mechanisms differ between models that harbor 

distinct deficiencies in genome maintenance pathways (right). CIN, chromosomal 

instability; MSI, Microsatellite instability.
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Table 1:

Determinants of genomic evolution in cancer models.

Model type Major advantages for research Factors impacting genomic evolution

Genetically-engineered
mouse models

* De novo tumorigenesis in vivo
*  Interactions with the 
microenvironment and with other cell types

* Somatic evolution of the tumor as an integral 
part of tumorigenesis
* Germline evolution of the host throughout 
colony propagation

Patient-derived models New cancer 
cell lines

*  Short time and few cell divisions from 
primary tumors to functional assays

* Physical constraints (2D)
*   Variations in culture conditions (media, 
passaging practices, etc.)
* Continuous selection for rapidly proliferating 
cells

Established 
cancer cell 
lines

* Widely accessible and easy to work with
* Ample genomic data available

* Numerous cell divisions
* Variations in culture conditions
*  Deficient mechanisms of genome 
maintenance inherited from tumor of origin

Xenografts * No growth on plastic
*  Functional investigation of human 
tumors in vivo

* Differences in physiology and metabolism 
between species
* Immune-deficient environment
* Site of transplantation
* Multiple cell divisions within each passage

Organoids * Complex cellular interactions
*  Culture conditions mimic in vivo 
conditions better than 2D culture
* 3D environment
* Matched normal controls

* Variations in culture conditions
*  Deficient mechanisms of genome 
maintenance inherited from tumor of origin
* Immune-deficient environment
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