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SUMMARY

Tobacco smoking has been correlated with a lower incidence of Alzheimer’s disease (AD).

This negative correlation has been attributed to nicotine’s properties. However, the unde-

sired side-effects of nicotine and the absence of clear evidence of positive effects of this drug

on the cognitive abilities of AD patients have decreased the enthusiasm for its therapeutic

use. In this review, we discuss evidence showing that cotinine, the main metabolite of nico-

tine, has many of the beneficial effects but none of the negative side-effects of its precursor.

Cotinine has been shown to be neuroprotective, to improve memory in primates as well

as to prevent memory loss, and to lower amyloid-beta (Aβ)) burden in AD mice. In AD,

cotinine’s positive effect on memory is associated with the inhibition of Aβ aggregation, the

stimulation of pro-survival factors such as Akt, and the inhibition of pro-apoptotic factors

such as glycogen synthase kinase 3 beta (GSK3β). Because stimulation of the α7 nicotinic

acetylcholine receptors (α7nAChRs) positively modulates these factors and memory, the

involvement of these receptors in cotinine’s effects are discussed. Because of its beneficial

effects on brain function, good safety profile, and nonaddictive properties, cotinine may

represent a new therapeutic agent against AD.

Alzheimer’s disease: The Cholinergic
System as a Therapeutic Target

Alzheimer’s disease (AD) is a progressive neurodegenerative dis-

order and the most common cause of dementia [1, 2]. The disease

is characterized by extracellular accumulation of senile plaques,

mainly composed of aggregated forms of the amyloid-beta pep-

tide (Aβ), as well as intracellular accumulation of neurofibrillary

tangles of the microtubule-associated protein tau [1]. These neu-

ropathological changes are associated with structural brain abnor-

malities, inflammation, and cognitive impairment such as impair-

ment of working memory in AD patients. The progressive loss

of memory in AD patients correlates with increased levels of Aβ

and the deterioration of the cholinergic system in the brain. The

degenerative process involves a sequence of pathological events,

including early degeneration of the cerebral basal forebrain and

subsequent deterioration of the cortical cholinergic system [3, 4].

This deterioration commonly includes a reduction in the levels of

acetylcholine (ACh) and α3, α4, and α7 nicotinic ACh receptors

(nAChRs) as well as a decrease in the activity of choline acetyl-

tranferase in the brain [5].

Of these nAChRs, the α7 receptors are considered to be ideal

therapeutic targets for several neurological conditions, including

AD, schizophrenia, and Parkinson’s disease (PD) as well as to-

bacco addiction [6, 7]. The α7nAChR is a homomeric pentamer

that has a high permeability to calcium (PCa:PNa ≈ 10), and under-

goes rapid and reversible desensitization and pronounced inward

rectification [8]. The α7 subunit is highly expressed in the cortex,

hippocampus, and hypothalamus [8], and has also been suggested

to have functionally important expression in nonneuronal tissues

such as cells of the immune system [9]. There is evidence suggest-

ing that Aβ, which accumulates in the brain of AD patients, has

a high affinity for the α7 receptors [10], acting as both an ago-

nist [11] and an antagonist [12] at these receptors. Based on this

evidence, it has been proposed that positive modulators of these

receptors may be neuroprotective against Aβ toxicity and stimu-

late learning and memory [13].

Current therapies for AD improve the function of the cholin-

ergic system; acetylcholinesterase inhibitors reduce the clearance

and increase the availability of acetylcholine in the brain [14–16].

Another current therapeutic approach aims to decrease glutamate

excitotoxicity by blocking the N-methyl D-aspartate (NMDA) glu-

tamate receptor using the receptor antagonist memantine. Unfor-

tunately, these therapies only slightly ameliorate cognitive deficits

in AD patients and show only short-term effectiveness [17–21].

A negative correlation between tobacco use and the inci-

dence of AD has been reported [22]. In research into compo-

nents of tobacco that may enhance cholinergic function, nicotine

ª 2012 Blackwell Publishing Ltd CNS Neuroscience & Therapeutics 18 (2012) 517–523 517



(3-[1-methyl-2-pyrrolidinyl] pyridine), an alkaloid derived from

tobacco, has been extensively investigated. Nicotine binds to Aβ,

blocking its aggregation into fibrils and is thereby neuroprotec-

tive [23]. Nicotine also diminishes AD pathology in animal mod-

els of the disease [24, 25]. However, clinical studies that aimed

to determine the efficacy of nicotine against AD pathology have

not shown a significant effect of nicotine in enhancing memory

[26, 27] but rather a clear positive effect on attention in AD [27]

and PD patients [25, 28]. The positive effect of nicotine on atten-

tion has been mostly attributed to its agonistic stimulation of the

nAChRs, which plays an important role in mediating memory and

attention processes [29–31]. It is likely that nicotine’s effect on

cognitive abilities may be counteracted by the nicotine-induced

desensitization of the receptor. However, the failure of nicotine to

improve memory in AD patients, its inherent toxicity, and the fact

that it induces tachyphylaxis and addiction have discouraged its

use in the clinical arena [32].

New evidence suggests that cotinine ([5S]-1-methyl-5-[3-

pyridyl]-pyrrolidin-2-one), the main metabolite of nicotine, has

similar beneficial properties against AD pathology as nicotine but

does not have the adverse side-effects of nicotine. Specifically, it

has been shown that cotinine prevented working and reference

memory loss in a mouse model of AD (Tg6799) and prevented Aβ

aggregation in vitro as well as plaque deposition in vivo [33].

Based on this evidence, this review discusses the potential of

cotinine as an agent to prevent or treat AD.

Cotinine

In humans, more than 80% of nicotine is metabolized to coti-

nine by cytochrome P450 2A6 (CYP2A6) [34] and cytochrome

P450 2A5 (CYP2A5) [35] enzymes [36]. The physiologically ac-

tive form of cotinine, the (-)-isomer, accumulates in the body as a

result of tobacco exposure. The metabolic rate of cotinine synthe-

sis is determined by one’s genetic background. For instance, it has

been shown that individuals expressing a shorter form of CYP2A6

(i.e., CYP2A6∗4) produce lower levels of cotinine [37]. The ex-

pression of different CYP2A6 variants may explain differences in

the metabolism of cotinine in people of different ethnicities [38].

For example, CYP2A forms with low-enzymatic activity are repre-

sented differently in different ethnic groups, as observed in about

9.1% in white and 21.9% in black populations [38]. Cotinine, is

mostly metabolized by the liver to its major metabolites, trans-3’-

hydroxycotinine and its glucuronide [39–41]. Ethnicity affects the

clearance of cotinine, with African Americans showing a lower

average clearance of cotinine than Caucasians [42]. In addition

to genetic factors, food consumption can also influence cotinine

production [38], as grapefruit juice has been shown to inhibit the

activity of CYP2A6 [43, 44].

Moreover, cotinine crosses the blood–brain barrier [45, 46] and

is almost completely absorbed when administered orally. Despite

its structural similarities with nicotine (Figure 1), cotinine has dis-

tinct pharmacological properties. Cotinine is 100 times less toxic

than nicotine, has a longer half-life (20–24 h vs. 2 h, respectively),

and is not addictive in humans [47].

The first studies showing some behavioral effects were per-

formed in different species of animals. A seminal study performed

Figure 1 Comparison of the structures of cotinine and nicotine.

by Yamamoto et al., showed that intravenously administered co-

tinine slightly increased in EEG activity and behavioral arousal

in cats with a minor decrease in blood pressure [48]. In another

study, Risner et al. [49] reported the behavioral effects of nico-

tine compared with those of its metabolites, nornicotine and co-

tinine, in beagle dogs and squirrel monkeys. Subjects responded

under a multiple fixed-interval (FI) 300-seconds, fixed-ratio (FR)

30 response schedule of food presentation. In the dogs, cotinine

(0.01–10.0 mg/kg i.m.) produced only dose-dependent decreases

in rates of responding during both FI and FR components. In

the squirrel monkeys, however, cotinine (0.1–3.0 mg/kg i.m.) in-

creased responding during FI components; a high dose of 30.0

mg/kg decreased responding during both FI and FR components.

These studies initially suggested that cotinine may have behavioral

effects. More recently, we and other laboratories have found that

cotinine is a memory enhancer in various animal models of dis-

ease. For example, cotinine improved the working memory per-

formance of adult rhesus monkeys (Macaca mulatta) in the delayed

matching-to-sample task (DMTS). Also, we recently published ev-

idence showing that cotinine (5 mg/kg) decreased anxiety and en-

hanced the extinction of contextual fear memory after fear con-

ditioning in wild type mice [50]. In addition, in the transgenic

(Tg) mouse model of AD (Tg6799), long-term treatment with co-

tinine prevented working and reference memory impairment, as

tested in three different learning and memory tasks, including cir-

cular platform, cognitive interference, and radial arm water maze

tests. The doses effective in the Tg6799 mice were within the same

range as those that improved working memory in primates [51,

52]. In addition to its mnemonic qualities, cotinine has anti-Aβ

aggregation properties that add to its value as a new treatment for

AD [33].

The pro-cognitive effect of cotinine in the Tg6799 mice may be

explained by the reduction in the level of the aggregated forms

of Aβ, including Aβ plaques and oligomeric forms of the peptide,

in the hippocampus and cortex [33]. An advantage of cotinine is

that it is not only an anti-Aβ aggregation compound but also a

molecule that stimulates signaling pathways that support mem-

ory and brain homeostasis. For instance, cotinine induced the ac-

tivation of the pro-survival protein kinase B (Akt)/glycogen syn-

thase kinase 3β (GSK3β) pathway in the brains of both Tg6799

and wild type control mice, suggesting that the activation of these

factors is independent from its effect on Aβ aggregation [33]. In-

terestingly, the Akt/GSK3β pathway is stimulated by the α7 re-

ceptor, has roles inhibiting neuronal cell death, and is involved in

promoting neuronal synaptic plasticity and long-term potentiation
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[53–55]. Therefore, α7 receptors and the Akt/GSK3β pathway are

considered therapeutic targets for improving memory and atten-

tion in individuals with various neurological disorders, including

AD [13, 56].

Nicotinic Acetylcholine Receptors (nAChRs) as a
Therapeutic Target against Alzheimer’s disease

Nicotinic acetylcholine receptors are cationic, ligand-gated chan-

nels that mediate fast neurotransmission in the central and pe-

ripheral nervous systems [57]. The α7 and α4β2 nAChR subtypes

are the most abundant of the nicotinic receptors and are funda-

mental for mediating working memory and attention in mammals.

These receptors are localized throughout the cortex, hippocampus,

amygdala, hypothalamus, striatum, and other regions involved in

these cognitive processes [13]. Because decreased levels of these

receptors have been found in AD brains [58], this reduction is con-

sidered to explain, at least in part, the cognitive deficits in AD.

The α7 receptors are very important for mediating sensory gat-

ing, attention and learning, and memory, making them an ideal

target to improve these cognitive functions. However, these recep-

tors are susceptible to agonist-induced desensitization, a character-

istic that complicates the use of agonists as therapeutic agents. The

desensitization can also explain why many acetylcholinesterase

inhibitors, which increase the synaptic levels of ACh, as well as

drugs acting as agonists of the α7 receptors only induce modest

and short-term therapeutic effects [59].

An alternative approach to treating memory and attention

deficits that does not cause the tachyphylaxis induced by α7

nAChR agonists is the use of nonagonist positive modulators of

these receptors [60], including partial agonists such as S24795 and

GTS-21[61] or positive allosteric modulators (PAMs) [62] such

as PNU-120596 [63, 64] and galantamine [65, 66]. For example,

PAMs can facilitate ACh neurotransmission by binding to receptor

regions other than the active site, changing the receptor conforma-

tion, and in some cases preventing agonist-induced desensitization

[13].

In an attempt to improve the cognitive abilities of AD patients

with this new approach, modulators of the α7 receptors, such as

3-(2,4-dimethoxybenzylidene) anabaseine (GTS-21 or DMXB-A)

[56, 67, 68], and many others, are under development or are cur-

rently being investigated in clinical trials [56, 69–71].

Cotinine as a Modulator of the Nicotinic
Acetylcholine Receptors

Cotinine is weak agonist of the α7 receptor, and whether this re-

ceptor is the main target of cotinine is still controversial [72]. How-

ever, the possibility that cotinine is an allosteric modulator of this

receptor needs to be further explored.

Alternatively, to explain the beneficial effects of cotinine on

cognitive abilities, it has been postulated that cotinine desensi-

tizes nAChRs located on inhibitory GABAergic neurons of the hip-

pocampus, provoking the activation of the excitatory glutamate

receptors in this region of the brain, and thereby stimulating cog-

nitive abilities [73, 74]. This hypothesis is interesting; however,

direct evidence that cotinine desensitizes the hippocampal α7 re-

ceptor is still needed. Contrary to this idea, new evidence shows

that chronic treatment with cotinine stimulates the Akt/GSK3β

pathway in the hippocampus and cortex of AD and control lit-

termate mice [33]. Because the Akt/GSK3β pathway is located

downstream of the α7 nAChR, it is unlikely that desensitization of

the α7 nAChR, which is highly expressed in these brain regions,

could lead to the marked activation of these signaling pathway. It

is feasible that instead of desensitizing α7 nAChRs, cotinine may

act as a PAM of the human α7 nAChR. The positive modulation of

these receptors would explain the positive effects of cotinine not

only on learning and memory but also in reversing apomorphine-

induced deficits in prepulse inhibition of acoustic startle in rats

[75], a process modulated by the α7 nAChR.

Positive modulation of the α7 nAChRs could also explain co-

tinine’s positive effect on neuronal survival because the activa-

tion of Akt stimulates pro-survival proteins (e.g., Bcl-2 and the

transcription factor cAMP responsive element-binding protein

[CREB; Ref. 11] and inhibits the pro-apoptotic protein c-Jun N-

terminal kinase (JNK) via the activation of the apoptosis signal-

regulating kinase (Ask) [76, 77; Figure 2). Furthermore, α7

nAChRs can favor synaptic plasticity and cognition by activat-

ing the protein kinases phosphoinositide-3 kinase [PI3K; Refs. 78,

79], Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), and

the transcription factor CREB, which participate in mediating the

structural and molecular changes required for learning and mem-

ory processes [80, 81].

The activation of PI3K heterodimers p85/p110 by the α7 recep-

tor is triggered by the binding of p85 (the regulatory subunit) to

phospho-tyrosyl proteins such as Fyn, which leads to the release

of p110 [the catalytic subunit; Ref. 82]. Thus, PI3K stimulates the

phosphorylation of Akt at residues threonine 308 and serine 473

[83]. The active form of Akt can then promote neuronal survival

by stimulating CREB and Bcl-2 activity and by inactivating Ask1

by phosphorylation at serine 83 [84].

Of equal importance, because GSK3β is considered to be one

of the main tau kinases in vivo, the inhibition of GSK3β by coti-

nine may also prevent the abnormal phosphorylation of tau ob-

served in AD brains and the consequent appearance of neurofib-

rillary tangles of hyperphosphorylated tau [85–87]. The potential

inhibition of tau phosphorylation by cotinine is currently being

investigated in our laboratory as a new target mechanism against

AD.

Furthermore, the stimulation of both CREB and ERK1/2

by cotinine may promote the expression of activity-regulated

cytoskeleton-associated protein (Arc, also termed Arg3.1), derived

from an immediate early gene required for the consolidation of

memory [88–90]. Arc expression is stimulated by brain-derived

neurotrophic factor (BDNF), serum response element [91], NMDA

receptors [92], elongation factor 2 [93], CREB, and ERK1/2 [94].

This versatile protein is believed to mediate memory storage in

the brain’s active networks by coupling changes in neuronal ac-

tivity patterns to diverse forms of synaptic plasticity [95]. The α7

receptors seem to have a clear role in mediating Arc gene expres-

sion, as an increase in levels of Arc mRNA were found in rats

treated with the selective α7 receptor partial agonist SSR180711

[96]. Thus, it is through the modulation of the α7 nAChRs and
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Figure 2 Hypothetical model of cotinine’s potentiation of the α7 nAChR.

The scheme represents the hypothetical positive allosteric modulation of

the α7 nAChR by cotinine, and the activation of signaling pathways that are

downstream of the a7 nAChR. The consequences of the activation by coti-

nine of components of the PI3K-Akt-GSK3β pathway on AD pathology are

suggested. TheactivationofAkt by cotininemay result in the inhibitionof the

tau kinase GSK3β and consequently the formation of hyperphosphorylated

formsof tau found in theneurofibrillary tangles (oneof theneuropathological

hallmarks of AD). Also, the inhibition of GSK3β may inhibit its pro-apoptotic

effect. On the other hand, the stimulation of pERK can stimulate pCREB activ-

ity and as a result stimulate the expression of Arc, a protein that participate

in the remodeling of the synapses during learning and memory processes

and is required for long-term memory. CREB stimulate the expression of

antiapoptotic factors such as Bcl2.

its associated pathways that cotinine may exhibit its pro-cognitive

actions, giving rise to further potential implications in other

pathologies that involve a downregulation of these cell signaling

cascades.

Cotinine-inhibited Aβ1–42 Aggregation

According to the updated amyloid cascade hypothesis, AD is pre-

dominantly caused by the neurotoxicity of aggregated forms of

soluble Aβ [97–100]. This concept, though still controversial, is

supported by the fact that the level of soluble Aβ correlates bet-

ter with dementia than does plaque burden in AD patients [101,

102].

In aqueous solutions, Aβ undergoes a time- and concentration-

dependent transition from a soluble α-helical to an insoluble β-

sheet structure. Aβ can exist as nontoxic soluble monomers, neu-

rotoxic oligomers and protofibrils, or as insoluble fibrils. Because

only the aggregated forms of Aβ are toxic, a great deal of trans-

lational research effort has focused on investigating compounds

with anti-Aβ aggregation activity. One recent 78-week random-

ized, double-blind, placebo-controlled phase 2 study investigated

ELND005 (an oral amyloid anti-aggregation agent) in mild to

moderate AD. Therein, the anti-aggregation approach did not

show significant clinical efficacy [103]. It is possible that the small

sample size (n = 166 participants) masked a beneficial effect of this

drug; however, it is likely that anti-aggregation drugs may need to

target additional aspects of the pathology to achieve clinical ef-

ficacy. Studies with larger sample sizes and employing different

anti-aggregation drugs are needed.

It has been postulated that the oligomerization and fibrilla-

tion processes are pathways that can occur sequentially or inde-

pendently of each other. Thus, each of these pathways can be

targeted separately or simultaneously by anti-aggregation com-

pounds [104]. For example, some compounds such as curcumin

inhibit oligomerization but not fibrillation [105], and other com-

pounds such as o-vanillin inhibit the formation of both oligomers

and fibrils [106]. Other molecules such as the naphthalene sul-

fonates inhibit fibrillation but not oligomerization [107]. Few

compounds inhibit both processes, and it is these that may

be the more promising agents for stopping Aβ toxicity in vivo

[108, 109].

We and others have previously demonstrated that cotinine can

inhibit both Aβ oligomerization and fibrillation [33]. Seminal

studies have shown that cotinine binds to Aβ with high affinity

(Ka = 0.1 nM) [110] and inhibits its fibrillation in vitro [23]. Re-

cently, an atomic force microscopy analysis of Aβ1–42 fibrillation

under conditions that favor fibrillation, such as high temperature

(37◦C) and high concentrations of the peptide (millimolar range),

confirmed that cotinine inhibits Aβ1–42 aggregation in vitro, de-

creasing the average number and length of fibrils [33]. Further

analysis of the effect of cotinine on Aβ1–42 oligomerization us-

ing dot blot techniques showed that cotinine inhibited Aβ1–42

oligomerization in vitro [111]. Consistent with a reduction in Aβ

toxicity by inhibiting the aggregation of the peptide into the toxic

species, we found that cotinine protected cultured cortical neurons

against Aβ1–42 toxicity [111]. This anti-aggregation effect seems

to underlie the reduction in Aβ oligomers and plaques observed

in the brains of AD Tg6799 mice treated with cotinine. This de-

crease paralleled an overall improvement of reference and work-

ing memories in the Tg AD mice [112].

The interaction of cotinine with the full-length Aβ1–42

monomer at the atomic level was elucidated using molecular

docking and molecular dynamics (MD) simulations. After the sim-

ulation, analysis of the most representative structure indicated

that cotinine may interact with the histidine (His) 6, tyrosine (Tyr)

10, and His14 residues of Aβ1–42. The interaction of cotinine with

His6, Tyr10, and His14 residues of Aβ1–42 induces important struc-

tural changes in the peptide that seem to play a key role in re-

ducing its aggregation. This analysis also indicated that the inter-

action with cotinine greatly influences the phenylalanine 20 to

methionine 35 region of the full-length Aβ1–42 monomer [112].

This segment contains the loop (amino acids 24–28) and second

hydrophobic domain (amino acids 29–35) both of which regions

have been implicated in the aggregation process [113]. These re-

sults suggest that the interaction of cotinine with key residues in

Aβ1–42 may induce critical changes in its secondary structure, in-

hibiting its aggregation.
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Feasibility of using Cotinine as a Pharmacological
Therapy against AD

Clinical studies assessing the effect of cotinine on the pro-

gression of AD have not yet been performed. However, the

pharmacokinetic profiles and safety of orally and intravenously

administered cotinine have been previously investigated in hu-

mans [47, 114–119]. A seminal study indicated that doses of up

to 1800 mg of cotinine per day during a 4-day period were well

tolerated in humans [114]. Later, another study investigated the

safety and efficacy of several oral doses of cotinine fumarate, up to

160 mg per day during a period of 10 days, as an aid for tobacco

cessation in abstinent cigarette smokers [47]. At the doses tested,

cotinine did not show efficacy in reducing tobacco consumption

but did show that, unlike nicotine, its metabolite did not elicit

withdrawal effects, addictive behavior, or any negative cardiovas-

cular effects, such as increasing heart rate or systolic or diastolic

blood pressures [47]. The multiple mechanisms of action of coti-

nine and its good safety profile in humans make this drug an ideal

candidate for preventing, delaying, or halting AD pathology.

Conclusions

AD is characterized by deterioration of the cholinergic system,

including loss of cholinergic neurons and downregulation of

nAChRs in the brain [120]. Nicotine itself shows limited use in

the clinic because of its toxicity and addictive properties. How-

ever, cotinine prevents the memory loss and inhibits the amyloid

burden in the brain in a mouse model of AD. Cotinine also in-

hibits the aggregation of Aβ peptides (considered the main cause

of the pathology), activates the pro-survival enzyme Akt, and in-

hibits the pro-apoptotic factor GSK3β in vivo.

Conveniently, cotinine has almost a 10-fold longer half-life than

nicotine and a good safety profile in humans. Cotinine has shown

memory enhancing properties not only in mice, but in monkeys

as well, indicating that its beneficial actions are not restricted to

rodents. The new information about the effects of cotinine in the

brain gives us a better understanding of cotinine’s potential for

the treatment of AD and opens a new avenue in the search for

therapies for this devastating disease.
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