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SUMMARY

Blood-brain barrier (BBB) is a dynamic interference that regulates the nutrition and toxic

substance in and out of the central nervous system (CNS), and plays a crucial role in main-

taining a stable circumstance of the CNS. Tight junctions among adjacent cells form the

basic structure of BBB to limiting paracellular permeability. In the present review, the con-

stituents of tight junction proteins are depicted in detail, together with the regulation of

tight junction under stimulation and in pathological conditions. Tight junction modulators

are also discussed.

Introduction

The blood-brain barrier (BBB) regulates the flow of essential com-

ponents into and out of the central nervous system (CNS) and

minimizes the influence of toxic compounds and pathogens to the

CNS [1,2]. The basic unit of the BBB consists of endothelial cell,

astrocyte, pericyte, and the adjacent neurons [3]. The endothelial

cells are connected by junction complex, in which tight junction

(TJ) plays a significant role.

Except for lipophilic molecules with <8 H-bonds and <400 Da,

most molecules could not freely penetrate to the BBB [4]. Sub-

stances with high octanol/water partition coefficient could readily

penetrate into the CNS [5]. Other molecules, including nutrients

with low-partition coefficients, pass through the BBB by paracel-

lular aqueous pathway, transport proteins, receptor-mediated en-

docytosis, or adsorptive endocytosis [5,6]. Pardridge categorized

the transport across the BBB into the following three categories:

carrier-mediated transport, active efflux transport, and receptor-

mediated transport [4].

In excess of 98% of small molecule drugs do not across the BBB

due to the presence of the TJ [7]. With the CNS diseases increas-

ing in the background of longer average life expectancy and most

CNS-oriented drugs not being able to enter into the brain, the

market for neuropharmaceuticals is potentially one of the largest

ones in global pharmaceutical sectors [6]. The current review

focuses on the molecular structure and pathological implication

of TJ.

Tight Junction

A two-step hypothesis explains the formation of the BBB: en-

dothelial cells initially form leaky vessels; TJ is formed later to

create the barrier [8]. Structurally, an intricate combination of

transmembrane proteins and cytoplasmic accessory proteins are

involved in the TJ formation, and then linked to an actin-based

cytoskeleton, allowing TJ to form a seal [9; Figure 1]. Pores be-

tween adjacent cells on the seal are important for molecules to

pass through TJ, but the basic structure of claudin-based pores is

still unknown [10].

Integral Membrane Proteins

Occludin

Occludin is the first identified membrane protein within TJ. Oc-

cludin has a molecular weight of 60∼65 kDa, and consists of four

transmembrane domains, two extracellular domains, and three

cytoplasmic domains. Both the N-terminus and C-terminus are in-

tracellular [11]. Occludin forms a homophilically dimer with other
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Figure 1 Molecular component of endothelial tight junctions in the BBB.

cells. A uniqiue feature of occludin, relative to other transmem-

brane proteins is the binding of the 150 amino acid sequence in

the C-terminus to F-actin. The C-terminus of occludin could also

bind to the GK domain of ZOs, which in turn binds to the cy-

toskeleton, localizing it to the cell membrane [12].

Occludin could form a TJ-like structure upon transfection into

cells that lack TJ [e.g., L-fibroblast; Ref. 12]. Freeze-fracture im-

munoreplica electron microscopy has also revealed the presence of

occludin in TJ fibrils [12]. At the same time, truncation of both the

C-terminus and N-terminus of occludin decreases transendothelial

electrical resistance, suggesting a key role of occludin in the bar-

rier function of the TJ [11]. Another study reported that occludin-

deficient embryonic stem cells have complete TJ as observed in

wild-type controls in freeze-fracture replicas [13]. Saitou et al. also

failed to observe alteration of barrier function in mice carrying

a null mutation in the occludin gene, suggesting that occludin is

not required for TJ structural formation [14]. Normal expression

and localization of other junctional proteins may compensate for

occludin loss [15]. Occludin-deficient mice exhibit complex gross

and histological phenotypes, including calcification in the brain,

showing the functions of occludin are more complex than just a

building block in endothelial cells and other tissues [14].

Claudins

Claudins are a family of 24 proteins with molecular mass ranging

from 20 to 24 kDa. Similar to occludin, claudins have four trans-

membrane domains, two extracellular loops, and a short carboxyl

intracellular tail [12]. Claudins are not homologous to occludin in

sequence despite of many other similar characteristics.

With the extracellular loops, claudins form the backbone of TJ

by forming dimmers and binding homotypically to other claudin

molecules in adjacent endothelial cells [16]. With the intracellu-

lar loops, they bind to the PDZ domain of zona occludens (ZOs)

through their C-terminus.

Claudin-1, -2, -3, -5, -11, and -12 are found in brain endothe-

lial cells [16–18]. Claudin-5 is a hallmark of BBB and plays an es-

sential role in the earliest stage of CNS angiogenesis [2]. Claudin-

5 is expressed in the endothelial cells in almost all segments of

the brain [19] as well as in blood vessels of the lungs and kid-

ney. Recently, claudin-5 was found to be expressed in epithelial

TJ in the human colon cell line HT-29/36 [20]. Nitta et al. found

that BBB is permeable to molecules with molecular mass at <800

Da in claudin-5 deficient mice [21]. Consistent with this notion,

adrenomedullin could increase the expression of claudin-5 to in-

crease transendothelial resistance and decrease BBB permeability

[22]. In addition, an investigation recently found that claudin-5a

plays a fundamental role in the early cerebral–ventricular barrier

system for the expansion of zebrafish brain ventricular lumen ex-

pansion [23].

Junctional Adhesion Molecules

Junctional adhesion molecules (JAMs) belong to the im-

munoglobulin superfamily, and have a molecular weight at about

40 kDa [24]. JAM includes three structural domains: an extracel-

lular domain with two immunoglobulin-like loops, a single trans-

membrane domain, and a short intracellular tail [24]. JAM could

be categorized into JAM-A (also known as JAM, JAM-1, 106 anti-

gen, and F11R), JAM-B (also known as JAM-2, VE-JAM, hJAM-

2 and mJAM-3), JAM-C (also known as JAM-3, hJAM-3 and

mJAM-2), and most recently JAM-4 and JAML [25]. All of JAM-

A, -B, and -C are found in endothelial cells, with JAM-A highly ex-

pressed in the cerebrovessels [17]. Both JAM-A and JAM-C main-

tain the stability of TJ, and JAM-B maintain the stability of TJ

by interacting with JAM-C [26]. Monoclonal antibodies against

JAM inhibit re-establishment of barrier function in a transient cal-

cium depletion assay, but do not have any effect to well-formed

TJ in confluent monolayers, suggesting that JAM participates in

the formation of TJ and is inaccessible in well-formed TJ [12,27].

JAM has been shown to bind to PDZ domain of cytoplasmic pro-

teins AF6 and ZO-1 with its C-terminus in intracellular loops, and

extracellularly, JAMs form homophilic interactions with adjacent

cells [27].

Cytoplasmic Accessory Proteins

ZO belong to the family of membrane-associated guanylate ki-

nases, and consist of three PDZ domains, one SH3 domain and

a guanylyl-kinase domain [28]. ZO proteins play a role in con-

necting transmembrane proteins to skeleton proteins and interact

directly with most of the transmembrane proteins like occludin,

claudins and JAM. At the same time, ZO proteins are involved in

signal transduction and transcriptional modulation [29].

ZO-1 is a 220 kDa phosphoprotein first found in TJ, and is asso-

ciated with the C-terminus of claudins by its PDZ-1, JAM by PDZ-

2 and -3, and occludin by the GK domain [3,12]. ZO-1 binds to

the actin cytoskeleton through its C-terminus, serving as a bridge

between transmembrane proteins and skeleton proteins. This in-

teraction is important to the stability and function of TJ; dissocia-

tion of ZO-1 from the junctional complex often leads to increased

permeability of BBB [3]. Once localized to the transmembrane
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proteins complex, ZO-1 becomes insoluble in nonionic detergents,

showing strong association with skeleton actin [30]. In Eph4 cells

lacking ZO proteins, the formation of TJ is completely disrupted,

with claudins failing to polymerize at TJ in these cells, showing

that the SH3/GUK domains of ZO proteins play a critical role for

claudin polymerization [31].

ZO-2 is a 160 kDa phosphoprotein that shares sequence homol-

ogy with ZO-1. ZO-2 functions redundantly with ZO-1, so it may

replace ZO-1 and facilitate formation of a morphologically com-

petent TJ [32]. More recently, an investigation found that ZO-2

deficient mice suffered early embryonic lethality, with a decreased

proliferation at embryonic day 6.5 and increased apoptosis at em-

bryonic day 7.5. This finding suggests that ZO-2 is required for

mouse embryonic development, and cannot be compensated by

ZO-1 and ZO-3 [33].

ZO-3 is a 130 kDa phosphoprotein that shares homologous

sequence and domain organization with ZO-1, and could co-

immunoprecipitate with the ZO-1/ZO-2 complex [12]. ZO-3 has

not been found in the BBB up to now [34].

Other Cytoplasmic Accessory Proteins

Other accessory proteins in BBB include cingulin, AF-6 (afadin),

and 7H6 antigen [3].

Cingulin is a 140 kDa protein, interacting with other TJ pro-

teins ZO-2, AF-6, JAM, skeleton protein F-actin, and other cin-

gulin molecules [12,35]. Embryoid bodies with deficient cingulin

show normal TJ structure and normal localization of ZO-1, oc-

cludin, and claudin-6. The transcript levels for claudin-2, -6, -7

and occludin increased. The study suggests that lacking of cingulin

does not disrupt TJ formation but alter gene expression and TJ

protein levels [36]. Interestingly, inducible overexpression of cin-

gulin in stably transfected MDCK cells showed no significant af-

fection in organization and function of TJ, TJ protein levels, and

gene expression, indicating that modulation of cellular functions

by cingulin occurs under physiological levels [37].

AF-6 is a 205 kDa protein that contains one PDZ domain, two

Ras binding domains and regions of homology with kinesin and

myosin V [12]. AF-6 is associated with ZO-1 through two Ras-

associating domains, and could be inhibited by Ras activation, in-

dicating that disruption of the ZO-1/AF-6 complex may be critical

in the modulation of TJ [3]. AF-6 deficient mice are developmen-

tal retarded at stages during and after gastrulation, indicating that

AF-6 performs an important role in TJ [38].

7H6 antigen is a 155 kDa protein with a putative ATPase domain

for reversibly dissociating from the TJ under conditions of ATP de-

pletion [3,12]. Upregulation of 7H6 antigen with dibutyryl-cAMP

or all-trans-retinoic acid in endothelial cells could enhance barrier

function, suggesting that 7H6 antigen plays a significant role in the

regulation of paracellular barrier function [39].

BBB Changes in Pathological Conditions

Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurodegenerative

disease with amyloid-β accumulation on blood vessels and

parenchyma neurofibrillar tangling in the brain [40]. Clinical fea-

tures include dementia, neuropsychiatric symptoms, seizures, and

epilepsy [41]. In vitro experiments demonstrated that amyloid-β

deposition downregulates the mRNA and protein level of ZO-1

and occludin, and disturbs organization of claudin-5, suggesting

that AD affects the function of BBB by altering the expression and

location of TJ proteins [42]. MRI studies in human subjects in-

dicated that BBB permeability is present at an early phase of AD

[43]. A study involving 157 AD patients found that the BBB is

dysfunctional in part of the patients and the dysfunction may ac-

celerate the progress of AD by affecting the clearance of amyloid-β

in turn [44].

Ischemic and Hypoxia Insults

Stroke, mostly ischemic, is the second most common cause of

death and disability in developed countries [45,46]. Many com-

plex pathological conditions come out under the progression of is-

chemic stroke, including neuronal depolarization (excitotoxic glu-

tamate efflux), intracellular calcium increase, metabolic function

loss, oxidative stress, and activation of inflammation [17,47,48].

All these changes could have major influences on the BBB. Oxy-

gen could alter the location, decrease the protein expression of

claudin-5 in bend.3 cells, and disrupts BBB [49]. Exposure to 6%

O2 increases TJ proteins claudin-5, occludin, and ZO-1 and dis-

rupted organization at endothelial cell margins [50]. In a study

of ischemia-reperfusion, the mRNA and protein levels of claudin-

5, occludin, and ZO-1 significantly decreased, together with an

increased permeability of BBB [17]. The opposite results in the

expression levels of TJ proteins may be explained by whether to

reperfuse after ischemia. When Wistar rats were exposed to hy-

pobaric hypoxia, the permeation of BBB increased significantly,

showing the function of BBB could be damaged by acute hypoxia

[51].

Activation of matrix metalloproteinases (MMPs) after ischemic

stroke could decrease the expression of claudin-5 and occludin,

and increase BBB permeability [52]. MMPs inhibitor could partly

reverse the degradation of the TJ proteins [53]. Normobaric hy-

peroxia treatment in the early stage of BBB disruption following

ischemic stroke could inhibit MMP-9-mediated occludin degrada-

tion and attenuate BBB disruption [54].

Inflammation

The permeability of BBB could be altered by the chronic in-

flammatory pain. Chronic inflammatory pain induced by injec-

tion of complete Freund’s adjuvant into the plantar hindpaw dis-

rupts the integrity of BBB and is associated with decreasing in

the expression of occludin [55]. Injection of λ-carrageenan into

the plantat hindpaw could cause peripheral inflammatory pain,

resulting in the increase of BBB permeability, promoted by the

disruption of occludin oligomeric assemblies [56]. Patients with

rheumatoid arthritis have increased morbidity and mortality due

to cerebrovascular diseases [57]. Based on a large observational

study in Japan, cerebrovascular disease is the third major cause

of death in rheumatoid arthritis [58]. A recent study found that
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rheumatoid arthritis could increase permeability of BBB, together

with a decrease of occludin but not ZO-1 [57].

Multiple sclerosis (MS) is considered as a neuroinflammatory

disease [3,59], with myelin sheath damage as the major patho-

logical change. BBB abnormality could be detected before MRI

changes [3], at both focal and diffuse level in MS patients with

postmortem MRI in another study [60]. Kirk et al. detected the

expression of ZO-1 in focal, diffused zone and the control showed

similar results. Forty-two percent vessel segments in focal area,

13% in normal-appearing white matter are abnormal versus 3.7%

in normal controls, suggesting that the progressing breakdown

of the BBB is accompanied by the progression of MS [61]. Even

though the BBB is disrupted in MS patients, tool compounds

including lipophilic transcellular drugs, hydrophilic paracellular

compounds and P-gp substrates, could not penetrate though the

BBB [62].

Diabetes Mellitus

Diabetes mellitus is associated with changes in the barrier func-

tion of cerebral microvessels. These changes may contribute to

the CNS complications of diabetes mellitus [63]. Recently, clini-

cal evidence suggests that diabetes-induced changes in the BBB

lead to increased incidences of many CNS diseases, such as hemor-

rhage, vascular dementia, and may be a predisposing factor of AD

[64]. The expression of TJ proteins could be altered by the pathol-

ogy of diabetes. Streptozotocin-induced diabetes could decrease

the expression of occludin in cerebral microvasculature [65]. In

addition, treatment of diabetes with insulin attenuates BBB dis-

ruption in the first few weeks, whereas microvascular damage is

irreversible even when hyperglycemia is controlled as diabetes

progressed [66]. More recently, Hawkins et al. adds that the ex-

pression of ZO-1 decreases in streptozotocin-induced diabetes, and

the increase of MMPs activation together with hyperglycaemia

may be the underlying causes of hyperpermeability of BBB in di-

abetes mellitus [67]. Animals with diabetes mellitus are more vul-

nerable to nanoparticle-induced cerebrovascular reactions in the

brain and neuronal damage [68]. In addition, high-energy diet in-

creases the permeability of BBB, with a decrease in mRNA level of

claudin-5 and claudin-12 [69]. Interestingly, the most vulnerable

area of the brain is hippocampus, which may explain the relation-

ship of high-energy diet with AD [69].

HIV

Human immunodeficiency virus type 1 (HIV-1) can cause

CNS complications, such as HIV-related encephalitis and HIV-

associated dementia [70]. HIV infection can alter the structure

and function of TJ, decrease the expression and alter the dis-

tribution of claudin-1, ZO-2, claudin-5 and JAM-A [71–73], yet

the expression of occludin and ZO-1 remains unchanged [70,71].

Rho/RhoK activation may be an underlying cause of BBB impair-

ment during HIV-related encephalitis [74]. Mitogen-activated pro-

tein kinase 1/2, vascular endothelial growth factor receptor type

2, phosphatidylinositol-3 kinase, nuclear factor-kappa B and sig-

nal transducers and activators of transcription may involve in Tat-

induced alteration of TJ proteins level [75,76]. HIV Tat protein

injection could upregulate expression of cyclooxygenase-2 and de-

crease expression of TJ proteins, whereas cyclooxygenase-2 inhibi-

tion partly attenuates the downregulation of TJ proteins, showing

that cyclooxygenase-2 plays limited roles in HIV-related BBB dys-

function [77]. Recently, a study showed that stimulation of PPAR

activity or overexpression of PPAR could attenuate HIV-induced

alterations of TJ proteins and disruption of barrier function of BBB

[73].

Drug Abuse

Methamphetamine (METH) and cocaine are powerful psychos-

timulant drugs used illegally throughout the world. Acute METH

intoxication may lead to disruption of the BBB and acute brain

edema [78,79]. METH has shown to alter permeability of BBB es-

pecially in hippocampus [80]. METH administration decreases the

expression level of claudin-5, occludin and ZO-1, together with

an increased activation of MMP-9, suggesting that the effects of

METH on BBB function can be explained by alterations on TJ

proteins and MMP-9 [80]. Exposure to METH enhances reactive

oxidative stress in brain microvascular endothelial cells (BMEC),

which then activates myosin light chain kinase and decreases TJ

proteins levels [81]. Effects of cocaine on BBB are generally similar

to METH. Exposure to cocaine can result in increasing permeabil-

ity of endothelial barrier, together with an increased expression of

platelet-derived growth factor. Platelet-derived growth factor neu-

tralizing antibody could abrogate this effect, indicating an essential

role of platelet-derived growth factor [82].

Many HIV patients are addicted to neurotoxic drugs such as

METH, morphine, and cocaine, which may worsen the HIV-

related neurological impairments in turn. When treated with

METH and gp120 (an envelope glycoprotein of HIV-1), the expres-

sion of ZO-1, claudin-3, claudin-5 and JAM-2 in BMEC decrease

significantly, with an increase in the expression of occludin. Treat-

ment with gp120 alone decreases the expression of ZO-1, claudin-

3, JAM-2, and has no effect on claudin-5 and occludin [83]. METH

modulates TJ proteins expression and decreases barrier function

of BBB via Rho-A activation [83]. Morphine treatment BMEC

could decrease the expression of TJ proteins ZO-1 and occludin

significantly, while increasing the expression of JAM-2. It com-

promises barrier function in vitro, possibly through activation of

pro-inflammatory cytokines, intracellular calcium release and acti-

vation of myosin light chain kinase [84]. Cocaine has a direct effect

on TJ proteins in BMEC. An investigation found that exposed to

cocaine may downregulate the expression of ZO-1 protein and up-

regulate the CCL2/CCR2, which plays a crucial role in the progres-

sion of HIV-1 neuropathogenesis [85]. Exposing BMEC to cocaine

may upregulate MMP, increase expression of TNF-α, thereby sug-

gesting that cocaine causes membrane permeability and endothe-

lial transmigration of HIV-infected dendritic cell [86].

Regulation of TJ in BBB

Environmental Regulation

Now, more and more investigations recognize the relationship be-

tween the integrity of BBB and environmental regulations. The
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permeability of BBB could be affected by the physical and chem-

ical changes in milieu. A finding demonstrates the importance of

the shear stress in the formation of BBB, which could upregulate

the expression of ZO-1 and occludin, enhancing bovine brain mi-

crovascular endothelial barrier function [87]. An interesting inves-

tigation found the impact of culture pH and buffer concentration

on the paracellular tightness in vitro. Co-culture with astrocytes

increases barrier function of bovine brain capillary endothelial

cells independent of the type of buffer detected by transendothelial

electrical resistance [88]. Another research focused on the toxicity

of manufactured aluminum oxide nanoparticles, which have been

widely found in the environment. They found that the treatment

with nanoalumina could markedly reduce the viability of BMEC

and decrease the integrity of claudin-5 and occludin. And the al-

terations could be prevented by glutathione [89]. It shows that the

possible mechanisms may exist in the oxidation produced by the

clearance of the BMEC. Another study took temperature into ac-

count. Barrier function is compromised by brief heat shock, and

more time is needed to recover under higher temperature. Re-

peated application of heat treatment could produce a reinforced

barrier in the BMEC [90].

In another way, people make great efforts to enhance the drug

targeted to CNS through BBB. Sheikov et al. found that ultrasound

burst in combination with gas contrast agent could redistribute

and reduce the expression of occludin, claudin-5, and ZO-1, but

not claudin-1. After sonication, the dysfunction of BBB could last

for as long as 4 h [91]. Recently, Fan et al. found that the expres-

sion of ZO-1, occludin, and claudin-5 decreased most significantly

under low-frequency ultrasound irradiation at 2 h, and gradually

returned to the original level at 24 h, together with the perme-

ability of BBB increasing [92]. Exposed to electromagnetic pulse

could also increase the permeability of BBB and decrease levels as

well as alter localization of ZO-1 [93]. The aforementioned meth-

ods could be used to increase the permeability of BBB temporarily

to deliver drugs into the CNS more efficiently.

Hormone Level

Because cerebral vasculature is an important target of estrogen

[94], many investigations have been performed to confirm that

the BBB is more accessible in older females (reproductive senes-

cent) than in younger ones [95]. Hormonal decline, marking re-

productive senescence, leads to increased permeability of the BBB,

which is further exacerbated by estrogen treatment in special re-

gions [96]. Poor junctional localization of claudin-5 in hippocam-

pal microvessels exists in the reproductive senescent females than

in the younger ones, indicating that dysregulation of claudin-

5 may associate with ovarian aging [96]. Dissimilarly, Sandoval

et al. held a different view that under the treatment of 17β- estra-

diol, the expression of claudin-5 varies in the younger animals and

the middle-aged ones, but the functional paracellular permeabil-

ity measured via the in situ perfusion of [14C]-sucrose shows no

change between the two groups [97].

Glucocorticoids are widely used as a therapeutic strategy for

the disruption of BBB in neuroinflammatory conditions. A study

found that occludin is a direct target of glucocorticoids. Hydro-

cortisone at physiological concentrations induced upregulation of

occludin, together with an enhancement of barrier function of

BBB [98], possibly by preventing endothelial barrier breakdown

in response to TNFα stimulation [99]. Maternal exposure to glu-

cocorticoids could increase the expression of claudin-1, claudin-5,

ZO-2, together with the decrease in BBB permeability in the fetus

[100].

TJs’ Regulator Substances Targeted
at the BBB

Zonula Occludens Toxin

Zonula occludens toxin (Zot) is a 45 kDa protein. Its receptor in

the human brain may be a target for Zot and other analogues

mimic the functional components to modulate the permeability

of the BBB [101]. Studies already demonstrated that Zot could en-

hance penetration of drugs with different molecular weight and

low bioavailability across the bovine BMEC in a concentration de-

pendant manner [102]. More importantly, the effect of Zot is re-

versible and nontoxic [103]. DeltaG, a biologically active fragment

of Zot with a 12kDa molecular weight, was identified in 2001.

DeltaG administrated via an intracarotid injection could increase

the hydrophilic and lipophilic drugs across the BBB significantly

[104].

Other Modulators Targeted at the BBB

There are many other TJ modulators targeted at the BBB, such

as calcium chelators, surfactants, cationic polymers, cyclodextrins,

and hyperosmotic solutions [105]. However, none of these TJ

modulators is specific towards the TJ in BBB. Many of these

molecules (e.g., surfactants) enhance the transportion of drugs by

disrupting the structure of the lipid bilayer [103]. The cytotoxic

characteristics of the TJ modulators limit their further study.

Conclusions

The basic structure of BBB was demonstrated over 100 years ago.

However, the complex factors in physiological and pathological

conditions still need investigations. The disruption of TJ may in-

crease permeability of BBB, resulting in serious diseases in the

CNS. On the other hand, pathological state in CNS is always ac-

companied by the downregulation of TJ proteins and dysfunction

in BBB. Studies in the BBB will revive with the increasing mor-

bidity in the brain.
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