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SUMMARY

Cerebral ischemia is a severe outcome that could cause cognitive and motor dysfunction,

neurodegenerative diseases and even acute death. Although the existence of autophagy in

cerebral ischemia is undisputable, the consensus has not yet been reached regarding the

exact functions and influence of autophagy in cerebral ischemia. Whether the activation of

autophagy is beneficial or harmful in cerebral ischemia injury largely depends on the bal-

ance between the burden of intracellular substrate targeted for autophagy and the capacity

of the cellular autophagic machinery. Furthermore, the mechanisms underlying the auto-

phagy in cerebral ischemia are far from clear yet. This brief review focuses on not only the

current understanding of biological effects of autophagy, but also the therapeutic potentials

of autophagy in ischemic stroke. There are disputes over the exact role of autophagy in cere-

bral ischemia. Application of chemical autophagy inhibitor (e.g., 3-methyladenine) or indu-

cer (e.g., rapamycin) in vitro and in vivo was reported to protect or harm neuronal cell.

Knockdown of autophagic protein, such as Beclin 1, was also reported to modulate the cere-

bral ischemia-induced injury. Moreover, autophagy inhibitor abolished the neuroprotec-

tion of ischemic preconditioning, implying a neuroprotective effect of autophagy. To clarify

these issues on autophagy in cerebral ischemia, future investigations are warranted.

Introduction

Ischemic stroke, often resulted from hypoxic ischemic encepha-

lopathy and acute cerebrovascular accident, is a leading cause of

mortality and morbidity worldwide [1]. It could induce severe

cognitive and motor dysfunction, neurodegenerative diseases and

even acute death [1]. The tissue plasminogen activator (tPA) is

the only therapy for acute cerebral ischemia approved by the Food

and Drug Administration of United States at present [2,3]. How-

ever, the strict 3-h time window for the tPA treatment is the main

barrier to acute intravenous thrombolysis [2,3]. Thus, identifica-

tion or exploration of novel therapeutic targets becomes a major

challenge and task in the field.

Many molecular mechanisms, including excitotoxicity, periin-

farct depolarization, inflammation, oxidative stress, calcium over-

load and programmed cell death, contribute to ischemic cerebral

damage [4]. The apoptosis and necrosis attributing to the neuronal

cell death caused by ischemia have been intensively studied [5].

In recent years, autophagy has been discovered to be an important

mechanism adopted by many different types of cells for determin-

ing their fate. In cells, autophagy is responsible for degradation of

most superfluous proteins and organelles. The cytoplasmic con-

stituents, including organelles, are sequestered into double-mem-

brane autophagosomes, which subsequently fuse with lysosomes

where their contents are degraded. Although it is still a topic of

debate whether autophagy is a mechanism of cell survival or cell

death, the importance of autophagy in various biological and

pathological processes is widely accepted [6].

As an intracellular bulk degradation system that is found ubiqui-

tously in eukaryotes, autophagy plays important roles in many

physiological processes, including development/differentiation

[7–10], immunity [11–14], metabolism [15–19] and aging [20–

23], as well as pathophysiological processes, including neurode-

generation [24–28], diabetes [16,29–31], obesity [32,33], cancer

[34–38], and inflammation [11,39–41]. Also, autophagic flux has

been found in multiple ischemic diseases, such as myocardial

infarction [42–44], kidney ischemia [22], liver ischemia [45,46],

and cerebral ischemia [47,48]. Generally, in the neuronal system,

moderate autophagy is thought to be neuroprotective because

autophagy helps to clear aggregated-protein associated with neu-

rodegeneration [49–54]. Inadequate or defective autophagy may

lead to neuronal cell death, while excess autophagy, often trig-

gered by intensive stress, can also promote neuronal cell death

[47,55]. The existence of autophagy in ischemic stroke has been

found for many years; however, it is not sure whether autophagy

plays a protective role in ischemic cerebral injury or not yet

[56,57]. More and more reports regarding the involvement of

autophagy in cerebral ischemic stroke have been published in

recent years. These reports have brought attention to the novel

recruitment and elaborate regulatory mechanisms of autophagy in

cerebral ischemia. Thus, this review paper focuses on the updated

role of autophagy in cerebral ischemia and neuronal damage.
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Autophagy in Central Nervous System

Autophagy, [from the Greek roots “auto” (self) and “phagy” (eat-

ing)] which was first described in 1963, mainly refers to the cellu-

lar catabolic processes in which cytoplasmic target material is

transported to lysosomes for degradation as an evolutionarily con-

served mechanism from yeast to mammals [58]. At least three

forms, which include macroautophagy, chaperone-mediated

autophagy and microautophagy, have been identified in mam-

mals [58]. The macroautophagy is the most well-studied form of

autophagy. In macroautophagy, double-membraned vacuoles are

generated, called autophagosomes, which sequester cytoplasmic

material before delivering it to the lysosome for degradation [59].

Macroautophagy is regulated by nutrition status and AMP-acti-

vated protein kinase (AMPK) [60–63], a sensor of cellular energy.

In the process of macroautophagy, several autophagic factors,

such as Beclin 1 [64,65], LC3 [66], p62 [67–70], and ULK1 [71–

74], regulate the intensity and duration of macroautophagy.

Chaperone-mediated autophagy [25,75] involves selective trans-

location of the cytosolic proteins that are marked by a pentapep-

tide motif with a consensus sequence similar to KFERQ across the

lysosomal membrane, while cytosolic chaperones aid in the target

recognition and unfolding. In this process, the lysosomal-associ-

ated membrane protein-2a (LAMP-2a) is thought to be rate-limit-

ing for target translocation into lysosomes. Microautophagy, a

poorly understood phenomenon in mammalian cells, refers to a

process where the lysosome itself takes up small portions of cyto-

plasm by pinching off a vesicle [76,77]. Because macroautophagy

is the major autophagy–lysosomal proteolytic pathway identified

in central nervous system [78], the term “autophagy” refers to the

macroautophagy in this review. All the above-mentioned obser-

vation of autophagy was from animal model and there is no direct

evidence of autophagy in ischemic stroke in human yet. However,

the autophagy in other neurological diseases, such as Alzheimer’s

disease, has been showed in human brain tissue [26,79].

Evidence for the Autophagy in Cerebral
Ischemic Injury

Accumulating evidence has shown that autophagy is activated in

brain tissues or neuronal cells after ischemic stimulation. Individ-

ual or combined evidence is provided mainly by morphological

observation from electronic microscope, immunohistochemistry,

immunofluorescence, and immunoblotting assays.

Evidence from Electronic Microscope

Electronic microscope is widely used in autophagy research and

discovered the first autophagy more than 50 years ago [80]. The

use of electron microscopy is a valid and important method for

observation of changes in various autophagic structures that

sequentially form the phagophore, autophagosome, and autolyso-

some [81]. Electronic microscope validated the first autophagy in

the hippocampus CA1 pyramidal neurons after transient global

cerebral ischemia in 1995 [82]. It was found that the volume den-

sity of cathepsin B-positive lysosomes markedly increased 3 days

after ischemic insult, while the autophagic vacuole-like structures

also increased at this stage. Adhami et al. [83] reported vacuole

associated cortical neurons damage in an adult mouse ischemia-

hypoxia model, which ranges from cells harboring multiple cyto-

plasmic vacuoles to cells completely lacking cytoplasmic contents,

suggesting the existence of autophagosomal–lysosomal in neurons

in ischemic stroke. Many later documents also reported similar

results [84–89]. Electronic microscopy demonstrated that auto-

phagy was not only induced in neurons, but also in glial cells dur-

ing ischemic stroke [90].

Evidence from Assays of Autophagosomal
Marker Proteins

LC3 is a mammalian homolog of the yeast Atg8, which is a specific

constituent of the autophagosomal membrane [91]. Therefore,

the immunohistochemistry or immunofluorescence of LC3 was

used to observe the “punctate LC3” after autophagy, while the

immunoblotting is applied to detect the ratio of two forms of LC3

(LC3-II to LC3-I) that could be used to estimate the abundance of

autophagosomes. Moreover, Beclin 1, a mammalian ortholog of

the yeast Atg6 that is required for autophagosome formation, is

also used as a marker of autophagy activation.

Using transgenic GFP-LC3 mice, Adhami et al. [83] found that

cerebral ischemia–hypoxia causes redistribution of LC3 proteins.

In addition, the difference of LC3 fluorescence intensity between

the ischemic and contralateral brain tissue on neonatal or adult

rodents has been observed at different time points after hypoxia

or ischemia [86,92–95]. Upregulation of Beclin 1 induced by cere-

bral ischemia was also showed by many reports [48,96,97].

Recently, using in vivo imaging technology, Tian et al. [98]

showed that autophagic GFP-LC3-positive cells were primarily

neurons, not astroglial or microglial cells, and the number of auto-

phagic GFP-LC3 cells was greater in the peri-ischemic area than in

the core.

A Double-Edged Sword: The Role of
Autophagy in Ischemic Cerebral Injury

Numerous data have demonstrated that autophagy is activated by

ischemic insult in various models, and the elevated autophagic

activity could be regulated by a wide range of interventions,

mainly including pharmacological and genetic methods (summa-

rized in Table 1). There is no question that disrupting the auto-

phagic process in brain is deleterious, particularly for the lifespan

of the animal, resulting in the accumulation of dysfunctional or

aging macromolecules and organelles [99,100]. However, upon

the acute cerebral ischemia stress, whether autophagy plays a

beneficial or harmful role in the survival of neuronal cells is not

an easy question. Adhami et al. [83] showed for the first time that

many damaged neurons displayed features of autophagic/lyso-

somal cell death, and very few cells completed the apoptosis pro-

cess in cerebral ischemic stress. This result suggested that the

damaged neuronal cells can exhibit multiple forms of cell death

morphological features, and autophagy is only one kind of cell

death during ischemic injury. Alternatively, autophagy may pro-

tect neurons by degrading damaged organelles to abrogate apopto-

sis or generating energy to delay the onset of ionic imbalance and

necrosis after cerebral ischemia–hypoxia. However, these early

reports did not determine the exact role of autophagy. Dozens of
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later investigations pointed out the complex effects of autophagy

in cerebral ischemia. The autophagy and the controversial impacts

of autophagy on cerebral ischemic injury as a double-edged sword

have been uncovered.

Detrimental role of Autophagy in Ischemic
Cerebral Injury

In 2001, Uchiyama [101] showed that autophagy was induced

from the early stage of the glucose–oxygen deprivation in PC12

neuron cells. Administration of autophagy inhibitor 3-methy-

ladenine (3-MA) protected the PC12 cells from apoptosis, indi-

cating that autophagy may lead to neuronal cell death. Mice

deficient in Atg7, a necessary catalyst in both conjugation sys-

tems for autophagy, showed nearly complete protection from

cerebral ischemia-induced caspase-3 activation and neuron

death, supporting that autophagy plays an essential role in trig-

gering neuronal death execution after ischemic injury in brain

[102]. In addition, focal cerebral ischemia induced by perma-

nent middle cerebral artery occlusion increased the formation

of autophagosomes and autolysosomes and expression of LC3-II

and cathepsin B [102]. Autophagy inhibitor 3-MA reduced

infarct volume, brain edema and motor deficits via inhibiting

the ischemia-induced upregulation of LC3-II and cathepsin B

[102,103]. Also, in a study in neonatal cerebral ischemia, postis-

chemic intracerebroventricular injections of 3-MA reduced the

lesion volume even when given > 4 h after the beginning of

the ischemia [88]. RNA interference-mediated downregulation

of Beclin 1 inhibited autophagy and attenuated cerebral ische-

mic injury in rats [89]. Two neurotrophic factors, glial cell line-

derived neurotrophic factor (GDNF) and hepatocyte growth fac-

tor (HGF), decreased the numbers of LC3-positive cells, suggest-

ing that the protective effects of GDNF and HGF were closely

associated with their antiautophagic effects [104]. Moreover,

various agents, including NAD+ [105], propofol [106], b-asarone
[107], lithium [108], transmembrane protein 166 [109], ginse-

noside Rb1 [110], 2-methoxyestradiol [111], tetrahydrocurcu-

min [112], edaravone [113], and selenite [114], were reported

to decrease ischemic brain damage by blocking autophagy pro-

cess. In these reports, autophagy caused energy depletion, DNA

fragmentation, apoptotic signaling pathways activation and

severe damage in intracellular components.

Autophagy is also found to be involved in diseases associated

with cerebral ischemia. Zhang et al. [115] showed that exacerba-

tion of ischemia-induced amyloid-beta generation by diabetes

might be associated with autophagy activation in mouse brain.

Also, 3-n-butylphthalide attenuated amyloid-beta protein genera-

tion promoted by diabetes in ischemia through inhibiting abnor-

mally activated neuronal autophagy [116]. Similarly, Zhang et al.

[117] demonstrated that neuroprotective effects of amlodipine

and atorvastatin in metabolic syndrome model of Zucker fatty rats

involved their antiautophagic effect.

Table 1 In vivo role of autophagy in cerebral ischemic injury

Animals Model Phenotypes

Effect of autophagy

in cerebral ischemia

injury References

CD-1 mice tMCAO NAD+ inhibited autophagy Harmful 105

ICR mice tMCAO Edaravone inhibited autophagy Harmful 113

CBS+/� mice tMCAO Tetrahydrocurcumin inhibited autophagy Harmful 112

SOD2�/+ mice tMCAO SOD2 knockdown inhibited autophagy Protective 118

STZ-induced diabetic mice tCCAO Autophagy is associated with

amyloid-beta generation in diabetic mellitus

Harmful 115

tCCAO 3-n-Butylphthalide inhibited autophagy Harmful 116

Adult SD rats pMCAO GSK-3 inhibitor enhanced autophagy Protective 119

pMCAO Nampt overexpression enhanced autophagy in early stage Protective 95

tMCAO Hyperbaric oxygen preconditioning enhanced autophagy Protective 96

pMCAO Focal cerebral ischemic preconditioning enhanced autophagy Protective 127

4VO 2-methoxyestradiol inhibited autophagy Harmful 111

pMCAO Autophagy inhibitors is neuroprotective Harmful 102

tMCAO Beclin 1 knockdown is neuroprotective Harmful 89

tMCAO b-asarone inhibited autophagy Harmful 107

tMCAO TMEM166 induced autophagy Harmful 109

pMCAO Autophagy inhibitors are neuroprotective Harmful 103

Adult Wistar rats tMCAO GNDF and HGF inhibited autophagy Harmful 104

Adult Zucker fatty rats tMCAO Amlodipine and atorvastatin inhibited autophagy Harmful 111

Neonatal SD rats ischemia-hypoxia Rapamycin enhanced autophagy Protective 86, 93

dMCAO Autophagy inhibitor is neuroprotective Harmful 88

Neonatal Wistar rats ischemia-hypoxia Lithium inhibited autophagy Harmful 108

SD, Sprague Dawley; 2VO, occlusion of bilateral common carotid arteries; 4VO, 4 vessels occlusion; tMCAO/pMCAO/dMCAO, transient/permanent/dis-

tal middle cerebral artery occlusion; tCCAO, transient common carotid artery occlusion; IPC, ischemic preconditioning; SOD2, manganese superoxide

dismutase; GNDF, glial gell line-derived neurotrophic factor; HGF, hepatocyte growth factor; Nampt, nicotinamide phosphoribosyltransferase; NAD+,

nicotinamide adenine dinucleotide; TMEM166, transmembrane protein 166.
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Beneficial Role of Autophagy in Cerebral
Ischemic Injury

A lot of direct evidence has also been demonstrated on the benefi-

cial role of autophagy in ischemic injury. In focal cerebral ische-

mia, the brain neuronal cells over-expressing Beclin 1 were found

to exhibit damaged DNA but without changes in nuclear mor-

phology, indicating that not all the autophagic cells are predes-

tined to die [48]. 3-MA and wortmannin, two autophagy

inhibitors, significantly reduced Beclin 1 expression and switched

the mechanism of the cell death mode from apoptosis to necrosis

[85,93]. Conversely, rapamycin, which increases autophagy, aug-

mented Beclin 1 expression, reduced necrotic cell death, and

decreased brain injury [93], suggesting that inhibition of auto-

phagy might help to switch the mechanism of cell death from

apoptotic to necrotic [93]. The same research group provided fur-

ther evidence showing that the inhibition of Akt/CREB signaling

pathway by wortmannin could influence autophagy, and auto-

phagy can be part of an integrated prosurvival signaling, which

includes the PI3K-Akt-mammalian target of rapamycin (mTOR)

axis [86]. Many other mechanisms were also discovered. SOD2

knockdown exacerbated ischemic brain damage under hypergly-

cemic conditions via increased oxidative stress and DNA oxida-

tion, which was associated with suppression of autophagy

regulators [118]. GSK-3b inhibitor suppressed neuroinflammation

by activating autophagy after ischemic brain injury, thus suggest-

ing that GSK-3b is a new target for prevention of ischemic brain

injury [119]. Accumulation of p62 under hypoxic stress promotes

neuronal cell death, which was partly blocked by autophagy indu-

cer lithium chloride [120], supporting that autophagy promotes

neuronal cell survival under hypoxic stress. Melatonin, an antiox-

idant product, promoted neuron cell survival in glucose–oxygen

deprivation, while autophagy inhibitor 3-MA totally blocked the

neuroprotection of melatonin [121], suggesting that autophagy is

possibly one of the mechanisms underlying neuroprotection of

melatonin. Our group demonstrated that induction of autophagy

contributes to the neuroprotection of nicotinamide phosphoribo-

syltransferase (Nampt) in the early stage of cerebral ischemia [95].

Overexpression of Nampt increased LC3 puncta immunochemis-

try staining, LC3-II/Beclin 1 expression and autophagosomes

number both in vivo and in vitro at 2 h after cerebral ischemia. At

the early stage of OGD, autophagy inducer rapamycin protected

against neuronal injury induced by Nampt knockdown, whereas

autophagy inhibitor 3-MA abolished the neuroprotective effect of

Nampt partly. Overexpression or knockdown of Nampt regulated

the phosphorylation of mTOR and S6K1 signaling pathway upon

OGD stress through enhancing phosphorylation of TSC2 at

Ser1387 but not Thr1462 site. All these phenotypes are SIRT1

dependent. Of note, the beneficial effect of autophagy in glial

cells, such as astocytes following glucose and oxygen deprivation

and focal cerebral ischemia, was also observed [90].

Essential Role of Autophagy in Ischemic
Preconditioning and Hyperbaric Oxygen
Preconditioning

Ischemic preconditioning is a short period of ischemia followed by

a brief period of reperfusion before a sustained ischemic insult,

which was found to be a powerful method for limiting cerebral

ischemia-induced tissue damage [122]. According to several

recent studies, autophagy was believed to play an essential role in

ischemic preconditioning-induced protection in many organs

[22,45,123,124]. Atg3, an autophagic gene, was found to be up-

regulated by ischemic preconditioning but downregulated by pro-

longed ischemia [125], suggesting that the activation of

autophagy is a specific response to ischemic preconditioning. In

cultured PC12 cells, Park et al. [126] showed that ischemic pre-

conditioning markedly increased LC3-II bands, cathepsin D posi-

tive cells, lysosomal activity and autophagic vacuoles, and

inhibition of autophagy by 3-MA ameliorated the neuroprotective

effects of ischemic preconditioning. This phenotype was con-

firmed in an in vivo rat model of focal cerebral ischemia [127].

Moreover, endoplasmic reticulum (ER) stress inhibitor recovered

ischemic preconditioning-induced neuroprotection in the pres-

ence of 3-MA [128], suggesting that preactivation of autophagy

by ischemic preconditioning can boost endogenous defense mech-

anisms to upregulate molecular chaperones, and hence reduce

excessive ER stress during fatal ischemia. Activation of PI3K-Akt-

mTOR axis by autophagy might also be crucial for ischemic pre-

conditioning [129].

Hyperbaric oxygen preconditioning has been used for multiple

neurological diseases including ischemic stroke and proved to be a

safe treatment in all age and gender groups [130]. The protein

expression of LC3-II and Beclin 1 and the formation of autophago-

somes were increased by hyperbaric oxygen preconditioning,

even higher than those in ischemia. Blockade of autophagy by

3-MA attenuated the neuroprotection of hyperbaric oxygen

preconditioning against cerebral ischemia [96].

Issues in the Autophagy-Related Studies
on Cerebral Ischemia

In this field, two things are irrefutable. First, autophagy is a funda-

mental intracellular process and disruption of autophagy in brain

for long durations such as knockout autophagy-related genes is

detrimental. Second, activation of autophagy in various types of

neuronal cells is observed in experimental models of brain injury.

Nevertheless, it seems that it is very hard to conduct an unambig-

uous conclusion on the role of autophagy in cerebral ischemic

injury. In our opinion, there may be several issues in the current

autophagy-related studies on cerebral ischemia.

One of the key issues is that the used chemical agents are non-

specific to autophagy. For example, it seemed that 3-MA was used

widely as an autophagy inhibitor in both in vitro and in vivo stud-

ies. In fact, 3-MA inhibits autophagy via inhibiting PI3K activation

[131]. In another word, the observed effects of 3-MA in many

studies might not truly reflect the inhibition of autophagy but the

inhibition of PI3K-class III. We know that Akt-PI3K signaling

indeed critically contributes to autophagy [132–139]; however,

Akt-PI3K signaling also has impacts on other biological functions,

such as apoptosis and necrosis [140,141]. Thus, the nonspecific

effects of 3-MA may not be excluded in autophagy-related

researches. In contrast to 3-MA, rapamycin is an autophagy indu-

cer. It has been used to augment autophagy after cerebral ische-

mia insult to examine the effect of enhanced autophagy on

neuronal injury. The proautophagic activity of rapamycin is due
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to its inhibitory effect on mTOR, which also results in immuno-

suppressive and antiproliferative properties [142–144]. Besides

the regulatory effect on autophagy, the mTOR plays important

roles in growth and metabolism [142,143]. Therefore, it may be

hard to separate out these multiple influences in some studies.

Therefore, the experimental conditions of inhibitor application

and their side effects must be carefully considered.

Another important issue is the reliability of the assays for moni-

toring autophagy in mouse or rat cerebral ischemia models.

Importantly, there are no absolute criteria for evaluating the auto-

phagy activation that apply to every situation. This is because

some assays are inappropriate, problematic or may not work at all

in particular cells, tissues, or organisms [81,145,146]. There are

many acceptable methods to measure macroautophagy in higher

eukaryotes summarized in three recent reviews [81,145,146].

Here, we emphasize that no individual assay is guaranteed to be

the most appropriate one in every situation, and we strongly rec-

ommend the use of multiple assays to monitor autophagy.

Conclusions and Future Perspectives

Although there are disputes over the exact role of autophagy in

cerebral ischemia, there is no doubt that autophagy critically con-

tributes to the neuronal fate upon cerebral ischemic stress. How

do we reconcile the divergent experimental data on autophagy in

ischemic stroke? Cerebral ischemia results in damages to proteins,

lipids, and all intracellular components. As a repair mechanism,

autophagy is activated to eliminate damaged proteins that accu-

mulate within the neuronal cells. At this stage, autophagy is pro-

survival (Figure 1). If the ischemic stress persists for a long time,

the autophagy intensity is strengthened consistently. In this case,

not only the autophagy is further increased (“supply”), but also

the cellular burden of damaged and/or dysfunctional macromole-

cules and organelles (“demand”) is increased (Figure 1). The neu-

ronal cells can not remove all the autophagosomes to return to its

basal state, which at last induces neuronal cell death.

However, there are several questions that need to be clarified in

the future. Some questions left unanswered are (1) What is the

association between autophagy and apoptosis/necrosis during

cerebral ischemia? (2) Is there any special autophagic mechanism

in neuronal cells triggered by ischemia? (3) Does the autophagy in

ischemic/hyperbaric oxygen preconditioning really contribute to

the neuroprotection? (4) Can autophagy inducer mimic the ische-

mic/hyperbaric oxygen preconditioning? To answer these ques-

tions is a challenging task!
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