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SUMMARY

Aims: To study whether adiponectin (APN) could improve neurological outcomes in aged

mice after ischemic stroke. Methods: Adeno-associated virus carrying APN gene was

injected into aged and young adult mice 7 days before transient middle cerebral artery

occlusion (tMCAO). Atrophic volumes and neurobehavioral deficiencies were determined

up to 28 days after tMCAO. Focal angiogenesis was determined based on blood vessel

number in the ischemic regions. Results: Increased atrophic volume and more sever neu-

robehavioral deficits were found in the aged mice compared with young adult mice

(P < 0.05). AAV-APN gene transfer attenuated atrophic volume and improved neurobehav-

ioral outcomes, along with increased focal angiogenesis in both aged and young adult mice,

compared with control animals (P < 0.05). In addition, the attenuation of atrophic volume

and the improvement in neurobehavioral outcomes were much more significant in aged

mice than in young adult mice after AAV-APN administration (P < 0.05). The number of

microvessels in aged AAV-APN mouse ischemic brain was higher than in young adult AAV-

APN treated mouse brain (P < 0.05). Conclusions: Our results demonstrate that APN over-

expression reduces ischemic brain injury and improves neurobehavioral function recovery

in aged mice than in young mice, suggesting APN is more beneficial in aged animals after

ischemic stroke.

Introduction

Ischemic stroke is one of the most vital disorders with high mor-

tality and morbidity in China and worldwide [1]. Over the last

two decades, numerous neuroprotective drugs were proven to

be effective for treating acute stroke in animal stroke models

[2,3]. However, none of these drugs were effective in subse-

quent clinical trials [4]. Studies showed that the efficacy of a

drug varied in different experimental stroke models. The rela-

tionship between the efficacy of drugs and its mechanism

remains inconsistent [5]. In addition, aging is one of the most

important factors in influencing the result of drug because the

efficacy of drug is totally different in young adult and aged

human or experimental animals [6]. Moreover, the aging pro-

cess is related to cellular functions, and aging attenuated ische-

mia-induced angiogenesis [7,8]. Consistent with these

observations, in models of heart disease and both global and

focal cerebral ischemia, the prominence of ischemic changes

advances with age [9–11], as are postischemic behavioral abnor-

malities [12]. Therefore, using aged animal models of ischemic
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stroke to assess drugs is essential for the cerebral ischemia

research and for clinical translation.

Adiponectin (APN), an adipose-specific plasma protein, plays a

protective role in the development of cardiovascular morbidity

[13,14]. APN ameliorated endothelial function and modulated

inflammation [15]. High level of APN in peripheral blood is associ-

ated with a reduced risk of cardiovascular diseases such as the cor-

onary artery disease and the myocardial infarction, while low

plasma APN was related to an increased risk of 5-year mortality

after first-ever ischemic stroke [16,17]. APN suppressed the devel-

opment of atherosclerosis by inhibiting smooth muscle cell prolif-

eration and migration, which could be related to the vascular

protective activity [18,19]. APN also promotes angiogenesis by

up-regulating AMPK and Akt signaling in endothelial cells or

through endothelial nitric-oxide-synthase-dependent mechanism

[20–22]. Our previous study demonstrated that APN overexpres-

sion attenuated brain atrophic volume, improved neurobehavior-

al recovery, and promoted cerebral angiogenesis 14 days after

tMCAO in young adult mice. The effect of APN was mediated by

activating AMPK signaling pathway [23]. However, whether the

similar effects of APN occur in aged brain remains to be further

investigated.

Recent studies documented that angiogenesis could be induced

after focal cerebral ischemia in animal and human brains [24–26].

Stroke patients with a higher density of microvessels are associ-

ated with less morbidity and longer survival [27–29]. Cerebral

ischemia-induced angiogenesis showed benefits for the recovery

of motor function [30–32]. These observational studies indicate

that focal angiogenesis and neovascularization play important

roles for ischemic brain repairing and remodeling. However,

whether APN promotes angiogenesis in aged brain remains

unknown.

In this study, we aim to explore whether APN is able to overex-

press in aged brain via AAV-APN gene transfer, and whether APN

overexpression in aged mice has the similar salutary effects as does

in young adult mice following cerebral ischemia. In addition, we

also ask whether the role of APN in aged mice is different from

young adult mice in cerebral ischemia.

Methods

Experimental Groups

The animal protocol was approved by the Institutional Animal

Care and Use Committee (IACUC), Shanghai Jiao Tong Univer-

sity, Shanghai, China. To compare endogenous APN expression in

aged and young adult mice brain after stroke, tMCAO was per-

formed in aged male CD-1 mice (22–24 month-old, Ship BK,

Shanghai, China, n = 6, 3 for Western blot and three for immuno-

staining; n = 6 in sham group, three mice for Western blot and

three mice for immunostaining) and young adult male CD-1 mice

(3-month-old, grouped the same way as aged mice). To evaluate

the efficiency of AAV-APN gene transfer in normal mice brain,

aged mice group and young mice group were received AAV-APN

transfer (n = 6 per group, three mice for Western blot and three

mice for immunostaining) and AAV-GFP was injected as the con-

trol group (grouped the same way as AAV-APN injected mice). To

test the therapeutic efficiency of APN in ischemic mice brain,

AAV-APN was injected into aged and young adult mice brain

(n = 10 per group) and AAV-GFP was injected as a control group

(n = 10 per group).

AAV-APN Gene Transfer in the Mouse Brain

Aged male CD-1 mice and young adult male CD-1 mice were

anesthetized intraperitoneally using ketamine/xylazine (100/

10 mg/kg, Sigma) and then placed in a stereotactic frame (David

Kopf Instruments, Tujunga, CA, USA). Five-microliter viral sus-

pensions containing 4 9 109 genome copies of AAV-APN were

injected into the striatum (AP: �1.0 mm; L �2.0 mm; V

�2.5 mm) at a rate of 0.2 lL/min based on our previous study

[33]. The needle was withdrawn 25 min after injection, and ani-

mals were allowed to return to the home cage after mice wak-

ened. A group of mice underwent AAV-GFP gene transfer as a

viral vector control.

Transient Middle Cerebral Artery Occlusion
(tMCAO) in Mice

tMCAO was performed 7 days after AAV-APN gene administra-

tion as previously described [23,34]. Briefly, the left common car-

otid artery (CCA), external carotid artery (ECA), and internal

carotid artery (ICA) were carefully isolated by a surgical micro-

scope (Leica, Wetzlar, Germany). A silicone-coated 6-0 suture was

gently inserted from ECA stump to ICA to occlude the opening of

MCA. The success of occlusion was determined by monitoring the

decrease in surface cerebral blood flow (CBF) to 10% of baseline

CBF using a laser Doppler flowmetry (Moor Instruments, Devon,

England). Reperfusion was performed by the suture withdrawal

after 90 min of tMCAO. PH, partial pressure of carbon dioxide

(pCO2), and partial pressure of oxygen (pO2) were measured

using i-STAT� System (Abbott Point of Care Inc. Princeton, NJ,

USA), and blood pressure was determined by Softron� Sphygmo-

manometer (Softron BP-98A, Softron Beijing Inc. Beijing, China).

The mice in which CBF dropped to less than 90% of baseline

immediately after MCAO and those died during surgery were

excluded in the stroke cohorts.

Brain Atrophy Measurement

Brains were removed and frozen immediately in �40°C isopen-

tane. Twenty-micrometer-thick section was cut from the frontal

pole to hippocampus and stained with 0.1% cresyl violet (Sin-

opharm Chemical Reagent Co., Shanghai, China). Brain atro-

phic volume was analyzed using NIH Image J software as

previously described [23] and calculated by the following for-

mula: contralateral hemisphere minus normal region of ipsilat-

eral hemisphere, then multiplied by the section interval

thickness.

Neurobehavioral Tests

Mice were trained for three consecutive days prior to surgery.

Neurobehavioral tests were performed before and 1, 3, 7, 14, and

28 days after tMCAO by an investigator who was blinded to the

experimental groups. Modified neurological severity scores
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(mNSS) of the animals were graded on a scale of 0–14, which is a

composite of motor, reflex, and balance tests [35].

For rotarod test, mice were placed on an accelerating rotarod

cylinder (Zhenghua, Anhui, China); the speed was increased from

20 to 40 rpm within 5 min. The trial ended if the animal fell off

the rungs or gripped the device and spun around for two consecu-

tive revolutions without attempting to walk on the rungs. The

time that animals remained on the rotarod was recorded for fur-

ther analysis [24].

For beam-walking test, mice were trained to traverse a horizon-

tally elevated square beam with 7 mm in diameter to reach an

escape platform placed one meter away. Mice were placed on one

end of the beam, and the latency to traverse 80% of the beam

toward the escape platform was recorded from three independent

trials.

Asymmetric motor behavior was also performed using the cor-

ner test. Mice were placed between two boards with dimensions

30 9 20 9 1 cm3 for each in home cage [36]. Normal animals

turn back randomly from either left or right. However, ischemic

animals preferentially turn toward the impaired side. The number

of turns taken on each side was recorded from 10 trials of each

test.

Western Blot Analysis

Tissue sample was collected from the ipsilateral hemisphere,

including injured cortex and striatum, and quantified with BCA

protein assay (Pierce, Rockford, IL, USA). Protein (30 lg) was sep-

arated by 10% SDS-PAGE electrophoresis and transferred to a

nitrocellulose membrane (Whatman, Piscataway, NJ, USA). After

blocking with 5% skim milk, the membrane was probed with

anti-APN antibody (1:500 dilution; R&D, Minneapolis, USA) and

visualized using an ECL system (Thermo, Rockford, CA, USA).

Image was taken and calculated by Quantity One software (Bio-

Rad, Hercules, CA, USA).

Immunohistochemistry

Frozen brain sections were fixed in 4% paraformaldehyde for

10 min and then blocked with 10% BSA. Sections were incubated

overnight at 4°C with CD31 (1:200 dilution, R&D), NeuN (1:100

dilution, Millipore. Rockland, Massachusetts, USA), GFAP (1:300

dilution, Millipore), alpha smooth muscle actin (1:300 dilution,

R&D), and PCNA (1:200 dilution, Abcam, Cambridge, MA, USA).

After washing, sections were further stained by 488-conjugated

and Cy3-conjugated antibody (1:1000 dilution, Jackson Immuno

Research, West Grove, PA, USA), as previously described [37].

Sections were examined under Leica TCS-SP5 microscope (Leica,

Solms, Germany). Images were acquired with LAS AF Software

(Leica) using 488 nm or 594 nm excitation laser wavelength, and

the exposure time was about 735 ms.

Microvessel Counts

The brain regions that located at left, right, and bottom areas of

the needle track from each mouse were chosen. Two investigators

blinded to the experimental group assessed blood vessel number

separately. Only microvessels with a clearly defined lumen or a

well-defined linear vessel shape were taken into account. Single

endothelial cells were ignored. The number of blood vessels was

calculated as the mean of the blood vessel counts obtained from

the six pictures as previously described [38]. The number of small

arteries was calculated in the same way.

Statistical Analysis

Data were presented as mean � SD. Comparison of two groups

was analyzed by an unpaired Student’s t-test. Three group com-

parison data were analyzed by one-way ANOVA with Dunnett’s

test. Mortality rates were compared by the chi-square test. A prob-

ability value of less than 5% was accepted as statistical signifi-

cance.

Results

Increased APN Expression in Aged Mouse Brain
After tMCAO

Western blotting and immunohistochemistry were performed to

determine the expression profiles of APN in aged and young adult

mouse brains after tMCAO. We found that APN was low in nor-

mal mouse brain, while the expression was increased in the ische-

mic mouse brain, which was mainly located near small vessels of

ischemic brain. APN expression was also increased in aged mouse

brain as early as 1 day after tMCAO and persisted up to 7 days. It

was noted that APN expression in the ischemic brain of young

adult mouse was significantly higher than that in the aged mouse

brain at 1, 3, and 7 days after ischemia (Figure 1A–C).

APN Overexpression in Aged Mouse Brain After
AAV-APN Injection

To determine the success of gene transfer, we examined the extent

of GFP expression after AAV-GFP gene transfer. We revealed that

the GFP expression could be detected in aged mouse brain for at

least 3 weeks (Figure 2A,B). Western blot analysis showed that

APN expression was significantly increased in the ipsilateral hemi-

sphere in AAV-APN-treated aged mice after tMCAO (P < 0.05).

The APN level reached plateau at day 7 and sustained for at least

21 days (Figure 2C,D). Expression pattern of APN in aged mouse

brain is similar to that in young adult mouse brain. Double immu-

nostaining demonstrated that APN was expressed in endothelial

cells, neurons, and astrocytes after AAV-APN transfer (Figure 2E).

APN Overexpression Attenuated Atrophy in
Aged Mice

To explore the effect of APN on the histological outcome after

ischemic injury, whole-brain atrophic volume was examined

2 weeks after tMCAO (Figure 3A). We demonstrated that the

atrophic volume was significantly increased in the aged mouse

brain compared with that in the young adult mouse brain. In

addition, atrophic volume 2 weeks after tMCAO was greatly

attenuated in aged mice after AAV-APN gene transfer compared

with the control group (Figure 3B, P < 0.05). Interestingly, the

extent of attenuated brain atrophy in aged mice was greater than
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(A)

(B)

(C)
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 1 APN was increased in ischemic brain

of aged mice. (A) Western blot analysis showed

APN expression in normal and ischemic aged

and young adult mouse brain at different

durations after tMCAO. Y: young mice; A: aged

mice. (B) Bar graph showed semi-quantitative

APN expression from (A). Data are presented

as mean � SD, N = 3 per group. *P < 0.05,

APN-young adult versus APN-aged group;
#P < 0.05, APN-aged versus APN-aged sham

group. (C) Photomicrographs showed the

expression of APN in both sham (a, e) and

ischemic aged and young adult mouse brain at

1 (b, f), 3 (c, g) and 7 days (d, h) after tMCAO.

N = 3 per group. Arrows indicate the APN

signal. Bar = 50 lm.

(A) (C)

(D)

(E)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(B)

Figure 2 APN overexpression in aged mouse

brain after AAV-APN gene transfer. (A) Graphic

illustration indicated injection point in a mouse

brain coronal section. (B) The distribution of

GFP expression in aged (a) and young adult (b)

mouse brain three weeks after AAV-GFP gene

transfer. (C) Western blot analysis showed APN

expression in aged and young adult mouse

brain after 3, 7, 14, and 21 days of AAV-APN

transduction. (D) Bar graph showed semi-

quantitative APN expression. Data are

presented as mean � SD, N = 3 per group.

*P < 0.05, APN-young adult versus GFP-young

adult group; #P < 0.05, APN-aged versus

GFP-aged group. (E) Photomicrographs

showed that APN was expressed in endothelial

cells (a, d, g), neurons (b, e, h), and astrocytes

(c, f, i) after AAV-APN transduction.

Bar = 50 lm.
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in young adult mice (30 vs. 20%, Figure 3C, Δt atrophic volume,

P < 0.05), suggesting that APN exerts its protective effect more

efficiently in aged ischemic mice.

APN Improved Neurobehavioral Recovery After
tMCAO in Aged Mice, While Did Not Affect Mice
Mortality

To determine whether APN overexpression could improve neuro-

behavioral outcomes as it does in young adult mice, neurobehav-

ioral tests were performed in aged mice with AAV-APN gene or

vehicle injection. We proved that motor function based on the

neurological score, beam walk test, rotarod test, and corner test

was greatly improved at 7, 14, and 28 days after AAV-APN admin-

istration following tMCAO, compared with the control group (Fig-

ure 4, P < 0.05). More severe neurobehavioral impairments were

detected in aged mice after tMCAO. Remarkably, the magnitude

of neurobehavioral recovery was greater in aged mice than in

young adult ischemic mice (Figure 4E–H, Δt neurobehavioral

tests, P < 0.05).

Cerebral blood flow, mean arterial blood pressure (MABP), PH,

pCO2, and pO2 were recorded, and they were similar between the

groups (Table S1). In addition, APN injection did not affect the

mortality rate after stroke (Table S2).

APN Stimulating Focal Angiogenesis in Aged
Mice After tMCAO

To determine whether APN promoted focal angiogenesis after

tMCAO, we counted the number of microvessels in ischemic peri-

focal region (Figure 5A). The number of microvessels was

increased in aged ischemic mice injected with AAV-APN gene

compared with the control (Figure 5B, P < 0.05) and the young

adult mice (Figure 5C, P < 0.05). PCNA and CD31 double staining

demonstrated that the number of proliferating endothelial cells

was increased in ischemic perifocal region in aged mice with

AAV-APN gene transfer (Figure 5D, P < 0.05), suggesting that

aged brain retained the capacity of angiogenesis in response to

ischemic injury. Similarly, angiogenesis was increased in aged

mice more than in the young adult mice 4 weeks after APN-AAV

treatment following tMCAO (Figure 5E, Δ number of newly

formed microvessels, P < 0.05).

To determine whether small arteries in the ischemic brain were

also increased after APN overexpression, we further examined the

number of smooth muscle cells in perifocal region. We found that

the number of aSMA-positive cells was greatly increased in aged

ischemic brain after AAV-APN gene transfer, compared with the

control (Figure 5F,G, P < 0.05). Similarly, the increased number

of small arteries in aged mice was greater in young adult mice

2 weeks after tMCAO (Figure 5H, Δnumber of small arteries,

P < 0.05), suggesting APN not only promotes angiogenesis, but

also improves focal neovascularization.

Discussion

In this study, we demonstrated that APN could be overexpressed

in the aged mouse brain under both normal and ischemic condi-

tions. APN overexpression not only reduced the ischemic brain

injury and promoted neurobehavioral outcomes in aged mice, but

also displayed even better therapeutic effects compared with those

in the young adult mice. In addition, focal angiogenesis was signif-

icantly increased in the aged ischemic brains after AAV-APN gene

transfer. Our findings suggest that APN is a potential therapy tar-

get for ischemic brain injury, especially in the aged mice.

We reported that APN overexpression via AAV-APN gene trans-

fer could greatly reduce ischemic brain injury and promote neuro-

behavioral recovery in young adult mice [23]. However, whether

APN has similar functions in the aged recipients remains

unknown. It is possible that aged brain is less responsive to APN

treatment because aging adversely influences stroke outcomes

due to age-related changes in the brain microenvironment

[39,40]. For example, several growth factors, such as VEGF and

IGF-1, which stimulate angiogenesis and neurogenesis, reduce

with aging [41,42]. Besides, aging reduces capillary density after

(A) (B)

(C)

Figure 3 APN overexpression attenuated brain atrophy in aged mice after tMCAO. (A) Photographs represented cresyl violet staining of coronal sections

from AAV-APN-transduced aged and young adult mice following 14 days of tMCAO. Dash lines illustrated the atrophic areas compared with the

contralateral hemisphere. Bar graph showed that total atrophic volume in the AAV-APN transduced aged and young adult mice (B, C). Data are

mean � SD. N = 10 in each group. #P < 0.05, GFP-aged versus GFP-young adult groups; **P < 0.01, APN versus GFP groups; *P < 0.05, APN-aged

versus APN-young adult groups.
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hindlimb ischemia in New Zealand white rabbits [43]. Angiogene-

sis is also reduced wound-healing process in aged rats [44]. If the

down-stream signals of APN are these neurotrophic factors, the

APN treatment in the aged brain would be futile. Nevertheless,

our present results demonstrated that the effects of APN in aged

mice were even better than those in young adult mice, suggesting

APN treatment could be used for the treatment of aged-related

diseases.

Our previous studies demonstrated that when injecting AAV

vector into the lateral caudate putamen, overexpression of target

genes could be achieved in both the parenchyma and ependymal

tissues in the young adult mice [23]. Whether AAV vector

induced target gene overexpression in aged mice was unknown.

In the present study, we found that APN overexpression was simi-

lar in aged mice and young adults, which reached the maximum

in both young adult and aged mice 7 days after AAV-vector injec-

tion and sustained for at least 3 weeks, demonstrating that AAV

vector was capable of maintaining a high level of APN in aged

mouse brain. Aging is not a barrier for the gene therapy.

Gene therapy has some limitations for its clinical translation.

For instance, injecting targeted gene directly into the brain is inva-

sive and repeated injection is not allowed. These problems hamper

its translation from bench to bedside. For better translation into

clinic, several strategies could be developed. For example, intrave-

nous injection of TAT fusion protein sufficiently permeates the

blood brain barrier [45,46]; thus, APN protein fused to TAT could

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

Figure 4 APN overexpression improved

neurobehavioral recovery in aged mice after

tMCAO. Neurobehavioral tests were evaluated

using neurological score (A), beam walk test

(B), rotarod test (C), and corner test (D). The

behavior tests were performed at 1 day before

tMCAO, 1, 3, 7, 14, and 28 days after tMCAO.

Data are mean � SD, n = 10 per group. *or

**P < 0.05 or P < 0.01, aged APN versus aged

GFP groups, # or ##P < 0.05 or P < 0.01, young

adult APN versus young adult GFP groups. D of

neurological score (E), beam walk test (F),

rotarod test (G), and corner test (H) was

analyzed between aged APN and young adult

APN group. *P < 0.05, aged APN versus young

adult APN group.
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(A)
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(b)

(c)

(d)

(e)

(f)

(g)

(h)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(B) (C)

(D) (E)

(G) (H)

(F)

Figure 5 Angiogenesis was increased in aged

mice with AAV-APN gene transfer after tMCAO.

(A) Photomicrographs showed the CD-31 and

PCNA double immunostaining in perifocal

region in AAV-APN transduced aged mouse

brain 2 and 4 weeks after tMCAO. AAV-APN

transduced young adult mice and AAV-GFP

transduced aged mice were as control.

Bar = 20 lm. (B) Bar graph showed the

number of microvessels in AAV transduced

aged and young adult mice. Values are

mean � SD, N = 6 in each group. **P < 0.01,

APN versus GFP groups. (C) Bar graph showed

that the number of microvessels between aged

APN and young adult APN groups. **P < 0.01,

aged APN versus young adult APN group. (D)

Bar graphs showing the number of newly

formed microvessels in the AAV-APN

transduced aged mice. Data are mean � SD,

n = 6 per group. **P < 0.01, APN versus GFP

groups. (E) Bar graph showed that the number

of microvessels between aged APN and young

adult APN groups. Data are mean � SD, n = 6

per group. *P < 0.05, aged APN versus young

adult APN group. (F) Photomicrographs

showed SMA-positive cells in AAV-APN

transduced aged mouse brain 2 weeks and

4 weeks after tMCAO. (G) Bar graph showed

the number of small arteries in the AAV-APN

transduced aged mice after 2 weeks and

4 weeks of tMCAO. Data are mean � SD,

n = 6 per group. **P < 0.01, APN versus GFP

groups. (H) Bar graph showed that the number

of small arteries between aged APN and young

adult APN groups. Values are mean � SD,

N = 6 in each group. *P < 0.05, aged APN

versus young adult APN group.
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be injected intravenously into the ischemic patients. In addition,

with a combination of stem cell and gene therapy, APN could be

delivered into the brain via stem cells. APN could be overexpres-

sed in stem cells, and then stem cells could be injected into the

ischemic patients through various administration routes [47–50].

Our major finding is that APN overexpression confers benefits

not only in young adult mice, but also in aged ischemic mouse

brain. More importantly, the magnitude of reduction in atrophic

volume and the extent of neurobehavioral recovery afforded by

APN gene transfer in aged ischemic mice were better than those in

young adult mice. This effect was correlated with the increase in

focal angiogenesis in aged mouse brain after ischemic brain injury.

It is unclear why aged mice overexpressing APN have better out-

comes compared with the young adult mice. One reason could be

aged mouse brain response more sensitively to APN. Nevertheless,

the benefits of APN in aged mouse brain needs to be further iden-

tified.

Concerted actions of angiogenic molecules are needed during

angiogenesis, in which VEGF is the most important factor [51,52].

AAV-APN gene transfer could further promote focal VEGF release

in young adult mice. Ischemic stress activates AMPK signaling

pathway in the HUVEC culture and in the mouse ischemic hind

limb model [53,54]. These results suggest that VEGF stimulated

angiogenesis in ischemic tissue through AMPK signaling pathway.

Indeed, we confirmed that APN promoted AMPK phosphorylation

in young adult ischemic mice. Inhibiting AMPK phosphorylation

by compound C significantly attenuated VEGF expression and

angiogenesis [23], suggesting that the effect of APN on angiogene-

sis is related to the AMPK signaling during cerebral ischemia.

In conclusion, we demonstrated that APN overexpression in

young adult and aged ischemic mice reduced brain atrophy,

improved neurobehavioral recovery, and increased angiogenesis,

suggesting that APN is a potential therapy target in aged rodents

for ischemic brain injury.
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