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Endocannabinoids and their receptors, mainly the CB1 receptor type, function
as a retrograde signaling system in many synapses within the CNS, particularly
in GABAergic and glutamatergic synapses. They also play a modulatory func-
tion on dopamine (DA) transmission, although CB1 receptors do not appear
to be located in dopaminergic terminals, at least in the major brain regions
receiving dopaminergic innervation, e.g., the caudate-putamen and the
nucleus accumbens/prefrontal cortex. Therefore, the effects of cannabinoids
on DA transmission and DA-related behaviors are generally indirect and
exerted through the modulation of GABA and glutamate inputs received
by dopaminergic neurons. Recent evidence suggest, however, that certain
eicosanoid-derived cannabinoids may directly activate TRPV1 receptors, which
have been found in some dopaminergic pathways, thus allowing a direct reg-
ulation of DA function. Through this direct mechanism or through indirect
mechanisms involving GABA or glutamate neurons, cannabinoids may inter-
act with DA transmission in the CNS and this has an important influence
in various DA-related neurobiological processes (e.g., control of movement,
motivation/reward) and, particularly, on different pathologies affecting these
processes like basal ganglia disorders, schizophrenia, and drug addiction.
The present review will address the current literature supporting these
cannabinoid-DA interactions, with emphasis in aspects dealing with the neu-
rochemical, physiological, and pharmacological/therapeutic bases of these
interactions.

The Control of Neurotransmitter Activity
by Endocannabinoids

Endocannabinoids and their receptors play a modulatory
function in several physiological processes, mainly in
the brain [1–3] but also in various peripheral processes
such as the immune regulation [4], the cardiovascular
system [5], the reproductive endocrine processes [6], and
the control of energetic metabolism [7]. In the brain,
endocannabinoids participate in processes such as the
control of movement [8–10], nociception [11], brain
reward [12], learning and memory [13], feeding [14],
and emesis [15], as well as they play an important role
in various events related to brain development [16,17].
This large list of brain functions, in which endocannabi-

noids and their receptors are active, is the result of nu-
merous studies developed during the last 20 years which
demonstrated that: (i) changes in these processes are in-
cluded within the spectrum of pharmacological actions
in humans and laboratory animals of those compounds
capable to activate or to inhibit the cannabinoid system
(reviewed in [18–20]); (ii) cannabinoid receptors, mainly
the CB1 receptor type, as well as their endogenous
ligands, mainly anandamide and 2-arachidonoylglycerol,
are abundant in the brain structures involved in the
above processes [2,21]; and/or (iii) mice lacking specific
genes of the cannabinoid signaling such as those
encoding for the CB1 or CB2 receptor, or for the enzymes
N-arachidonoyl-phosphatidylethanolamine (NAPE-PLD)
or fatty acid amide hydrolase (FAAH), exhibited
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Figure 1 Processes involved in the function of endocannabinoids and CB1 receptors as a retrograde signaling mechanism in glutamatergic neurons.

behavioral changes compatible with a role of the cannabi-
noid system in such processes [22–24]. An important
consequence of these brain functions proposed for the
cannabinoid signaling system is that it may be considered
of therapeutic relevance for different pathologies related
to these brain functions [20,25], which explains the in-
creasing development in this field during the last years.

The involvement of the endocannabinoid system in
this large list of brain functions is likely the consequence
of its capability to interact with specific neurotransmit-
ters in several brain regions [26]. For many years, most
of researchers tried to demonstrate that endocannabi-
noids and their receptors may function as a novel trans-
mitter system mimicking the process developed in the
1970s with the discovery of the opioid system. However,
the action of endocannabinoids in the synaptic func-
tion appeared to be more compatible with a modulatory
role rather than with a function as a classic transmitter.
For example, the frequent, although not exclusive, presy-
naptic location of CB1 receptors allows endocannabi-
noids to directly influence presynaptic events, such as
synthesis, release or reuptake, for specific transmitters,
mainly glutamate, opioid peptides and GABA, since CB1

receptors are frequently located onto neurons contain-
ing these neurotransmitters in the brain, but also for
acetylcholine and serotonin (for review, see [27]). The
combination of numerous pharmacological, electrophys-
iological and immunohistochemical studies allowed to
demonstrate that endocannabinoids function as retro-
grade signal molecules at the synapse (for review, see
[1,3], and an overview in Figure 1), in particular in glu-
tamatergic and GABAergic synapses, then preventing an
excess of excitation or inhibition, respectively [28].

Dopamine (DA) is one of the neurotransmitters that
has been more frequently linked to the action of cannabi-
noids within the CNS. This can be applied to the case
of those dopaminergic neuronal subpopulations, whose
cell bodies are located in the reticular formation of the
midbrain (e.g., substantia nigra and ventral-tegmental
area), and that project to different forebrain structures,
namely, the caudate-putamen (nigrostriatal pathway; see
Figure 2), and the nucleus accumbens/prefrontal cor-
tex complex (mesocorticolimbic pathway). Both neu-
ronal systems would exert a regulatory action on different
effector neurons in these structures, then influencing
processes such as the control of movement and various
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Figure 2 Distribution of CB1 and TRPV1 receptors in different neuronal subpopulations in the basal ganglia circuitry (DA, dopamine; GABA, γ -aminobutiric

acid; GLU, glutamate).

cognitive functions, respectively, effects that are among
the most relevant pharmacological actions of cannabi-
noids [8–10,12]. It is also important to remark that
deficiency or overactivity of these dopaminergic path-
ways can result in disorders, such as Parkinson’s disease
(PD) and schizophrenia, respectively, for which various
cannabinoid-related compounds have been proposed as
a novel type of therapy [10,29]. However, despite this
close pharmacological interaction, there is little evidence
supporting that dopaminergic neurons in the basal gan-
glia and limbic structures contain CB1 receptors [30,31].
Most of the researchers agree that cannabinoid effects on
DA transmission are frequently indirect and exerted by
either postsynaptic or presynaptic mechanisms (reviewed
in [32,33]). For these authors, the abundance of CB1

receptors in GABAergic, glutamatergic or opioidergic
projections located in the closest vicinity of dopaminergic
neurons [34–36], facilitates such indirect action. This is
also supported by data showing that midbrain dopamin-
ergic neurons, although do not contain CB1 receptors,
can, however, produce and release endocannabinoid
ligands from their somas and dendrites, then facilitating

the retrograde signaling function of these molecules and
CB1 receptors in excitatory and inhibitory synapses (re-
viewed in [37] and see also below).

Despite that most of cannabinoid effects on DA trans-
mission seem to be GABA- and/or glutamate-mediated,
recent studies have provided an additional mechanism
available for those eicosanoid-derived cannabinoids that
have demonstrated some affinity for the TRPV1 receptor
(e.g., anandamide, AM404 or N-arachidonoyl-dopamine
(NADA); reviewed in [38]). These receptors are molecu-
lar integrators of nociceptive stimuli, abundant on sen-
sory neurons, but they have been found in dopaminergic
neurons within the basal ganglia too [39], thus enabling
a direct action of certain cannabinoids on DA function.
In fact, there is recent evidence demonstrating that en-
dovanilloid and DA signalling systems are closely linked
in the regulation of various neurobiological processes
including the control of movement [40,41]. The case
of NADA deserves some comments since it is formed
by a molecule of DA linked to arachidonic acid by an
amide bond which conferes this molecule properties of
endocannabinoid and endovanilloid ligand [38]. NADA

e74 CNS Neuroscience & Therapeutics 16 (2010) e72–e91 c© 2010 Blackwell Publishing Ltd



J. Fernández-Ruiz et al. Cannabinoid–Dopamine Interaction in the Pathophysiology and Treatment of CNS Disorders

seems to be synthesized through the conjugation of an
arachidonic acid molecule directly with DA [42], discard-
ing previous hypothesis that suggested that it would be
synthesized through the hydroxylation of N-
arachidonoyl-tyrosine followed by decarboxylation
by the same enzymes involved in DA synthesis. Its phys-
iological significance is yet poorly understood, but recent
evidence suggests that it can serve as an antioxidant and
neuroprotective compound [43].

Finally, a recent study by Oz et al. [44] published dur-
ing the preparation of this review has provided prelimi-
nary evidence that anandamide may inhibit the DA trans-
porter function by a receptor-independent mechanism,
an effect found in heterologous cells and synaptosomal
preparations. The anandamide analog methanandamide
mimicked this effect, but arachidonic acid was without
effect [44]. In addition, inhibition of FAAH or COX-2
failed to alter the effect of anandamide, thus indicating
that this effect is not related to the metabolism of this en-
docannabinoid [44]. Authors also found that the effect
was not attenuated by pertussis toxin, then excluding the
involvement of CB1, CB2, or GPR55 receptors, but this
does not exclude that TRPV1 receptors may be involved
in line with the comments of the above paragraph.

Both aspects, that cannabinoids may alter DA trans-
mission and DA-related behaviors via an indirect action
on GABA and glutamate neurons, and that they can acti-
vate TRPV1 receptors located onto dopaminergic neurons,
will be key elements in this review. We will concentrate
preferentially in reviewing the role(s) played by endo-
cannabinoids on those adult brain functions, where DA is
a key regulatory neurotransmitter, namely the control of
motor function at the basal ganglia level, and the expres-
sion of some cognitive functions, including emotionality,
motivation, and brain reward. Additional interactions be-
tween cannabinoids and DA have been also claimed for
the hypothalamic regulation of pituitary hormone secre-
tion [45], for the expression of key genes during brain
development [16,17], for memory formation [46,47],
sleep regulation [48], and retina function [49] in mam-
mals, as well as some interactions in the brain of inver-
tebrates [50]. However, they will not be addressed in the
present review.

Interactions Between Cannabinoids
and DA at the Basal Ganglia

Anatomical, physiological and therapeutic evidences in-
dicate that DA is the key regulatory transmitter in the
basal ganglia circuitry (reviewed in [51]). So, the acti-
vation of DA transmission in this circuitry is generally
associated with an increase of movement, whereas the

inhibition is followed by hypokinesia. In fact, the basal
ganglia disorder with highest prevalence in the human
population, PD, is consequence of a progressive degen-
eration of nigrostriatal dopaminergic neurons resulting
in bradykinesia, rigidity, and tremor [52]. Cannabinoids
are hypokinetic substances thus producing motor depres-
sion and even catalepsy (reviewed in [9]) and it has been
largely speculated that this hypokinetic effect of cannabi-
noids might be produced by reducing dopaminergic activ-
ity. This assumption is correct but the role of CB1 recep-
tors, which are not located onto dopaminergic neurons
[53], in this effect has not been completely elucidated.
Meanwhile, the increasing importance of TRPV1 recep-
tors for the action of certain endocannabinoids [38], as
well as the location of these receptors onto dopaminer-
gic neurons [39], have opened interesting novel aspects
to discuss about the role and therapeutic potential of
the endocannabinoid signaling in the basal ganglia, from
both basic and clinical perspectives, aspects that will be
addressed below.

Cannabinoids, DA and the Basal Ganglia
in Healthy Conditions

Behavioral Data

The abundant presence of CB1 receptors and their en-
dogenous ligands in brain regions related to the control
of movement, such as the different basal ganglia (e.g.,
caudate-putamen, globus pallidus, and substantia nigra)
and the cerebellum [2,21,34–36], suggests that the endo-
cannabinoid system plays a prominent role in the control
of movement (for review, see [8–10]). Thus, excluding
very low doses which may produce stimulatory effects
in some cases, it is generally well accepted that the dif-
ferent cannabinoid agonists originate a dose-dependent
motor inhibition in both humans and laboratory animals,
that may produce even catalepsia with the highest doses
(reviewed in [8,9]). Similar results were obtained by
administering inhibitors of the endocannabinoid in-
activation, the so-called indirect cannabinoid agonists
(reviewed in [9]). These hypokinetic effects were gener-
ally reversed by the administration of CB1 receptor antag-
onists (e.g., rimonabant, despite some differences found
depending on species used), while these antagonists pro-
duced by themselves a certain degree of hyperlocomo-
tion due to their frequent properties as inverse agonists
(reviewed in [8,9]). In concordance with these last
data, mice lacking CB1 receptors exhibited several motor
anomalies (see [24] for review), thus supporting the idea
that this receptor type is the key cannabinoid receptor
involved in motor effects of cannabinoid compounds.
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Neurochemical Data

The motor effects of cannabinoid agonists are likely orig-
inated because of the capability of these substances to in-
fluence the activity of several neurotransmitters, through
the activation of CB1 receptors located in specific neu-
ronal subpopulations within the basal ganglia circuitry
(see Figure 2). Striatal projection GABAergic neurons and
subthalamonigral glutamatergic neurons, both contain-
ing CB1 receptors [35,36,53,54] were identified first as
the major substrates for the action of cannabinoids. More
recent evidence suggest, however, that CB1 receptors
are also located in corticostriatal glutamatergic afferences
[55,56] and in some subpopulations of striatal GABA in-
terneurons [54,55]. It is important to remark that, in the
basal ganglia, CB1 receptors are always located in GABA
or glutamate-containing neurons, which means that the
first event associated with the activation of these recep-
tors is an alteration in the activity of GABA and glutamate
synapses. However, despite dopaminergic neurons within
the basal ganglia do not contain CB1 receptors (with
the only exception of the developmental period [31,57]),
they can be secondarily altered given that they are pref-
erential targets for GABA and glutamate synapses. This
is supported by numerous pharmacological studies that
demonstrated how cannabinoid agonists strongly modi-
fied the motor effects of some DA-acting substances. For
example, they potentiated reserpine-induced hypokine-
sia [58] and dopaminergic antagonist-induced catalepsy
[59], while reduced quinpirole-induced hyperlocomotion
[60] and amphetamine-induced hyperactivity [61], al-
though these responses may change when low doses of
cannabinoid agonists were used (reviewed in [9]). Neu-
rochemical studies also sustain the idea that cannabinoids
reduce the activity of nigrostriatal dopaminergic neurons
(reviewed in [8,9,32]), although, as mentioned above,
the lack of CB1 receptors in these neurons would im-
ply that the changes in the activity of dopaminergic neu-
rons were originated by previous changes in GABAergic
or glutamatergic influences arising the substantia nigra
([8,9] for review).

As mentioned above, further investigations have, how-
ever, provided new elements to re-evaluate the idea
that the effects of endocannabinoids on DA transmis-
sion in the basal ganglia are exclusively indirect. For ex-
ample, it has been demonstrated that anandamide and
some analogs (e.g., AM404 and NADA), but not clas-
sic cannabinoids (e.g., �9-THC), may behave as full ag-
onists for the TRPV1 receptors (reviewed in [38]). These
receptors have been also identified in the basal ganglia
(see Figure 2) in colocalization with tyrosine hydroxy-
lase enzyme, which in these structures, serves as a specific
marker for dopaminergic neurons [39]. TRPV1 receptors

have been also identified in glutamatergic terminals in
the substantia nigra pars compacta [62]. The activation
of these receptors with capsaicin or with other poten-
tial vanilloid ligands produced hypokinesia in rats [63].
The same effect was seen with anandamide accompanied
by a reduction in the activity of dopaminergic terminals
in the striatum [64]. This effect of anandamide was re-
versed by capsazapine, thus indicating that it would be
exerted by the activation of TRPV1 receptors [64]. These
neurochemical responses were furtherly confirmed in
vitro using perfused striatal fragments, but they were not
reproduced by classic cannabinoids, such as �9-THC, that
do not bind to vanilloid-like receptors [64], thus indicat-
ing that the TRPV1 receptor rather than the CB1 is the
key target in these responses. By contrast, other authors
[62,65] found that the activation of TRPV1 receptors in
the substantia nigra pars compacta stimulated DA release,
although these effects might be mediated by TRPV1

receptors located in glutamatergic neurons rather than by
those located in dopaminergic terminals. Other support to
the increasing relevance of TRPV1 receptors in the basal
ganglia comes from studies conducted in rat models of
Huntington’s disease, where several cannabinoid-based
compounds, such as AM404, exhibited antihyperkinetic
properties, being these effects depending on their capabil-
ity to activate TRPV1 receptors rather than CB1 receptors
[66,67]. Finally, making the issue even more complex,
a recent study by Ferrara and coworkers [68] revealed
that N-acyldopamines, such as NADA, are able to control
the activity of dopaminergic terminals in the striatum via
novel ion channels other than TRPV1 receptors, an ef-
fect that was not observed with anandamide or capsaicin.
Importantly, NADA was likely synthesized in the
substantia nigra in conditions of hyperactivity [62].

Despite CB1 receptors do not appear to be located
in dopaminergic neurons, they colocalize with D1 or
D2 receptors in striatal GABAergic projection neurons
(striatonigral and striatopallidal pathways, respectively)
[69,70], which facilitate postsynaptic interactions
between endocannabinoids and DA at the level of
G-protein/adenylyl cyclase signal transduction [71,72],
even the formation of heteromers between CB1 and D2

receptors, and also adenosine A2a receptors (reviewed
in [73]). These CB1, D2, and A2a receptor heteromers
were found in the dendritic spines of GABAergic neurons
projecting to the globus pallidus, but their functional
properties and their role in striatal function are pending
of further investigation (reviewed in [73]). This type of
postsynaptic mechanisms facilitates the direct interaction
between cannabinoids and DA allowing, in this case, a
bidirectional regulation, endocannabinoids and DA and
viceversa. It is in this context of bidirectional regulation
where one may place, at the same time, data showing

e76 CNS Neuroscience & Therapeutics 16 (2010) e72–e91 c© 2010 Blackwell Publishing Ltd



J. Fernández-Ruiz et al. Cannabinoid–Dopamine Interaction in the Pathophysiology and Treatment of CNS Disorders

that: (i) motor effects of CB1 agonists are associated with
an activation of DARPP-32 signaling, which has been
linked to intracellular responses elicited by D1 and D2

receptors in the striatal projection neurons, whereas
the genetic inactivation of DARPP-32 attenuated motor
effects of cannabinoids [74]; and (ii) dopaminergic D2

receptors control anandamide production in the striatum,
thus indicating that the endocannabinoid system serves
as an inhibitory feedback mechanism counteracting
DA-induced facilitation of psychomotor activity [71]. In
addition, D2 receptors also control Gi/o protein availability
for CB1 receptors [75] and facilitate endocannabinoid-
mediated long-term synaptic depression of GABAergic
neurons [76], an effect also seen in the ventral-tegmental
area [77]. A similar interaction of endocannabinoids with
D1 receptors has been recently demonstrated [70]. All
these observations are concordant with the old idea
proposed by Mailleux and Vanderhaeghen [78] that
endocannabinoid signaling in the basal ganglia is regu-
lated by DA and viceversa, which might be relevant for
a disease like PD, where CB1 receptors and their ligands
seem to be up-regulated in conditions of DA deficiency
(see [79–81] and details later).

Cannabinoids, DA and the Basal Ganglia
in Pathological Conditions

Assuming that the endocannabinoid signaling system
modulates the activity of DA and other neurotransmit-
ters at the basal ganglia by acting at CB1 and/or TRPV1

receptors, one may postulate that the pharmacological
management of this system may serve to normalize DA
transmission in conditions of DA deficiency, overactiv-
ity or dysregulation, and, subsequently, to alleviate DA-
related motor symptoms in various basal ganglia disor-
ders (for review, see [9,32,82]). To date, most studies that
have addressed this issue are preclinical and have pro-
vided the first experimental evidences using animal mod-
els (see [10,82] for recent reviews). However, in some
cases, a few number of clinical trials have been already
conducted unfortunately with poorly effective results
[83–88]. As this review is centered in cannabinoid-DA
interactions, we will concentrate here in PD, the major
basal ganglia disorder characterized by either dopamin-
ergic degeneration or malfunctioning. However, we will
briefly mention that cannabinoids have been also stud-
ied in other disorders related to the basal ganglia func-
tion, for example in Huntington’s disease where direct
or indirect (inhibitors of endocannabinoid inactivation)
agonists of CB1 receptors, especially if they also behave
as TRPV1 receptor agonists, have been proposed as hav-
ing therapeutic value (reviewed in [89]). Cannabinoid
agonists, presumably those activating CB1 receptors, are

also effective in Gilles de la Tourette’s syndrome, where
they reduced tics and improved behavioral problems in
patients (reviewed in [90]). Similar studies have been
conducted in relation with dystonia [84,91] and dyskine-
sia, particularly, the case of levodopa-induced dyskinesia
[92].

As mentioned above, PD is the major basal ganglia
disorder characterized by the progressive death of ni-
gral dopaminergic neurons and DA denervation of the
striatum. Both CB1 receptor agonists and antagonists
have been proposed of therapeutic value in this disor-
der, alone or as coadjuvants, and addressed to alleviate
specific motor symptoms or to delay/arrest the progres-
sion of this disease (reviewed in [8,9,82,93]). CB1 recep-
tor agonists have been proposed, for example, for the
reduction of tremor associated with the frequent over-
activity of the subthalamic nucleus occurring in PD [94],
although the few clinical trial conducted to explore this
effect in patients did not generate positive results [88].
CB1 receptor agonists were also investigated in relation
with the dyskinetic states associated with long-term ther-
apy of dopaminergic replacement with levodopa, show-
ing positive effects [95]. However, this effect was not
observed with the so-called indirect cannabinoid agonists,
e.g., FAAH inhibitors, presumably because they are also
able to activate TRPV1 receptors [96]. Only using coad-
ministration with a TRPV1 receptor antagonist, FAAH
inhibitors were capable to show antidyskinetic properties,
thus indicating that CB1 and TRPV1 receptors have oppo-
site effects in the control of levodopa-induced dyskinesia
[96]. Again the clinical testing of this potential produced
controversial results [83,97].

Positive effects were also found in the case of those
plant-derived cannabinoid agonists having cannabinoid
receptor-independent antioxidant properties, when they
were examined for their capability to afford protection
against dopaminergic degeneration in experimental mod-
els of parkinsonism [98,99], indicating that they may
represent a promising therapy against disease progres-
sion in PD. These results provide a neurobiological sup-
port for those anecdotal data (e.g., surveys) that indicated
that PD patients who self-medicated with cannabis ob-
tained beneficial effects (see an example in [100]), despite
controlled clinical studies did not reproduce these ben-
efits [97]. However, both surveys on cannabis use for
PD and clinical studies were always centered in specific
symptoms rather than in the disease progression, there-
fore the issue deserves further clinical testing. Positive
effects against disease progression have been recently
obtained with CB2 receptor agonists in MPTP-lesioned
animals [101], whereas CB1 receptor-deficient mice re-
sulted to be more vulnerable to the lesion with 6-
hydroxydopamine than wild-type animals [102], thus
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indicating an additional contribution of CB1 and CB2 re-
ceptors in neuroprotective effects of cannabinoids in this
disorder that would also deserve further clinical investi-
gation.

By contrast, the blockade of CB1 receptors (e.g., with
rimonabant) was recently reported to reduce bradyki-
nesia and other parkinsonian symptoms (e.g., levodopa-
induced dyskinesia; see Figure 3 and below) [103–105],
despite previous studies showing conflicting results
[81,106] and the negative results found in the only clin-
ical trial conducted with CB1 receptor antagonists in
parkinsonian patients [87]. It appears that the block-
ade of CB1 receptors: (i) works more efficiently in cer-
tain circumstances, for example in very advanced phases
of the disease characterized by extreme nigral dam-
age [103], (ii) would be DA-independent [104] despite
it enhanced the antiparkinsonian efficacy of levodopa
[105,107], and/or (iii) needs the use of low doses of the
antagonist [104,105] (see Figure 3), conditions that were
not completely reproduced in the only clinical trial con-
ducted so far with rimonabant which included a group of
patients that were all well responders to levodopa [87].
Further studies have demonstrated that this effect of ri-
monabant would be exerted by enhancing glutamatergic
transmission at the striatal level [108]. Therefore, if these
preclinical data are finally confirmed with the appropri-
ate clinical testing, it would be possible to have a novel
antiparkinsonism agent in a stage of the disease when
the classic dopaminergic therapy is generally failed or for
the group of patients that have a poor levodopa response.
CB1 receptor antagonists have been also proposed for
reducing and/or delaying levodopa-induced dyskinesia
(reviewed in [92]), thus indicating the extreme complex-
ity of this circuitry where both CB1 agonists and antag-
onists may serve for the same type of treatment, a fact
presumably related to the presence of these receptors in
both excitatory and inhibitory synapses within the basal
ganglia circuitry. On the other hand, it is important to
remark that the usefulness of CB1 receptor antagonists
in this disease agrees with the type of pharmacological
strategy expected once several studies have demonstrated
an up-regulation of CB1 receptors and other elements of
this signaling system in PD [78–81]. For some authors,
there is an unbalance between DA, which goes down,
and endocannabinoids, which go up, at the basal gan-
glia once nigral damage is already evident (early stages
in the development of parkinsonism, when nigral dam-
age does not exist or is minimal, may be, however, as-
sociated with down-regulatory responses [109]), which
supports the potential of CB1 receptor antagonists in this
disease. This type of response has been observed in rats
treated acutely with reserpine [81] or chronically with
dopaminergic antagonists [78], or after the damage of ni-

grostriatal neurons with 6-hydroxydopamine [78,79] or
MPTP [80] in different laboratory animals. It was also
found in patients [80,110]. In support of the idea of un-
balance, the classic dopaminergic replacement therapy
with levodopa reversed this endocannabinoid overactiv-
ity [80,111]. On the other hand, it is also important to
consider the therapeutic benefits that can offer the an-
tagonists of TRPV1 receptors for the treatment of motor
anomalies in PD, given their recently demonstrated role
in regulating DA release from nigral neurons [64]. For ex-
ample, they have been recently found to be necessary for
unmasking the antidyskinetic effecs of FAAH inhibitors
or other cannabinoid agonists capable to directly or indi-
rectly activate TRPV1 receptors [96]. However, given that
they are located in the neuronal subpopulation that de-
generates in this disease [97], it is possible that this target
may loss interest as soon as the disease progresses, some-
thing important in a disease whose first motor symptoms
appear when an important loss of dopaminergic neurons
has already occurred.

Interactions Between Cannabinoids and
DA at the Corticolimbic Structures

Mesocorticolimbic dopaminergic neurons play a regu-
latory function in the control of cognitive processes,
motivated behavior, the central stress response, and the
pleasure produced by natural (e.g., sex, food) or other
types (e.g., drugs of abuse) of reinforcers, or by com-
pulsive activities, such as gambling, overeating and sex
dependence (for review, see [112,113]). In fact, the neu-
rotransmitter more studied as a potential target for the
pharmacological effects of habit-forming drugs is DA
(for review, see [114]). This also includes the case of
cannabis derivatives (for review, see [115,116]), which
acting through cannabinoid receptors, likely the CB1

receptor type, are able to alter mesocorticolimbic DA
transmission. Therefore, a first level of interaction be-
tween cannabinoids and DA in corticolimbic structures
can be found in processes like brain reward and drug
abstinence/dysphoric responses [115–119]. However, the
interactions of cannabinoids and DA at this level are
probably largest and involve more cortical and subcor-
tical structures and more types of processes. From a
pharmacological point of view, cannabinoid agonists (de-
pending on doses and duration of treatment) produce
euphoria, stimulate brain reward, are anxiolytic, and
decrease motivation and arousal while increasing
emotionality, effects that were observed in humans
and laboratory animals (reviewed in [120,121]). These
effects were paralleled by alterations in mesocorticolim-
bic dopaminergic neurons, but it is generally accepted
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Figure 3 Summary of potential therapeutic applications proposed for CB1 receptor antagonists in pathologies related to dopamine transmission in the

CNS.

that DA transmission is not the first target for the ac-
tion of cannabinoid agonists also in these structures, so
that the effects would be most likely indirect [120,121],
as in the case of the basal ganglia. Several authors pro-
posed glutamatergic and/or GABAergic inputs to the nu-
cleus accumbens/prefrontal cortex and ventral-tegmental
area as the primary targets for the cannabinoid action
in these processes and also as the responsible of DA
changes [122–124]. These glutamatergic and GABAer-
gic subpopulations would contain CB1 receptors regu-
lating presynaptic events and would be ultimately in
contact with dopaminergic neurons (for review, see
[121]). This includes, for example, the recent demon-
stration of CB1 receptors in excitatory projections com-
ing from subcortical structures and reaching the bed
nucleus of the stria terminalis which, in turn, projects to
the ventral-tegmental area [125]. Finally, there is some
evidence of colocalization of CB1 receptors and tyrosine
hydroxylase in the ventral-tegmental area [30], where
cell bodies of mesocorticolimbic dopaminergic neurons
are located, which opens the possibility of a direct action
of cannabinoids on the major substrate for brain reward,
motivation/emotionality and other limbic processes.

Cannabinoids, DA, and Corticolimbic Structures
in Healthy Conditions

Behavioral Data

As mentioned above, CB1 receptors are located in glu-
tamatergic and/or GABAergic synapses within cortical
and subcortical structures and they represent the ma-
jor substrate for cognitive effects and reinforcing proper-
ties of cannabinoids administered to laboratory animals
or consumed by human subjects. These pharmacologi-
cal effects coincide with two key functions described for
the cannabinoid signaling system in corticolimbic struc-
tures. In relation with the cognitive effects of cannabi-
noids, it is well known that CB1 receptors are moderately
abundant in different cortical structures, in particular
they are located in superficial and deep layers, pre-
sumably onto GABAergic interneurons [3,34–36] and
the same happens with their endogenous ligands [21].
These anatomical data suggest a role for the cannabinoid
signaling system in the control of sleep-waking cycle,
performance of complex cognitive tasks, working mem-
ory, temporal organization of behavior, adaptation of
behavioral strategies, sensory perception, and other
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cognitive functions, whose control resides mainly in
the different cortical structures (for review, see [126]).
This provides an explanation for major subjective ef-
fects and cognitive impairments experienced by cannabis
consumers, including: (i) the case of naı̈ve consumers
in which cannabinoids reversibly impair cognitive func-
tions, a phenomenon also demonstrated in laboratory an-
imals (reviewed in [127]), and (ii) the particular case
of long-term marijuana abuse where severe irreversible
deficits in cognitive function and precipitation of psychi-
atric disorders, such as psychosis, anxiety or depression,
have been postulated, in particular when the abuse of
marijuana starts at very early ages during the adolescence
(reviewed in [127–129] and see below). Anyway, the ev-
idence surrounding the cognitive effects of cannabis is
always a matter of continuous debate, with studies
stating the critical role played by cannabinoids in the
development of psychiatric disorders for the general pop-
ulation and others that circumscribe this possibility only
in vulnerable individuals (reviewed in [127–129] and see
below).

The cannabinoid signaling system also plays a role in
brain reward processes activated by different types of re-
inforcers, particularly, the addictive drugs, including the
case of cannabis consumption itself [130] but also of
other different drugs of abuse [131,132]. This assump-
tion is supported by several evidences. First, several neu-
roanatomical studies have demonstrated that elements of
the cannabinoid signaling system, particularly the CB1

receptors, are abundant in the different brain structures
that form the brain reward circuitry [21,30,34–36]. Sec-
ond, several biochemical studies have demonstrated that
these elements, again in particular the CB1 receptor,
experience important changes in conditions of acute ex-
posure, chronic consumption, dependence, abstinence,
or relapse for most frequently consumed habit-forming
drugs, including the case of opioids [133–135], cocaine
[133,136], nicotine [136] or alcohol [133,136–139]. The
importance of a role of the cannabinoid system in
addictive processes is that it opens the possibility that the
pharmacological management of the cannabinoid signal-
ing may serve to improve behavioral and/or neurochem-
ical anomalies occurring during addictive states (see next
section), and for this potential, the interactions between
cannabinoids and DA seem to be critical.

Neurochemical Data

Several cannabinoid agonists, mainly �9-THC, the
major psychoactive ingredient of cannabis, have been
reported to increase mesolimbic dopaminergic activity
(reviewed in [115]), as demonstrated in numerous stud-
ies conducted with laboratory animals in which the treat-

ment with different cannabinoid agonists elevated D1

receptor density, DA release, and DA metabolism in vari-
ous limbic structures, as well as it enhanced the firing rate
of mesolimbic dopaminergic neurons in the A10 region
(reviewed in [129,140]). The involvement of the CB1

receptor seems critical for these effects and explains why
knockout mice for the CB1 receptor exhibited reduced
voluntary alcohol consumption [141], morphine self-
administration [142,143], cocaine-enhanced locomotion
[144], and absence of rewarding effects of nicotine
evaluated in the conditioned place preference test [145],
although they did not show similar responses for cocaine
or nicotine reinforcement in the self-administration
paradigm [143]. Again, DA transmission seems to be
critical here because the effects of alcohol, morphine,
cocaine, or nicotine on DA release in the nucleus accum-
bens were completely absent in CB1 receptor knockout
mice [141,142,144,146]. In the same direction, an
increased endocannabinoid tone has been demonstrated
to facilitate the effects of most commonly abused drugs
on DA transmission, since DA release was uniformly in-
hibited by the blockade of CB1 receptors [147]. However,
adding complexity to this issue, a recent study by Melis
et al. [148] demonstrated that FAAH inhibitors were also
effective in the reduction of nicotine-induced activation
of dopaminergic neurons, which contradicts the idea
that the endocannabinoid system, and particularly the
CB1 receptor, exerts a stimulatory effect on nicotine
reinforcing properties. In this case, FAAH inhibitors
would act by enhancing the action of certain signaling
N-acylethanolamines (e.g., oleoylethanolamide and
palmitoylethanolamide), which are devoid of CB1 ac-
tivity, but are capable to act at the PPAR-α nuclear
receptors, opening a new avenue in the understanding
and perhaps in the treatment of drug addiction.

In parallel to their effects on mesolimbic projections
neurons, cannabinoid agonists also augmented the ac-
tivity of those dopaminergic neurons that coming from
the ventral-tegmental area project specifically to the pre-
frontal cortex (reviewed in [149]). The prefrontal cor-
tex is involved in many cognitive functions, including
working memory, temporal organization of behavior,
and adaptation of behavioral strategies, that, as men-
tioned above, are affected by cannabinoids [149]. This
region contains a moderate density of CB1 receptors
[34,35]. The acute administration of cannabinoids in-
creased DA release in rat prefrontal cortex, measured by
in vivo microdialysis, but this effect is produced presum-
ably by a previous increase of glutamate release and/or
a decrease of GABA, given that CB1 receptors are not
located in dopaminergic neurons [150]. By contrast,
the repeated administration of cannabinoid agonists de-
creased DA turnover in the prefrontal cortex but not in
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the nucleus accumbens and the striatum [151,152], an ef-
fect that persisted even after a drug-free period of 2 weeks
[152].

In general, there are no discrepancies concerning that
the activation of CB1 receptors is involved in most of
effects produced by cannabinoids on mesocorticolim-
bic activity. However, as mentioned above, these effects
have been considered, so far, as exerted indirectly [132].
Possibly, they would be caused through modifying
GABAergic influences to the ventral-tegmental area
and/or the nucleus accumbens, given that CB1 receptors
have been found in these GABA neurons rather than in
mesocorticolimbic ones [117,153,154]. These GABA neu-
rons tonically inhibit DA-containing neurons and an in-
hibition of GABA release by cannabinoid agonists, via
presynaptic CB1 receptors, would be expected to increase
the activity of dopaminergic neurons [123,124,154–158].
Alternatively, CB1 receptors may be located in the excita-
tory glutamatergic inputs to the GABA-containing neu-
rons that project from the nucleus accumbens to the
ventral-tegmental area, as reported by Melis and cowork-
ers [159]. In this case, the activation of CB1 receptors
would result in a decrease of glutamate release followed
by reduction in GABA activity and, again, in an increase
in the firing of dopaminergic neurons [124,160]. An im-
portant aspect to remark is that, in both cases– CB1 recep-
tors located in GABA- or glutamate-containing neurons–
the activation of these receptors would depend on the re-
lease of endocannabinoids by dopaminergic neurons, a
fact associated with the increase in the activity of these
neurons provoked by abused drugs [121]. According to
these authors [121], the release of endocannabinoids and
the subsequent activation of presynaptic CB1 receptors
by these signaling lipids may represent a common phe-
nomenon associated with the action of a wide variety
of habit-forming drugs. Finally, it is also important to
consider the study published by Wenger and coworkers
[30] who, as mentioned above, demonstrated for the first
time, using double immunohystochemistry, that CB1 re-
ceptors colocalize with tyrosine hydroxylase in the nu-
cleus accumbens. This opens the possibility of a direct
action of cannabinoids on the major neurochemical sub-
strate of brain reward, dysphoria-mediated drug craving
and drug relapse, although not all researchers agree with
this possibility (reviewed in [121,140]).

Cannabinoids, DA and Corticolimbic Structures
in Pathological Conditions

As in the case of the basal ganglia, the capability of
the cannabinoid system to influence DA transmission in
corticolimbic structures supports that the pharmacolog-
ical management of this system might have therapeu-

tic value in those diseases involving anomalies of meso-
corticolimbic DA transmission, among them, addictive
states, and schizophrenia and other psychosis. The work-
ing hypothesis is that normalizing DA transmission, with
either cannabinoid agonists or antagonists depending on
the type of dysfunction, would result in reducing addic-
tive processes or producing antypsychotic effects.

As mentioned earlier, the endocannabinoid transmis-
sion has been related to many signs of drug addiction.
For example, it can be related to cases of individual vul-
nerability for drug abuse, a fact supported by recent data
showing a higher occurrence of this disorder in indi-
viduals bearing specific genetic variants of the CB1 re-
ceptor or the FAAH enzyme, particularly for the case
of alcohol and opioids [161–163]. However, most of
the evidence supporting a relation of the cannabinoid
system with drug addiction involve processes of crav-
ing, degree of dependence and intensity of abstinence, or
risk to relapse for different types of drugs [119,164–168].
The importance of this fact is that it opens the pos-
sibility of using cannabinoid-related substances in the
treatment of different aspects of drug addiction (for
review, see [131,132,137]). These effects would be ex-
erted, among others, by normalizing DA transmission,
in particular in those addictive responses more directly
related to changes in DA activity such as reinforce-
ment/relapse [118] or withdrawal/dysphoria-mediated
drug craving [117]. Most of pharmacological studies have
concentrated in the potential of CB1 receptor antago-
nists and the most-studied compound has been rimon-
abant [169] (see Figure 3). For example, the blockade
of CB1 receptors with this antagonist impaired the per-
ception of reinforcing potential of different habit-forming
drugs [170], indicating that positive incentive and/or mo-
tivational processes (and relapsing properties too) could
be under a permissive control of CB1 receptor-related
mechanisms. This has been described for many drugs
including the case of alcohol [141,167,171,172], mor-
phine [164,165,173,174] and nicotine [146,175,176],
and specifically for relapsing properties in the case of
cocaine [166,177]. This concept has been recently ex-
tended to physical dependence/abstinence for most of
these drugs (reviewed in [169]). This pharmacological
potential shown by rimonabant (and other CB1 recep-
tor antagonists) in preclinical studies led to an exhaus-
tive clinical testing, particularly for tobacco addiction
(STRATUS clinical trial, see [169,178]) and, more re-
cently, for alcohol dependence (ACTOL clinical trial, see
[179]), although the results were not positive enough.
Major problems with rimonabant and other similar an-
tagonists are that they behave also as inverse agonists,
and, given the ubiquitous distribution of CB1 receptors
within the CNS, the use of this type of compounds in
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the clinic is frequently associated with the occurrence of
psychiatric side effects. Therefore, the matter is pending
of the development of neutral CB1 receptor antagonists
[169].

Cannabinoids–DA interactions are also important in
another disorder related to corticolimbic structures such
as schizophrenia. There are multiple lines of research re-
lating cannabinoids to DA transmission in schizophrenia.
For example, the brain structures involved in the patho-
genesis of schizophrenia (limbic areas, prefrontal cortex),
structures that are densely innervated by dopaminergic
terminals, contain also a moderate but significant density
of CB1 receptors [34–36]. They also contain relevant
amounts of endocannabinoids [21]. This may explain
why cannabis consumption has been associated with the
induction or enhancement of psychosis in various cohort
studies, and, then, proposed as a potential risk factor for
the development of this disorder, in particular in the case
of heavy abusers (e.g., frequent consumers or consumers
of high �9-THC cannabis), early consumers (e.g., ado-
lescence is a particularly vulnerable period) and/or pre-
disposed individuals (e.g., subjects with family history or
prodromal symptoms, or bearing the Val allele of COMT)
(reviewed in [127–129]). Cannabis consumption
has been also associated with more frequent and
earlier relapses (reviewed in [180]). However, as
mentioned above, the association between cannabis
and psychosis is not completely understood (see
[127–129,181,182] for review). It is also impor-
tant to remark, given the objective of this review,
that, for some authors, cannabinoid agonists, inde-
pendently of their capability to induce or aggravate
psychotic episodes, seem to be capable to interfere with
classic antipsychotics, thus reducing their capability
to block D2 receptors and/or exacerbating their ex-
trapyramidal symptoms [183,184]. However, for some
authors, this can be a sort of self-medication to diminish
neuroleptic-side effects [129,181]. That cannabis/can-
nabinoids may cause or exacerbate psychoses may be
related to the facilitatory effects of cannabinoids on DA
transmission at the nucleus accumbens [181], given that
overactivity of DA transmission in this structure is a key
pathological event in schizophrenia. The inhibitory effect
of cannabinoids on GABA and glutamate transmission
may also collaborate in these responses [129].

Another relevant observation concerning the possi-
ble relation of cannabis/cannabinoids with the patho-
genesis of schizophrenia was obtained in genetic stud-
ies, which revealed the association of a polymorphism
of the CB1 receptor gene with increased susceptibility
to develop schizophrenia [181,185–187], although there
are studies showing no association (reviewed in [181]).
For some authors, this is an important support to the

idea that the cannabinoid signaling system plays a role in
the pathogenesis of schizophrenia, at least in a subgroup
of schizophrenic individuals [181]. This is the so-called
cannabinoid hypothesis of schizophrenia, which would
consist of an impairment in the activity of this signaling
system (higher CB1 receptor density or endocannabinoid
levels, responses that have been found in schizophrenic
patients; see below) in cortical and subcortical (limbic)
structures. These changes would be associated with hy-
peractivity of dopaminergic neurons (positive symptoms)
and hypoactivity of glutamate neurons (negative symp-
toms) (for review, see [32]).

On the other hand, despite the evidence indicating that
cannabis consumption or cannabinoid signaling dysregu-
lation may be adverse elements collaborating in the de-
velopment of schizophrenia or reducing the efficacy of
classic antipsychotic therapies, recent evidences have also
indicated that certain cannabinoid-related compounds
may serve as novel therapeutic agents in schizophre-
nia. This includes first the possibility that psychotic pa-
tients use cannabis to overcome the unpleasant feelings
produced by classic antipsychotic therapy (reviewed in
[181]). For example, Voruganti et al. [188], using in vivo

SPECT analysis, demonstrated that cannabis smoking in
schizophrenic patients produced an immediate calming
effect, although followed by a worsening of psychotic
symptoms [188]. The calming effect correlated with a
reduction in striatal D2 receptor binding that the au-
thors interpreted as suggestive of increased DA activity
[188]. Similar results were furtherly obtained by Bossong
et al. [189], but not by Stokes et al. [190]. More recent
evidences have indicated that the management of the
cannabinoid signaling may even provide antipsychotic
effects, with two compounds, cannabidiol and rimona-
bant, being the most studied. The antipsychotic potential
of cannabidiol has been recently demonstrated even in
the clinical area [191], although it is possible that its ef-
fects are not mediated by the activation of CB1 or CB2

receptors for which this phytocannabinoid has poor affin-
ity, but through its capability to modulate TRPV1 recep-
tors or to interfere with endocannabinoid inactivation.
As regards to rimonabant or other similar CB1 receptor
antagonists (see Figure 3), their antipsychotic potential
was recently examined in preclinical models [192,193]
at the light of the so-called cannabinoid hypothesis
of schizophrenia mentioned above, according to which
the cannabinoid signaling system would be elevated in
schizophrenic patients. In this respect, schizophrenic pa-
tients have elevated anandamide levels in CSF [194,195]
and blood [196]. Using analyses in postmortem human
cortical and subcortical structures or neuroimaging pro-
cedures, several authors demonstrated that the density of
CB1 receptors is also elevated [197–200], although this
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was not found in other study [201] and, even, a last
study described a decrease in CB1 receptor binding [202].
The preclinical studies revealed that the antipsychotic po-
tential of rimonabant was related to alterations in DA
[203] and glutamate [193] transmissions in cortical struc-
tures. However, rimonabant did not differ from placebo
in reducing positive and negative symptoms in a placebo-
controlled clinical trial conducted with patients having
schizophrenia and schizoaffective disorder [204].

Concluding Remarks

Along this review, we have reviewed the classic knowl-
edge and the recent advances on cannabinoid-DA inter-
actions paying emphasis in two processes where DA has
been proposed as a key neurotransmitter, such as the
basal ganglia function and the corticolimbic processes. We
have explored the mechanisms underlying these interac-
tions, which represent the way for plant-derived cannabi-
noids to interfere with these processes. In most of the
cases, we have concluded that dopaminergic neurons do
not contain CB1 receptors, with some exceptions, but
these receptors are located on neurons present in regions
innervated by dopaminergic neurons, which allows rele-
vant bidirectional interactions. Finally, we have reviewed
those diseases characterized by either deficiency, dysreg-
ulation or overactivity of DA transmission and where
cannabinoids might be of therapeutic potential possibly
through actions that facilitate, among others, a normal-
ization of DA transmission. These diseases included basal
ganglia disorders (e.g., Parkinson’s disease), drug addic-
tion, and schizophrenia and related-psychoses.
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on cannabis use in Parkinson’s disease: Subjective

improvement of motor symptoms. Mov Disord

2004;19:1102–1106.

101. Price DA, Martinez AA, Seillier A, et al. WIN55,212–2,

a cannabinoid receptor agonist, protects against

nigrostriatal cell loss in the 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine mouse model of

Parkinson’s disease. Eur J Neurosci 2009;29:

2177–2186.
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